Citations

From References: 0 From Reviews: 0

MR2229102 (Review) 13F05

Article

Dobbs, David E. (1-TN); **Fontana, Marco** (I-ROME3)

On inverse limits of Bézout domains. (English summary)

Abelian groups, rings, modules, and homological algebra, 59–66, Lect. Notes Pure Appl. Math., 249, Chapman & Hall/CRC, Boca Raton, FL, 2006.

Let $\{\varphi_{mn}: A_m \to A_n \mid m \geq n\}$ be an inverse system of commutative domains indexed by \mathbb{N} and let $A = \varprojlim A_n$. The authors study the following question: is A a Prüfer domain when A_n is a Prüfer domain $\forall n \in \mathbb{N}$? In a previous article [D. E. Dobbs and M. Fontana, Math. Scand. **88** (2001), no. 1, 17–40; MR1813518 (2001i:13032)] they got a positive answer for certain types of inverse systems. In the present paper, an example shows that this question has generally a negative answer, but in this example the homomorphisms φ_{mn} are not surjective. So, in the sequel, the surjectivity of φ_{mn} and its restriction to the unit groups is assumed, $\forall m, \forall n, m \geq n$. When A_n is Bézout $\forall n \in \mathbb{N}$, they prove that A is Prüfer if the following additional condition holds: each nonzero prime ideal of A belongs to $\bigcup_{n \in \mathbb{N}} \operatorname{Im}(\operatorname{Spec}(A_n) \to \operatorname{Spec}(A))$. But, without this additional assumption, N. I. Dubrovin already obtained a better result since he showed that A is Bézout in this case [Mat. Sb. (N.S.) **119(161)** (1982), no. 1, 89–95; MR0672411 (84h:13023)]. At the end of the paper, an inverse system $\{\varphi_{mn}^*: A_m^* \to A_n^* \mid m \geq n\}$ is constructed where A_n^* is obtained from A_n by a suitable CPI-extension. If $\mathbb C$ is a class of integral domains then $A^* = \varprojlim A_n^* \in \mathbb C$ if $A_n \in \mathbb C$, $\forall n \in \mathbb N$, in the following cases: $\mathbb C$ is the class of all (i) Prüfer domains, (ii) Bézout domains, (iii) divided domains, (iv) locally divided domains.

Reviewed by François Couchot

© Copyright American Mathematical Society 2006