An amalgamated duplication of a ring along an ideal: the basic properties

Marco D’Anna* Marco Fontana†
June 4, 2007

Dedicated to Luigi Salce, on his 60th birthday

Abstract

We introduce a new general construction, denoted by $R \ast E$, called the amalgamated duplication of a ring R along an R–module E, that we assume to be an ideal in some overring of R. (Note that, when $E^2 = 0$, $R \ast E$ coincides with the Nagata’s idealization $R \ltimes E$.)

After discussing the main properties of the amalgamated duplication $R \ast E$ in relation with pullback–type constructions, we restrict our investigation to the study of $R \ast E$ when E is an ideal of R. Special attention is devoted to the ideal-theoretic properties of $R \ast E$ and to the topological structure of its prime spectrum.

1 Introduction

If R is a commutative ring with unity and E is an R–module, the idealization $R \ltimes E$, introduced by Nagata in 1956 (cf. Nagata’s book [16], page 2), is a new ring, containing R as a subring, where the module E can be viewed as an ideal such that its square is (0).

This construction has been extensively studied and has many applications in different contexts (cf. e.g. [17], [6], [9], [11]). Particularly important is the generalization given by Fossum, in [5], where he defined a commutative extension of a ring R by an R–module E to be an exact sequence of abelian groups:

$$0 \to E \xrightarrow{\iota} S \xrightarrow{\pi} R \to 0$$

where S is a commutative ring, the map π is a ring homomorphism and the R–module structure on E is related to S and to the maps ι and π by the

MSC: 13A15, 13B99, 14A05.

Key words: idealization, pullback, Zariski topology.

*Partially supported by MIUR, under Grant PRIN 2005-011955.
†Partially supported by MIUR, under Grant PRIN 2005-015278.
equation $s \cdot \iota(e) = \iota(\pi(s) \cdot e)$ (for all $s \in S$ and $e \in E$). It is easy to see that the idealization $R \ltimes E$ is a very particular commutative extension of R by the R–module E (called trivial extension of R by E in [5]).

In this paper, we will introduce a new general construction, called the amalgamated duplication of a ring R along an R–module E (that we assume to be an ideal in some overring of R and so E is an R-submodule of the total ring of fractions $T(R)$ of R) and denoted by $R \rtimes E$ (see Lemma 2.4).

When $E^2 = 0$, the new construction $R \rtimes E$ coincides with the idealization $R \ltimes E$. In general, however, $R \rtimes E$ it is not a commutative extension in the sense of Fossum. One main difference of this construction, with respect to the idealization (or with respect to any Fossum’s commutative extension) is that the ring $R \rtimes E$ can be a reduced ring (and, in fact, it is always reduced if R is a domain).

Motivations and some applications of the amalgamated duplication $R \rtimes E$ are discussed more in detail in two recent papers [1], [2]. More precisely, M. D’Anna [1] has studied some properties of this construction in case $E = I$ is a proper ideal of R, in order to construct reduced Gorenstein rings associated to Cohen-Macaulay rings and he has applied this construction to curve singularities. M. D’Anna and M. Fontana in [2] have considered the case of the amalgamated duplication of a ring, in a not necessarily Noetherian setting, along a multiplicative-canonical ideal in the sense of Heinzer-Huckaba-Papick [10].

The present paper is devoted to a more systematic investigation of the general construction $R \rtimes E$, with a particular consideration to the ideal-theoretic properties and to the topological structure of its prime spectrum. More precisely, the paper is divided in two parts: in Section 2 we study the main properties of the amalgamated duplication $R \rtimes E$. In particular we give a presentation of this ring as a pullback (cf. Proposition 2.4) and from this fact (cf. also [4], [7]) we obtain several connections between the properties of R and the properties of $R \rtimes E$ and some useful information about Spec$(R \rtimes E)$ (cf. Remark 2.13).

In Section 3 we consider the case when $E = I$ is an ideal of R; this situation allows us to deepen the results obtained in Section 2; in particular we give a complete description of Spec$(R \rtimes I)$ (cf. Theorems 3.5 and 3.8).

2 The general construction

In this section we will study the construction of the ring $R \rtimes E$ in a general setting. More precisely, R will always be a commutative ring with unity, $T(R) := \{\text{regular elements}\}^{-1}R$ its total ring of fractions and E an R-submodule of $T(R)$. Moreover, in order to construct the ring $R \rtimes E$, we are interested in those R-submodules of $T(R)$ such that $E \cdot E \subseteq E$.

Lemma 2.1 Let E be an R-submodule of $T(R)$ and let J be an ideal of R.

(a) $E \cdot E \subseteq E$ if and only if there exists a subring S of $T(R)$ containing R and E, such that E is an ideal of S.
(b) If $E \cdot E \subseteq E$ then:

$$R+E := \{ z = r + e \in T(R) \mid r \in R, \; e \in E \}$$

is a subring of $(E : E) := \{ z \in T(R) \mid zE \subseteq E \} \subseteq T(R)$, containing R as a subring and E as an ideal.

(c) Assume that $E \cdot E \subseteq E$; the canonical ring homomorphism $\varphi : R \hookrightarrow R+E \to (R+E)/E$, $r \mapsto r + E$, is surjective and $\text{Ker}(\varphi) = E \cap R$.

(d) Assume that $E \cdot E \subseteq E$; the set $J+E := \{ j + e \mid j \in J, \; e \in E \}$ is an ideal of $R+E$ containing E and $(J+E) \cap R = \text{Ker}(R \hookrightarrow R+E \to (R+E)/(J+E)) = J+(E \cap R)$.

Proof. (a) It is clear that the implication “if” holds. Conversely, set $S := (E : E)$. The hypothesis that $E \cdot E \subseteq E$ implies that E is an ideal of S and that S is a subring of $T(R)$ containing R as a subring.

(b) It is obvious that $R+E$ is an R-submodule of $(E : E)$ containing R and E. Moreover, let $r, s \in R$ and $e, f \in E$, if $z := r + e$ and $w := s + f \in R+E$ then $zw = rs + (rf + se + ef) \in R+E$ and $zf = rf + ef \in E$.

(c) and (d) are straightforward.

From now on we will always assume that $E \cdot E \subseteq E$.

In the R-module direct sum $R \oplus E$ we can introduce a multiplicative structure by setting:

$$(r, e)(s, f) := (rs, rf + se + ef), \quad \text{where } r, s \in R \text{ and } e, f \in E.$$

We denote by $R \hat{\oplus} E$ the direct sum $R \oplus E$ endowed also with the multiplication defined above.

The following properties are easy to check:

Lemma 2.2 With the notation introduced above, we have:

(a) $R \hat{\oplus} E$ is a ring.

(b) The map $j : R \hat{\oplus} E \to R \times (R+E)$, defined by $(r, e) \mapsto (r, r + e)$, is an injective ring homomorphism.

(c) The map $i : R \to R \hat{\oplus} E$, defined by $r \mapsto (r, 0)$, is an injective ring homomorphism.

Remark 2.3 (a) With the notation of Lemma 2.1 note that if $E = S$ is a subring of $T(R)$ containing as a subring R, then $R+S = S$. Also, if I is an ideal of R, then $R+I = R$.

(b) In the statement of Lemma 2.1 (d), note that, in general, $J+E$ does not coincide with the extension of J in $R+E$: we have $J(R+E) = \{ j + \alpha \mid j \in J, \; \alpha \in J E \} \subseteq J+E$, but the inclusion can be strict (cf. Lemma 3.4 (a), (d) and (e)).
(c) For an arbitrary R-module E, M. Nagata introduced in 1955 the idealization of E in R, denoted here by $R \bowtie E$, which is the R-module $R \oplus E$ endowed with a multiplicative structure defined by:

$$(r, e)(s, f) := (rs, rf + se), \quad \text{where } r, s \in R \text{ and } e, f \in E$$

(cf. [15] and also Nagata’s book [16] page 2 and Huckaba’s book [11] Chapter VI, Section 25). The idealization $R \bowtie E$, called also the trivial extension of R by E [5], is a ring such that the canonical embedding $R \hookrightarrow R \bowtie E$, $r \mapsto (r, 0)$, defines a subring of $R \bowtie E$ isomorphic to R and the embedding $E \hookrightarrow R \bowtie E$, $e \mapsto (0, e)$, defines an ideal E^\times in $R \bowtie E$ (isomorphic as an R-module to E), which is nilpotent of index 2 (i.e. $E^\times \cdot E^\times = 0$). Therefore, even if R is reduced, the idealization $R \bowtie E$ is not a reduced ring, except in the trivial case for $E = (0)$, since $R \bowtie (0) = R$. Moreover, if $p_R : R \bowtie E \to R$ is the canonical projection (defined by $(r, e) \mapsto r$), then

$$0 \to E \to R \bowtie E \xrightarrow{p_R} R \to 0$$

is an exact sequence.

Note that the idealization $R \bowtie E$ coincides with the ring $R \bowtie E$ (Lemma 2.2) if and only if E is an R-submodule of $T(R)$ that is nilpotent of index 2 (i.e. $E \cdot E = (0)$).

Lemma 2.4 With the notation of Lemma 2.2, note that $\delta := j \circ i : R \hookrightarrow R \times (R + E)$ is the diagonal embedding and set:

$$R^\Delta := (j \circ i)(R) = \{(r, r) \mid r \in R\} \quad \text{and} \quad R \bowtie E := j(R \bowtie E) = \{(r, r + e) \mid r \in R, \ e \in E\}.$$

We have:

(a) The canonical maps $R \cong R^\Delta \subseteq R \bowtie E \subseteq R \times T(R)$ are ring homomorphisms.

(b) $R \bowtie E$ is a subdirect product of the rings R and $(R + E)$, i.e. if $\pi_i \ (i = 1, 2)$ are the projections of $R \times (R + E)$ onto R and $R + E$, respectively, and if $\mathfrak{D}_i := \text{Ker}(\pi_i|_{R \bowtie E})$, then $(R \bowtie E)/\mathfrak{D}_1 \cong R$, $(R \bowtie E)/\mathfrak{D}_2 \cong R + E$ and $\mathfrak{D}_1 \cap \mathfrak{D}_2 = (0)$.

Proof. (a) is obvious. For (b) recall that S is a subdirect product of a family of rings $\{R_i \mid i \in I\}$ if there exists a ring monomorphism $\varphi : S \to \prod_i R_i$ such that, for each $i \in I$, $\pi_i \circ \varphi : S \to R_i$ is a surjection (where $\pi_i : \prod_i R_i \to R_i$ is the canonical projection) [13] page 30. Note also that $\mathfrak{D}_1 = \{(0, e) \mid e \in E\}$ and $\mathfrak{D}_2 = \{(e, 0) \mid e \in E \cap R\}$. The conclusion is straightforward (cf. also [13] Proposition 10).

We will call the ring $R \bowtie E$, defined in Lemma 2.4 the amalgamated duplication of a ring along an R module E; the reason for this name will be clear after studying the prime spectrum of $R \bowtie E$ and comparing it with the prime spectrum of R (see Proposition 2.13). The following is an easy consequence of the previous lemma.

4
Corollary 2.5 With the notation of Lemma 2.4, the following properties are equivalent:

(i) R is a domain;
(ii) $R + E$ is a domain;
(iii) \mathfrak{O}_1 is a prime ideal of $R \times E$;
(iv) \mathfrak{O}_2 is a prime ideal of $R \times E$;
(v) $R \times E$ is a reduced ring and \mathfrak{O}_1 and \mathfrak{O}_2 are prime ideals of $R \times E$.

We will see in a moment that R is a domain if and only if \mathfrak{O}_1 and \mathfrak{O}_2 are the only minimal prime ideals $R \times E$ (cf. Remark 2.5).

Proposition 2.6 Let $v : R \times (R + E) \rightarrow R \times ((R + E)/E)$ and $u : R \rightarrow R \times ((R + E)/E)$ be the natural ring homomorphisms defined, respectively, by $v((x, r + e)) := (x, r + E)$ and $u(r) := (r, r + E)$, for each $x, r \in R$ and $e \in E$. Then $v^{-1}(u(R)) = R \times E$. Therefore, if $v' := v|_{R \times E} : R \times E \rightarrow R$ is the canonical map defined by $(r, r + e) \mapsto r$ (cf. Lemma 2.4) and $u' : R \times E \rightarrow R \times (R + E)$ is the natural embedding, then the following diagram:

$$
\begin{array}{ccc}
R \times E & \xrightarrow{v'} & R \\
\downarrow{v'} & & \downarrow{u} \\
R \times (R + E) & \xrightarrow{v} & R \times ((R + E)/E)
\end{array}
$$

is a pullback.

Proof. Since E is an ideal of $R + E$ (Lemma 2.1 (b)), $\mathfrak{O}_1 = (0) \times E$ is a common ideal of $v^{-1}(u(R))$ and $R \times (R + E)$. Moreover, by definition, if $x, r \in R$ and $e \in E$, then $(x, r + e) \in v^{-1}(u(R))$ if and only if $(x, r + E) \in u(R)$, that is $x = r \in E$. Therefore we conclude that $v^{-1}(u(R)) = R \times E$. The second part of the statement follows easily from the fact that $v^{-1}(u(R)) = R \times E$ and $(R \times E)/\mathfrak{O}_1 \cong R$, with $\mathfrak{O}_1 = \text{Ker}(v')$ (Proposition 2.4 (b)).

Corollary 2.7 The ring $R \times (R + E)$ is a finitely generated $(R \times E)$-module. In particular, $R \times E \subseteq R \times (R + E)$ is an integral extension and $\dim(R \times E) = \dim(R \times (R + E)) = \sup\{\dim(R), \dim(R + E)\}$.

Proof. Clearly $u : R \rightarrow R \times ((R + E)/E)$ is a finite ring homomorphism, since $R \times ((R + E)/E)$ is generated by $(1, 0)$ and $(0, 1)$ as R-module. Since u is finite, also $u' : R \times (R + E) \rightarrow R \times ((R + E)/E)$ is a finite ring homomorphism [4 Corollary 1.5 (4)]. Last statement follows from [12 Theorems 44 and 48] and from the fact that $\text{Spec}(R \times (R + E))$ is homeomorphic to the disjoint union of $\text{Spec}(R)$ and $\text{Spec}(R + E)$ (cf. also Remark 2.5).
Remark 2.8 Recall that every ideal of the ring $R \times (R+E)$ is a direct product of ideals $I \times J$, with I ideal of R and J ideal of $R+E$. In particular, every prime ideal Q of $R \times (R+E)$ is either of the type $I \times (R+E)$ or $R \times J$, with I prime ideal of R and J prime ideal of $(R+E)$. Therefore, in the situation of Lemma 2.4 if R is an integral domain (and so $R+E$ also is an integral domain by Corollary 2.5), then $(0) \times (R+E)$ and $R \times (0)$ are necessarily the only minimal primes of $R \times (R+E)$. By the integrality property (Corollary 2.7 and [12, Theorem 46]), then $\mathfrak{O}_1 = ((0) \times (R+E)) \cap (R \times E) = (0) \times E$ and $\mathfrak{O}_2 = (R \times (0)) \cap (R \times E) = (R \cap E) \times (0)$ are the only minimal primes of $R \times E$.

Conversely, if \mathfrak{O}_1 and \mathfrak{O}_2 are the only minimal primes of $R \times E$, then clearly $R \times E$ is a reduced ring (Lemma 2.4 (b)) and, by Corollary 2.5, R is an integral domain.

Corollary 2.9 The following statements are equivalent:

(i) R and $R+E$ are Noetherian;

(ii) $R \times (R+E)$ is Noetherian;

(iii) $R \times E$ is Noetherian.

Proof. Clearly (i) and (ii) are equivalent. The statements (ii) and (iii) are equivalent by the Eakin-Nagata Theorem [14, Theorem 3.7], since $R \times (R+E)$ is a finitely generated $(R \times E)$–module (Corollary 2.7).

Remark 2.10 (a) In the situation of Proposition 2.6, the pullback degenerates in two cases:

(1) $u^\prime: R \times E \to R$ is an isomorphism if and only if $E = 0$;

(2) $\nu^\prime: R \times E \to R \times (R+E)$ is an isomorphism if and only if E is an overring of R (i.e., if and only if $E = R+E$).

(b) By the previous remark, we deduce easily that R Noetherian does not imply in general that $R+E$ is Noetherian and, conversely, $R+E$ Noetherian does not imply that R is Noetherian: take, for instance, E to be an arbitrary overring of R. However, if we assume that $R+E$ is a finitely generated R-module (cf. also the following Corollary 2.11), then by the Eakin-Nagata Theorem [14, Theorem 3.7] R is Noetherian if and only if $R+E$ is Noetherian.

This same situation described above (i.e. when E is an arbitrary overring of R) shows that, in Corollary 2.7, we may have that $\dim(R \times E) = \dim(R)$ or that $\dim(R \times E) = \dim(R+E)$ (with $\dim(R) \neq \dim(R+E)$).

Corollary 2.11 Assume that E is a fractional ideal of R (i.e. there exists a regular element $d \in R$ such that $dE \subseteq R$); then the following statements are equivalent:

(i) R is a Noetherian ring;

(ii) $R+E$ is a Noetherian R-module;

(iii) $R \times (R+E)$ is a Noetherian ring;
(iv) $R \otimes E$ is a Noetherian ring.

Proof. By Corollary 2.12 and by previous Remark 2.10 (b), it is sufficient to show that, in this case, R is a Noetherian ring if and only if $R+ E$ is a Noetherian R-module. Clearly, if R is Noetherian, then E is a finitely generated R-module and so $R + E$ is also a finitely generated R-module and thus it is a Noetherian R-module. Conversely, assume that $R + E$ is a Noetherian R-module; since it is faithful, by [14, Theorem 3.5] it follows that R is a Noetherian ring. □

Corollary 2.12 In the situation described above:

(a) Let R' and $(R+ E)'$ be the integral closures of R and $R+ E$ in $T(R)$. Then $R \otimes E$ and $R \times (R+ E)$ have the same integral closure in $T(R) \times T(R)$, which is precisely $R' \times (R+ E)'$. Moreover, if $R+ E$ is a finitely generated R-module, then the integral closure of R^\bigtriangleup in $T(R) \times T(R)$ (Lemma 2.7) also coincides with $R' \times (R+ E)'$.

(b) If $E \cap R$ contains a regular element, then $T(R \otimes E) = T(R \times (R+ E)) = T(R) \times T(R)$ and, moreover, $R \otimes E$ and $R \times (R+ E)$ have the same complete integral closure in $T(R) \times T(R)$.

Proof. (a) It is clear that $(x, y) \in T(R) \times T(R)$ is integral over $R \times (R+ E)$ if and only if $(x, y) \in R' \times (R+ E)'$. Since the extension $R \otimes E \hookrightarrow R \times (R+ E)$ (⊂ $T(R) \times T(R)$) is integral (Corollary 2.7), we have the first statement. If, in addition, we assume that $R + E$ is a finitely generated R-module, then the ring extension $R^\bigtriangleup \hookrightarrow R \times (R+ E)$ (Lemma 2.4) is finite (so, in particular, integral) and thus we have the second statement.

(b) Since E is an R-submodule of $T(R)$, then clearly $T(R) = T(R+ E)$, hence it is obvious that $T(R \times (R+ E)) = T(R) \times T(R)$. If e is a nonzero regular element of $E \cap R$, then (e, e) is a nonzero regular element belonging to $(E \cap R) \times E$, which is a common ideal of $R \otimes E$ and $R \times (R+ E)$. From this fact it follows that $R \otimes E$ and $R \times (R+ E)$ have the same total quotient ring [8, page 326] and so $T(R \otimes E) = T(R) \times T(R)$. The last statement follows from [8, Lemma 26.5]. □

Note that, in Corollary 2.12 (b), the assumption that $E \cap R$ contains a regular element is essential, since if E is the ideal (0) of an integral domain R with quotient field K, then $R \otimes (0) \cong R$ and so $T(R \otimes (0)) \cong K$, but $T(R \times R) = K \times K$.

Remark 2.13 Using Theorem 1.4 (c) and Corollary 1.5 (1) of [4], the previous Proposition 2.6 and Corollary 2.7 can be used to give a scheme-theoretic description of Spec($R \otimes E$) and Spec($R \times (R+ E)$). We do not give here many details, since in the following Section 3 we will prove directly and in a more elementary way the most part of the statements contained in this remark for the case $E = I$ is an ideal of R.

Recall that if $f : A \to B$ is a ring homomorphism, $f^a : \text{Spec}(B) \to \text{Spec}(A)$ denotes, as usual, the continuous map canonically associated to f, i.e. $f^a(Q) :=$
The restriction of the map \(f : X \rightarrow Y \) are naturally associated to a given ideal \(J \) of \(R \) and giving an example of the general construction.

Proposition 2.14 In the situation of Proposition 2.14 and with the notation of Lemma 2.1, for each ideal \(J \) of \(R \) we can consider the following ideals of \(R \times E \):

\[
\mathcal{J}_1 := v^{-1}(J), \quad \mathcal{J}_2 := u^{-1}(R \times J(R+E)) \quad \text{and} \quad \mathcal{J}_0 := J^c := J(R \times E).
\]

Then we have:

(a) \(\mathcal{J}_1 = u^{-1}(J \times (R+E)) = u^{-1}(J \times (J+E)) = \{(j, j + e) \mid j \in J, \ e \in E\} \).

(b) \(\mathcal{J}_0 = \{(j, j + \alpha) \mid j \in J, \ \alpha \in JE\} \).

(c) \(\mathcal{J} := \mathcal{J}_1 \cap \mathcal{J}_2 = u^{-1}(J \times J(R+E)) \).

(d) \(\mathcal{J}_0 \subseteq \mathcal{J}_1 \cap \mathcal{J}_2 \).

Proof. (a) and (b) are straightforward. Statement (c) is obvious, since \(J \times J(R+E) = (J \times (R+E)) \cap (R \times J(R+E)) \). (d) follows from (c) and from the fact that \(J(R \times E) \subseteq u^{-1}(J(R \times (R+E))) = u^{-1}(J \times J(R+E)) \).

Example 2.15 Let \(R := k[t^4, t^6, t^7, t^9] \) (where \(k \) is a field and \(t \) an indeterminate), \(S := k[t^2, t^3] \) and \(E := (t^2, t^3)S = t^2k[t] \). We have that \(R + E = S \) and hence

\[
R \times E = \{(f(t), g(t)) \mid f \in R, \ g \in S \ and \ g - f \in E\} = \{(f(t), g(t)) \mid f \in R, \ g \in S \ and \ f(0) = g(0)\}.
\]
Since E is a maximal ideal of S, the prime ideals in $R \times S$ containing \mathfrak{O}_1 are either of the form $P \times S$, for some prime ideal P of R, or $R \times E$; hence the primes not containing \mathfrak{O}_1 are of the form $R \times Q$, with $Q \in \text{Spec}(S)$ and $Q \neq E$.

By Remark 2.13 and Proposition 2.14, we have that if P is a prime in R, the ideal $\mathcal{P}_1 = (v')^{-1}(P) = (u')^{-1}(P \times S) = \{(p, p + e) \mid p \in P, e \in E\}$ is a prime in $R \otimes E$, containing \mathfrak{O}_1, and $R \otimes E/\mathcal{P}_1 \cong R/P$. Moreover, with the notation of Proposition 2.13 in this way we describe completely $V_S(\mathfrak{O}_1)$. Notice also that, if we set $M := (t^4, t^6, t^7)R$, then the maximal ideals $M \times S$ and $R \times E$ of $R \times S$ have the same trace in $R \otimes E$, i.e. $(R \times E) \cap (R \otimes E) = \{(r, r + e) \mid r \in R \cap E, e \in E\} = (M \times S) \cap (R \otimes E)$.

On the other hand, again by Remark 2.13, we have that $Y \setminus V_Y(\mathfrak{O}_1)$ is homeomorphic to $Z \setminus V_Z(\mathfrak{O}_1)$. Hence the prime ideals of $R \otimes E$ not containing \mathfrak{O}_1 are of the form $(R \times Q) \cap (R \otimes E)$, for some prime ideal Q of S, with $Q \neq E$.

3 The prime spectrum of $R \otimes I$

In this section we study the case when the R-module $E = I$ is an ideal of R (that we will assume to be proper and different from (0), to avoid the trivial cases); in this situation $R + I = R$. We start with applying to this case some of the results we obtained in the general situation.

Proposition 3.1 Using the notation of Proposition 2.6, the following commutative diagram of canonical ring homomorphisms

\[
\begin{array}{ccc}
R \otimes I & \overset{v'}{\longrightarrow} & R \\
\downarrow{u'} & & \downarrow{u} \\
R \times R & \overset{v}{\longrightarrow} & R \times (R/I)
\end{array}
\]

is a pullback. The ideal $\mathfrak{O}_1 = (0) \times I = \text{Ker}(v') = \text{Ker}(v)$ is a common ideal of $R \otimes I$ and $R \times R$, the ideal $\mathfrak{O}_2 = \text{Ker}(R \otimes I \overset{u'}{\longrightarrow} R \times R \overset{\pi_2}{\longrightarrow} R)$ coincides with $I \times (0) = (I \times (0)) \cap (R \otimes I)$ and $(R \otimes I)/\mathfrak{O}_1 \cong R$, for $i = 1, 2$.

In particular, if R is a domain then $R \otimes I$ is reduced and \mathfrak{O}_1 and \mathfrak{O}_2 are the only minimal primes of $R \otimes I$.

Proof. The first part is an easy consequence of Lemma 2.4(b) and Proposition 2.6 the last statement follows from Corollary 2.6.

Remark 3.2 Note that, when $I \subseteq R$, then $R \otimes I := \{(r, r + i) \mid r \in R, i \in I\} = \{(r + i, r) \mid r \in R, i \in I\}$. It follows that we can exchange the roles of \mathfrak{O}_1 and \mathfrak{O}_2 (and that \mathfrak{O}_2 is also a common ideal of $R \otimes I$ and $R \times R$).

If we specialize to the present situation Corollary 2.7 Corollary 2.11 and Corollary 2.12 then we obtain:

Corollary 3.3 Let R' (respectively, R^*) be the integral closure (respectively, the complete integral closure) of R in $T(R)$, we have:
(a) \(\dim(R \otimes I) = \dim(R) \).

(b) \(R \) is Noetherian if and only if \(R \otimes I \) is Noetherian.

(c) The integral closure of \(R^\triangleleft \) and of \(R \otimes I \) in \(T(R) \times T(R) \) coincide with \(R' \times R' \).

(d) If \(I \) contains a regular element, then \(T(R \otimes I) = T(R) \times T(R) \) and the complete integral closure of \(R \otimes I \) in \(T(R) \times T(R) \) coincide with \(R^* \times R^* \), which is the complete integral closure of \(R \times R \) in \(T(R) \times T(R) \).

The next goal is to investigate directly the relations among \(\text{Spec}(R \times R) \), \(\text{Spec}(R \otimes I) \), and \(\text{Spec}(R) \), under the canonical maps associated to natural embeddings, i.e. the diagonal embedding \(\delta: R \hookrightarrow R \otimes I \) (with \((r \mapsto (r,r)) \)) and the inclusion \(R \otimes I \hookrightarrow R \times R \). With a slight abuse of notation, we identify \(R \) with its isomorphic image \(R^\triangleleft \) in \(R \otimes I \) (\(\subseteq R \times R \)) under the diagonal embedding (Lemma 2.4) and we denote the contraction to \(R \) of an ideal \(\mathcal{H} \) of \(R \otimes I \) (or, \(H \) of \(R \times R \)) by \(\mathcal{H} \cap R \) (or, by \(H \cap R \)).

We start with an easy lemma.

Lemma 3.4 With the notation of Proposition 2.14, let \(J \) be an ideal of \(R \). Then:

(a) \(J_1 := u'^{-1}(J) = u'^{-1}(J \times R) = u'^{-1}(J \times (J + I)) = \{(j, j + i) \mid j \in J, i \in I\} := J \otimes I \). If \(J = I \), then \(I \otimes I := I \times I \) is a common ideal of \(R \otimes I \) and \(R \times R \).

(b) \(J_2 := u'^{-1}(R \times J) = \{(j + i, j) \mid j \in J, i \in I\} \).

(c) \(J := J_1 \cap J_2 = u'^{-1}(J \times J) = \{(j, j + i') \mid j \in J, i' \in I \cap J\} = \{(j_1, j_2) \mid j_1, j_2 \in J, j_1 - j_2 \in I\} \).

(d) \(J_0 := J(R \otimes I) = \{(j, j + i'') \mid j \in J, i'' \in JJ\} \) (cf. \[1\] Lemma 8).

(e) \(J_0 \subseteq J_1 \cap J_2 \).

(f) \(J_1 = J_2 \Leftrightarrow I \subseteq J \).

(g) \(J_0 + J = R \Rightarrow J_0 = J_1 \cap J_2 \).

(h) \(J_1 \cap R = J_2 \cap R = J_0 \cap R = J \cap R = J \).

Proof. (a) is a particular case of Proposition 2.14 (a). The second part is straightforward.

(b) Let \(r \in R \) and \(j \in J \); we have that \((r, j) \in R \otimes I \) if and only if \((r, j) = (s, s + i) \), for some \(s \in R \) and \(i \in I \). Therefore \(r = s - i \) and \((r, j) = (j + i', j) \) for some \(i' \in I \).

(c) Let \(j_1, j_2 \in J \); we have that \((j_1, j_2) \in R \otimes I \) if and only if \((j_1, j_2) = (s, s + i) \), for \(s \in R \) and \(i \in I \). Therefore \(j_1 = s, j_2 = j_1 + i \) and \(j_2 - j_1 = i \in I \).

Statements (d) and (e) are particular cases of Proposition 2.14 (b) and (d)).
(f) follows easily from (a) and (b), since:
\[J_1 = J_2 \Rightarrow J + I = J \Rightarrow I \subseteq J \Rightarrow J_1 = J_2. \]

(g) is a consequence of (c) and (d), since \(J + I = R \) implies that \(J \cap I = JI \).

(h) It is obvious that \(J_1 \cap R = J = J_2 \cap R \) and hence, by (c) and (e), we also have \(J \cap R = J_0 \cap R = J \).

With the help of the previous lemma we pass to describe the prime spectrum of \(R \otimes I \). In the following, the residue field at the prime ideal \(Q \) of a ring \(A \) (i.e. the field \(A_Q/QA_Q \)) will be denoted by \(k_A(Q) \). Part of the next theorem is contained in [1, Proposition 5].

Theorem 3.5 (1) Let \(P \) be a prime ideal of \(R \) and consider the ideals \(\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_0 \) and \(\mathcal{P} \) of \(R \otimes I \) as in Lemma 3.4 (with \(P = J \)). Then:

1. (a) \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) are the only prime ideals of \(R \otimes I \) lying over \(P \).
2. (b) If \(P \supseteq I \), then \(\mathcal{P}_1 = \mathcal{P}_2 = \mathcal{P} = \sqrt{\mathcal{P}_0} = P \otimes I \). Moreover, \(k_R(P) \cong k_{R \otimes I}(\mathcal{P}) \).
3. (c) If \(P \not\supseteq I \) then \(\mathcal{P}_1 \neq \mathcal{P}_2 \). Moreover \(\mathcal{P} = \sqrt{\mathcal{P}_0} \) and \(k_R(P) \cong k_{R \otimes I}(\mathcal{P}_1) \cong k_{R \otimes I}(\mathcal{P}_2) \).
4. (d) If \(P \) is a maximal ideal of \(R \) then \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) are maximal ideals of \(R \otimes I \).
5. (e) If \(R \) is a local ring with maximal ideal \(M \) then \(R \otimes I \) is a local ring with maximal ideal \(\mathcal{M} = \sqrt{\mathcal{M}_0} = M \otimes I \) (using again the notation of Lemma 3.4 for \(M = J \)).
6. (f) \(R \) is reduced if and only if \(R \otimes I \) is reduced.

(2) Let \(Q \) be a prime ideal of \(R \otimes I \) and let \(\mathfrak{O}_1 \) be as in Proposition 3.4. Two cases are possible either \(Q \not\supseteq \mathfrak{O}_1 \) or \(Q \supseteq \mathfrak{O}_1 \).

1. (a) If \(Q \not\supseteq \mathfrak{O}_1 \), then there exists a unique prime ideal \(Q \) of \(R \times R \) such that \(Q = Q \cap (R \otimes I) \) with \(Q = R \times P \), where \(P := Q \cap R \) (and \(P \not\supseteq I \)). In this case, with the notation of the previous part (1), \(\mathcal{P}_1 \neq \mathcal{P}_2 \) and
 \[Q = \mathcal{P}_2 = \{(p + i, p) \mid p \in P, i \in I\}. \]

Furthermore, the canonical ring homomorphisms \(R \otimes I \to R \times R \xrightarrow{\pi_2} R \) induce for the localizations the following isomorphisms:
\[(R \otimes I)_Q \cong (R \times R)_Q = (R \times R)_{R \times P} \cong R \quad \text{(thus} \ k_{R \otimes I}(Q) \cong k_R(P)). \]

1. (b) If \(Q \supseteq \mathfrak{O}_1 \), then there exists a unique prime ideal \(P \) of \(R \) such that \(Q = v^{-1}(P) \) (or, equivalently, \(P = v(Q) \)). With the notation...
of the previous part (1), if \(P \supseteq I \) then \(Q = P_1 = P_2 \). On the other hand, if \(P \not\supseteq I \) then \(Q = P_1 (\neq P_2) \). In both cases,

\[
Q = \{(p, p + i) \mid p \in P, \ i \in I\}.
\]

Furthermore, the canonical ring homomorphism \(\nu' : R \times I \to R \) induces the following isomorphism:

\[
(R \times I)/Q \cong R/P \quad (\text{thus } k_{R \times I}(Q) \cong k_R(P)).
\]

Proof. Note that the composition of the diagonal embedding \(\delta : R \hookrightarrow R \times I, (r \mapsto (r, r)) \), with the inclusion \(R \times I \subseteq R \times R, ((r, r + i) \mapsto (r, r + i)) \), coincides with the diagonal embedding \(R \hookrightarrow R \times R, (r \mapsto (r, r)) \), which is a finite ring homomorphism. Thus, in particular, both \(R \hookrightarrow R \times I \) and \(R \times I \subseteq R \times R \) are integral homomorphisms. Note also that if \(Q \) is a prime ideal of \(R \times R \) lying over \(P \), then necessarily \(Q \in \{P \times R, R \times P\} \) (Remark 2.8).

(1, a) Note that \(P_1 = \nu'^{-1}(P \times R) \) and \(P_2 = \nu'^{-1}(R \times P) \) (Lemma 3.4); hence \(P_1 \) and \(P_2 \) are prime ideals lying over \(P \). By integrality, if \(Q \subseteq \text{Spec}(R \times I) \) and \(Q \cap R = P \), then there exists \(\overline{Q} \subseteq \text{Spec}(R \times R) \) such that \(\overline{Q} \cap (R \times I) = Q \). Therefore \(\overline{Q} \subseteq \{P \times R, R \times P\} \) and \(Q \subseteq \{P_1, P_2\} \).

(1, b) We know already by Lemma 3.4 (f) and (c) that, if \(P \supseteq I \), then \(P_1 = P_2 = P \), hence by part (1, a) we conclude easily that \(P = \sqrt{P_0} \). Moreover we have the following sequence of canonical homomorphisms:

\[
\frac{R}{P} \subseteq \frac{R \times I}{\sqrt{P_0}} = \frac{R \times I}{P} \subseteq \frac{R \times R}{P \times R} \cong \frac{R}{P} \subseteq \frac{R \times R}{R \times P},
\]

from which we deduce the last part of the statement.

(1, c) By Lemma 3.4 (e) and (f) we know that, if \(P \not\supseteq I \), then \(P_1 \neq P_2 \) and \(P_0 \subseteq P = P_1 \cap P_2 \). By part (1, a) and by the integrality of \(R \hookrightarrow R \times I \), we conclude easily that \(P = \sqrt{P_0} \). Finally, as in part (1, b), it is easy to see that \(k_R(P) \cong k_{R \times I}(P_1) \cong k_{R \times I}(P_2) \).

(1, d) follows by the integrality of \(R \subseteq R \times I \).

(1, e) follows immediately by part (1, d) and part (1, b).

(1, f) follows by integrality of \(R \hookrightarrow R \times I \) and \(R \times I \subseteq R \times R \) and from the fact that \(R \) is reduced if and only if \(R \times R \) is reduced.

(2) If \(P = Q \cap R \), then necessarily \(Q \in \{P_1, P_2\} \) by (1, a).

(2, a) Since \(Q \not\subseteq \mathfrak{O}_1 \), then \(Q = P_2 \), because \(P_1 \supseteq \mathfrak{O}_1 \). Note that \(P_2 = (R \times P) \cap R \times I \); it is easy to see that \(Q := R \times P \) is the unique prime of \(R \times R \) contracting over \(Q \). The elementwise description of \(P_2 \) is a particular case of Lemma 3.4 (b). Last statement follows from the following canonical inclusions of localizations \(R_P \hookrightarrow (R \times I)/Q \hookrightarrow (R \times R)/Q = (R \times R)_{R \times P} \cong R_P \).

(2, b) The first and the last statements are trivial consequences of the fact that \(\nu' \) induces an isomorphism between \(R \times I/\mathfrak{O}_1 \) and \(R \). It is easy to see that the prime \(P \) is such that \(P = Q \cap R \). Therefore the second statement follows from (1, b). If \(P \not\supseteq I \) (and \(Q \supseteq \mathfrak{O}_1 \)) then \(Q = P_1 (\neq P_2) \), since \(Q \) does not contain
Lemma 3.4 (a). In the situation of Theorem 3.5, note that, if \(R \) is a radical ideal of \(R \), then by integrality of \(R \leftarrow R \otimes I \subseteq R \times R \), inside the ring \(R \times R \), the prime ideals \(P \times R \) and \(R \times P \) are the only minimal prime ideals of \(P \times P = \mathcal{P}_0(R \times R) = P(R \times R) \), and so

\[
\mathcal{P}_0(R \times R) = P \times P = (P \times R) \cap (R \times P) = \sqrt{\mathcal{P}_0(R \times R)}
\]

is a radical ideal of \(R \times R \), with

\[
(P \times P) \cap (R \otimes I) = ((P \times R) \cap (R \times P)) \cap (R \otimes I) = \mathcal{P}_1 \cap \mathcal{P}_2 = \mathcal{P}.
\]

Next example shows that in \(R \otimes I \), in general, \(\mathcal{P}_0 \) is not a radical ideal (i.e. it may happen that \(\mathcal{P}_0 \not\subseteq \sqrt{\mathcal{P}_0} = \mathcal{P} \)).

Example 3.7 Let \(V \) be a valuation domain with a nonzero non maximal non idempotent prime ideal \(P \). (An explicit example can be constructed as follows: let \(k \) be a field and let \(X, Y \) be two indeterminates over \(k \), then take \(V := k[X,Y] + Yk(X)[Y]_Y \) and \(P := Yk(X)[Y]_Y \). It is well known that \(V \) is discrete valuation domain of dimension 2, and \(P \) is the height 1 prime ideal of \(V \).)

In this situation, it is easy to see that the ideal \(P \times P \) is a common (radical) ideal of \(V \otimes P \) and of its overring \(V \times V \). Moreover, note that \(\mathcal{P}_0 = P(V \otimes P) = \{(p, p + x) \mid p \in P, x \in P^2\} \) (Lemma 3.4(d)) and that \(P(V \times V) = P \times P \subseteq V \otimes P \). More precisely, by Lemma 3.4(c), we have:

\[
P \times P = (P \times P) \cap (V \otimes P) = (P \times V) \cap (V \times P) \cap (V \otimes P) = \mathcal{P}_1 \cap \mathcal{P}_2 = \mathcal{P} = \{(p, p + y) \mid p \in P, y \in P \cap P = P\}.
\]

Clearly, since \(P^2 \neq P \), then \(\mathcal{P}_0 \not\subseteq \mathcal{P} \); for instance if \(z \in P \setminus P^2 \), then \((p, p + z) \in \mathcal{P} \setminus P(V \otimes P) \).

We complete now the description of the affine scheme \(\text{Spec}(R \otimes I) \), initiated in Theorem 3.5 determining in particular the localizations of \(R \otimes I \) in each of its prime ideals. Part of the next theorem is contained in [11 Proposition 7].

Theorem 3.8 Let \(X := \text{Spec}(R) \), \(Y := \text{Spec}(R \otimes I) \) and \(Z := \text{Spec}(R \times R) \cong \text{Spec}(R) \times \text{Spec}(R) \) and let \(\alpha : Z \to Y \) and \(\gamma : Y \to X \) be the canonical surjective maps associated to the integral embeddings \(R \otimes I \hookrightarrow R \times R \) and \(R \cong R^h \hookrightarrow R \otimes I \) (proof of Theorem 3.5).

(a) The restrictions of \(\alpha \)

\[
\alpha |_{Z \setminus V_Z(\mathcal{O}_X)} : Z \setminus V_Z(\mathcal{O}_X) \longrightarrow Y \setminus V_Y(\mathcal{O}_Y)
\]
(for \(i = 1, 2 \)) are scheme isomorphisms, and clearly
\[
Z \setminus V_2(\mathfrak{O}_i) \cong X \setminus V_X(I) .
\]

In particular, for each prime ideal \(P \) of \(R \), such that \(P \not\supseteq I \), if we set \(\mathfrak{P}_1 := P \times R \) and \(\mathfrak{P}_2 := R \times P \) we have \(\mathfrak{P}_i := \mathfrak{P}_1 \cap (R \otimes I) \), for \(1 \leq i \leq 2 \) and the following canonical ring homomorphisms are isomorphisms:
\[
R_P \longrightarrow (R \otimes I)_{\mathfrak{P}_1} \longrightarrow (R \times R)_{\mathfrak{P}_1}, \quad \text{for } 1 \leq i \leq 2.
\]

(b) The restriction of \(\gamma \)
\[
\gamma |_{V_Y(\mathfrak{O}_1) \cap V_Y(\mathfrak{O}_2)} : V_Y(\mathfrak{O}_1) \cap V_Y(\mathfrak{O}_2) \longrightarrow V_X(I)
\]
is a scheme isomorphism.

(c) If \(P \in \text{Spec}(R) \) is such that \(P \supseteq I \) and \(\mathfrak{P} \in \text{Spec}(R \otimes I) \) is the unique prime ideal such that \(\mathfrak{P} \cap R = P \), the following diagram of canonical homomorphisms:
\[
\begin{array}{ccc}
(R \otimes I)_{\mathfrak{P}} & \longrightarrow & R_P \\
\downarrow & & \downarrow u_P \\
R_P \times R_P & \overset{u_P}{\longrightarrow} & R_P \times (R_P/I_P)
\end{array}
\]
is a pullback (where \(I_P := IR_P \), \(u_P(x) := (x, x + I_P) \) and \(v_P((x,y)) := (x, y + I_P) \), for \(x, y \in R_P \)), i.e. \((R \otimes I)_{\mathfrak{P}} \cong R_P \otimes I_P \) (Proposition 3.1).

Proof. (a) Since \(\mathfrak{O}_1 = \{0\} \times I \) (respectively, \(\mathfrak{O}_2 = I \times \{0\} \)) is a common ideal of \(R \times R \) and \(R \otimes I \), this statement follows from the general results on pullbacks [4] Theorem 1.4] and from Theorem 3.5 (and its proof). Note that \(Z \setminus V_2(\mathfrak{O}_1) \cong ((X \times X) \setminus ((X \times (V_X(I)))) = X \setminus V_X(I) = ((X \times X) \setminus (V_X(I) \times X)) \cong Z \setminus V_2(\mathfrak{O}_2) \).

(b) Note that \(V_Y(\mathfrak{O}_1) \cap V_Y(\mathfrak{O}_2) = V_Y(\mathfrak{O}_1 + \mathfrak{O}_2) \) and \(\mathfrak{O}_1 + \mathfrak{O}_2 = I \times I \). Therefore the present statement follows from the fact that the canonical surjective homomorphism \(R \otimes I \rightarrow R/I \), defined by \((r, r + i) \mapsto r + I \) (for each \(r \in R \) and \(i \in I \)) has kernel equal to \(I \times I \).

(c) If we start from the pullback diagram considered in Proposition 3.1 and we apply the tensor product \(R_P \otimes_R \rightarrow \), then by [4] Proposition 1.9] we get the following pullback diagram:
\[
\begin{array}{ccc}
R_P \otimes_R (R \otimes I) & \overset{id \otimes v'}{\longrightarrow} & R_P \otimes_R R \\
\downarrow id \otimes u' & & \downarrow id \otimes u \\
R_P \otimes_R (R \times R) & \overset{id \otimes v}{\longrightarrow} & R_P \otimes_R (R \times (R/I))
\end{array}
\]

Note that, by the properties of the tensor product, we deduce immediately the following canonical ring isomorphisms: \(R_P \otimes_R (R \times R) \cong R_P \times R_P \), \(R_P \otimes_R R \cong
R_P and that $R_P \otimes_R (R \times (R/I)) \cong R_P \times (R_P \otimes_R (R/I)) \cong R_P \times (R_P/I R_P)$. Therefore, the previous pullback diagram gives rise to the following pullback of canonical homomorphisms:

$$
\begin{array}{ccc}
R_P \otimes_R (R \times I) & \longrightarrow & R_P \\
\downarrow & & \downarrow u_P \\
R_P \times R_P & \longrightarrow & R_P \times (R_P/I_P).
\end{array}
$$

On the other hand, recall that Spec$(R_P \otimes_R (R \times I))$ can be canonically identified (under the canonical homeomorphism associated to the natural ring homomorphism $R \otimes I \rightarrow R_P \otimes_R (R \otimes I)$) with the set of all prime ideals $\mathcal{H} \in$ Spec$(R \times I)$ such that $\mathcal{H} \cap R \subseteq P$. Since we know already that, in the present situation, there exists a unique prime ideal $\mathcal{P} \in$ Spec$(R \otimes I)$ such that $\mathcal{P} \cap R = P$ (Theorem 3.5 (1, b)) and that the canonical embedding $R \hookrightarrow R \times I$ has the going-up property, we deduce that Spec$(R_P \otimes_R (R \times I))$ can be canonically identified with the set of all the prime ideals of $R \times I$ contained in \mathcal{P}. Therefore $R_P \otimes_R (R \times I)$ is a local ring with a unique maximal ideal corresponding to the prime ideal \mathcal{P} of $R \times I$ and thus we deduce that the canonical ring homomorphism $(R \otimes I)_{\mathcal{P}} \rightarrow R_P \otimes_R (R \otimes I)$ is an isomorphism. □

Proposition 3.9 The ring $R \otimes I$ can be obtained as a pullback of the following diagram of canonical homomorphisms:

$$
\begin{array}{ccc}
R \otimes I & \longrightarrow & R/I \\
\bar{v}' & \downarrow \bar{u} & \\
R \times R & \longrightarrow & R/I \times R/I
\end{array}
$$

where \bar{u} is the diagonal embedding, \bar{v} is the canonical surjection $(x, y) \mapsto (x + I, y + I)$, \bar{v}' is the natural inclusion and \bar{v}' is defined by $(x, x + i) \mapsto x + I$, for all $x, y \in R$ and $i \in I$.

Proof. By Proposition 3.1 we know that

$$
\begin{array}{ccc}
R \otimes I & \longrightarrow & R \\
\downarrow & & \downarrow u \\
R \times R & \longrightarrow & R \times R/I
\end{array}
$$

is a pullback. On the other hand, it is easy to verify that the following diagram:

$$
\begin{array}{ccc}
R & \longrightarrow & R/I \\
\downarrow & & \downarrow \bar{u} \\
R \times R/I & \longrightarrow & R/I \times R/I
\end{array}
$$

15
is a pullback, where \(w \) is the canonical surjection \((x, y) \mapsto (x + I, y)\) and \(\varphi \) is the natural projection \(x \mapsto x + I \), for each \(x \in R \) and for each \(y \in R/I \). The conclusion follows by juxtaposing two pullbacks.

Corollary 3.10 If \(R \) is a local ring, integrally closed in \(T(R) \) with maximal ideal \(M \) and residue field \(k \), then \(R \bowtie M \) is seminormal in its integral closure inside \(T(R) \times T(R) \) (which, in this situation, coincides with \(R \times R \)).

Proof. By the previous proposition \(R \bowtie M \) (which is a local ring) can be obtained as a pullback of the following diagram of canonical homomorphisms:

\[
\begin{array}{ccc}
R \bowtie M & \xrightarrow{\bar{\psi}'} & k' \\
\downarrow \bar{\psi}' & & \downarrow \bar{u}' \\
R \times R & \xrightarrow{\bar{\psi}} & k \times k
\end{array}
\]

The statement follows from the fact that, in this case, the integral closure of \(R \bowtie M \) in \(T(R) \times T(R) \) coincides with \(R \times R \) (Corollary 3.3 (c)). Therefore, since \(\bar{\psi}' \) is a minimal extension, then \(\bar{\psi}' \) is also minimal \([3, \text{Lemme 1.4 (ii)}]\), and thus the conclusion follows from \([3, \text{Théorème 2.2 (ii)}]\) and from \([18, (1.1)]\) (keeping in mind Theorem 3.5 (c)).

Example 3.11 (a) Let \(R := k[[t]] \) (where \(k \) is a field and \(t \) an indeterminate) and let \(I := t^n R \). Using Proposition 3.9, if we denote by \(h^{(i)}(t) \) the \(i \)-th derivative of a power series \(h(t) \in k[[t]] \), it is easy to see that

\[
R \bowtie I = \{(f(t), g(t)) \mid f(t), g(t) \in R, \ f^{(i)}(0) = g^{(i)}(0) \ \forall \ i = 0, \ldots, n - 1\}.
\]

(b) Let \(R := k[x, y] \) and \(I := xR \). In this case

\[
R \bowtie I = \{(f(x, y), g(x, y)) \mid f(x, y), g(x, y) \in R, \ f(0, y) = g(0, y)\}.
\]

Setting \(Y = \text{Spec}(R \bowtie I) \) and \(X = \text{Spec}(R) \), by Proposition 3.13, \(V_Y(\mathcal{O}_1) \cong \text{Spec}(k[x, y]) \). On the other hand, by Theorem 3.8, \(V_Y(\mathcal{O}_1) \cap V_Y(\mathcal{O}_2) = V_Y(\langle xR \times xR \rangle) \cong V_X(xR) \cong \text{Spec}(k[y]) \). Hence the ring \(R \bowtie I \) is the coordinate ring of two affine planes with a common line. Note that we can present \(R \bowtie I \) as quotient of a polynomial ring in the following way: consider the homomorphism \(\lambda : k[x, y, z] \longrightarrow R \times R \), defined by \(\lambda(x) := (x, x) \), \(\lambda(y) := (y, y) \) and \(\lambda(z) := (0, x) \). It is not difficult to see that \(\text{Im}(\lambda) = R \bowtie I \) and \(\text{Ker}(\lambda) = (zx - z^2)k[x, y, z] \).

Acknowledgment

The authors want to thank the referee for his/her many valuable suggestions and comments which have improved the final version of this paper.
References

Marco D’Anna
Dipartimento di Matematica e Informatica
Università di Catania
Viale Andrea Doria 6
95125 Catania, Italy