MR1964763 (2004b:13021) 13F05 13A15

Fontana, M. (I-ROME3); Jara, P. (E-GRAN-AL); Santos, E. (E-GRAN-AL)

Prüfer *-multiplication domains and semistar operations. (English. English summary)

J. Algebra Appl. 2 (2003), no. 1, 21–50.

Let D be an integral domain with quotient field K. A semistar operation \star on D is basically a star operation on D that need not satisfy $D^{\star} = D$, i.e, \star is a closure operation on the set $\overline{F}(D)$ of D-submodules of K (instead of being on the set F(D) of nonzero fractional ideals as is the case for star operations) that satisfies $(xE)^{\star} = xE^{\star}$ for each $0 \neq x \in K$ and $E \in \overline{F}(D)$. The domain D is called a Prüfer \star multiplication domain (P \star MD) if every nonzero finitely generated ideal of D is \star_f -invertible, i.e., there is a finitely generated fractional ideal $J \subseteq I^{-1}$ of D with $(IJ)^{\star} = D$. This paper studies P \star MD's D and their associated Nagata rings $D[X]_{N(\star)}$ (where $N(\star) = \{f \in$ $D[X]| c(f)^{\star} = D\}$, c(f) is the content of f) and Kronecker function rings ($\{f/g | 0 \neq f, g \in D[X]$ with $c(fh)^{\star} \subseteq c(gh)^{\star}$ for some $0 \neq h \in$ $D[X]\} \cup \{0\}$). Daniel D. Anderson (1-IA)