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S u n t o . -  Og~i insieme parzialmente ordinato :(X, <) ammette::varie To-topologie ,r (~ compa- 
tibili ~) con < ,  nel senso c h e <  coincide con l'ordine indotto da J" su X (el. Hochster [30]). 
Tra tall topologie la meno f ine  ~ la C01)(= clos~res of points)-topologia, cio~ la topologia 
meno f ine  per la quale l ' insieme { y e X :  x < y }  ~ chiuso per ogni x e X .  La  pi~t f ine 
L ( =  left)-topologia discreta di Alexandrof], X L, avente come base per gli aperti gli ins iemi  
{y e X :  y < x} al variare di x in  X .  I n  questo lavoro sono date condizioni su X af]inch~ questo 
abbia una struttura topologica spettrale noetheriana. Inoltre, vengono caratterizzati gli ins iemi  
parzialmente ordinati X per i q~tali X L ~ uno spazio spettrale; venyono anche caratterizzati 
gli spazi spettrali Y la c~i topologia coincide con la L-to1~ologia associata all'ordine indotto. 
La  topologia dell' (( ordine opposto )~ (opposite-order topology di Hochster, o2~. cit. t)rop. 8) 
determina nna <~ dualit& >) tra le L-topologie spettrali e le topologie spettrali noetheriane. 
Se Y =  Spec (A) con la topologia di Zariski ,  altora Y n  coincide con la 0(-~ ordine)- 
topologia di G. Picavet.  

1. - In troduct ion  and s u m m a r y .  

After identifying two necessary conditions for an ordered set to be a spectral 
set ( that is, order-isomorphic to the prime spectrum of a ring), KAPLA~SKY [18], p. 7 
raises the question of giving an order-theoretic characterization of the set of prime 
ideals of a ring. In  its full generality, this problem is still open, al though numerous 
properties of spectral sets are now known, particularly for total ly ordered sets or 
trees ([2~], [22]) and for ordered sets of dimension <1  ([5~, [22]). The analogous 
topological question of characterizing spectral spaces, ( that is, topological spaces 
homeomorphic to the prime spectrum of a ring endowed with the Zariski topology [3]) 
has been completely settled by Hoc~sx'Eg ([16]) ; el. [19], Appendice. As described 
below, this paper is concerned with both the order-theoretic and the topological 
aspects of the subject, pursuing the s tudy begun in [8]. 

Although there are close connections between the topological structures and 
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the order-theoretic structures on a set, it is known that,  in general, order conveys 
less information than does topology (cf. [11], [20], [22, Example 2.2]). However, 
the distinction between topology and order ceases in some remarkable cases, for 
instance for Noetherian spectral spaces (cf. [16, Proposition 14], [26], [27], [22], 
[15]). Accordingly, order plays a central role in our approach. Our intent is to 
deepen the study of certain classes of spectral spaces whose topology is determined 
by the order-theoretic data. The classes of interest are (~ extreme ~ in the sense 
described below. 

One may introduce, onto any given ordered set X,  several topologies which are 
compatible with the given order (in a sense made precise at the beginning of sec- 
tion 2). In the class of such topologies compatible with the order on X; we may 
identify the <~extreme ~) members, that  is the coarsest and the finest ones. The 
coarsest is the COP-topology ((( closures of p oints)~ topology[22]), which is the 
coarsest topology in which x t :  {yeXIx<~y } is closed, for each x ~ X ,  we shall 
let X c~ denote X endowed with the COP-topology. The finest topology on X, 
which is compatible with the given order is the left-topology (or L-topology [4, 
Ex. 2, p. 89]), that  is, the topology with basis for open sets consisting of the sets 
x~ ~ {y E Xly<~x}; let X L denote X equipped with the left topology. Clearly, if Xo, , 
denotes X with its order reversed, then (Xopp)L: X R, where X R denotes X endowed 
with the right-(or R-)topology, that  is the topology with a basis, for open sets 
consisting of the sets x t (as x ranges over X). 

iKuch of this paper is devoted to the Study of the L-topology and the COP- 
topology for the case of spectral spaces. Along the way, we also study the <~ opposite- 
order ~) topology and the constructible topology on arbitrary spectral spaces. Corol- 
lary 4.3 and Proposition 3.1 are typical of results connecting these notions. Other 
results to be noted include Theorem 2A, characterizing those ordered sets which 
are spectral spaces with respect to the L-topology; and Theorem 3.3, describing a 
~ duality ~ of sorts between topology of the spectral L-topologies and the l#oetherian 
spectral topologies. As a consequence of these results, we obtain in l~emark 4.2 (a) 
~nother proof of the characterization of Igoetherian spectral spaces [27]. 

If  the ordered set X is the set Spec (A) of all prime ideals of a ring A (commu- 
tative with 1), then we shall denote X z (resp., Xr) the set X endowed with the 
Zariski topology (resp. the flat topology [8], that  is, the topology having as closed 
the subsets of the form ira (/*), where 1" is the application canonically associated 
to a ring-homomorphism ]: A --> B (with domain A), inducing an A-flat structure on B). 

2.  - Spec tra l  L - se t s .  

We begin with some terminology a n d  notation which is to be ~sed throughout 
this paper. 

Let X be a topological space. For each Y r X,  let Cf(Y) denote the closure of Y 
in X; if :Y is a singleton set {y}, we simply write CrY(y) instead of Cf({y}). If  X is a 
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To-space, then  [16], p. 53 constructs a (partial) order on X as follows: 

x < y r y ~ Of(x) for x, y e X .  

Le t  Xo~ d denote X equipped with this order. 
On the  other  hand,  if X is an ordered set then  for each subset Y of X,  let  yr 

(resp., yd) denote the set of elements x ~ X for which there  exists y e :Y such tha t  
x > y  (resp., x<y) .  The set Y~ (resp., Yr is called the set of specializations (resp., 
generalizations) of elements of Y. I f  1 z = {y} is singleton, write yt (resp., yr instead 
of {y}r (resp., (y}r Clearly, 

1 ~ =  U y f  and Y r  U y * .  
yeY yeY 

On an ordered set X, there  are several ways to construct  a topology compatible with 
the given order, t ha t  is, a topology whose induced order (in the sense of the  preced- 
ing paragraph) coincides with the given order on X. Indeed,  it is easy to see tha t  a 
topology 3-, defined on an ordered set X,  is compatible with the given order on X 
if and only if the following two conditions hold: 

(a) For  each x e X~ the set x ~ is closed in 3"; 

(b) Each closed subset of 3-  is stable under  specializations. 

We then  see, with the aid of Lemma 2.1 below, tha t  as asserted in the introduc- 
tion, X L (resp., X c~ is indeed the finest (resp., coarsest) topology compatible with 

the given order on X. 
We m a y  now define this section's object of study. An ordered set X is said to 

be L-spectral (resp., R-spectral) in case the  topological space X L ( resp,  X R) is a spec- 

t ra l  space, in the sense of [16]. 

LE)~V~A 2.1. - Let X be an ordered set. Then: 

(a) Y ~ ~ gs a Kuratowski operator (on the set o/ subsets o/ X) .  

(b) ~or each Y c X ,  C~L(Y) -~ Y~. 

(c) A subset U o/ X is open in X L i/ and only i/ U :  U ~. 

P~ooF. - For  (a), one m a y  directly ver i fy  the conditions stated in [4], Ex.  9, 
p. 90. Moreover, (c) follows since U ~ ---- m x t  For  (b), first note  using (e) tha t  

~ 6 U  

CEL(y) o y~ for each y e X, so tha t  Ct~L(Y) o :yt (o Y). To complete the proof~ it is 
enough to show tha t  Y~ is closed in X L, and this holds since each element x E X \ Y  r 
is contained in the XL-open neighborhood x~ which is disjoint f rom Y~. 
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For  an  ordered set X,  let Max (X) and  Min (X) denote the  sets of max ima l  ele- 

ments  of X and  of min imal  e lements  of X, respectively. We then  have  the  following 

direct consequence of L e m m a  2.1. 

COrOLLArY 2.2. - Let X be an ordered set. Then: 

(a) x is a closed point o/ X z if and only if  x e ~ a x  (X). 

(b) x is an open point o/ X L if  and only if  x E M i n ( X ) .  

(c) X L is a T~-topologieal space if  and only if  X L is a discrete space. 

We pause to recall t h a t  a topological space X is called a TD-space in case, for 

each Y c X,  the  set of accumulat ion points of Y is closed (cf. [7]; [2], Definition 3.1). 

Any  (To) discrete Alexandroff  space (4) is a TD-space [2], Theorem 5.2. Follow- 
ing [14], p. 49, we call a space X sober if each irreducible closed subspace of X has a 

unique generic point.  

P~OP0SITI0~ 2.3. -- I e t  X be an ordered set. Then: 

(a) X L is a To, discrete Alexandrof] space, and hence a TD-spaee. 

(b) I /  U is a nonempty open subset of X ~', then the following are equivalent: 

(i) U is quasi-compact; 

(ii) There exist xl ,  ..., x , ~  U with n : n ( U ) > l  such that U = U x~; 

(iii) Card (Max ( U ) ) <  c~, and each chain in U has an upper bound in U. 

(c) I /  X satisfies the following condition: 

(filtr. L) each nonempty lower-directed subset Y of X has a greatest lower 

bound y : inf (Y) such ~hat y~-~ Y~, 

then X L is a sober space. 

P~ooF. - Assertion (a) is a direct consequence of the  definitions. Moreover,  (e) fol- 

lows b y  remark ing  t h a t  each irreducible closed subspace of X L mus t  be a lower- 

directed set. As for (b), note  first t ha t  x ~ is quasi-compact  and  open for each x e X,  
so t h a t  any  finite union of generalizations of e lements  of X is also quasi -compact  
and  open. Conversely, any  qnasi-compact  open V in X L m a y  be expressed us such a 
finite union, since V = [J x ~. Moreover,  if n is the  m i n i m u m  number  of elements  

needed to express the  given U as U = x~ u ... u x~, it is clear t ha t  then  (and only 
then) one has Max (U) ---- (xl, ..., x,}. These considerations lead to  (b), comple t ing  

the  proof.  

(a) A discrete Alexandroff space is a T o topological space X such that, for each Y c X, 
the closure of Y is the union of the closures of the points of Y, [1, p. 28]. 
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Tn-EORE~ 2.4. - Let X be an ordered set. Then X is an L-spectral set i/ and only 
i / t h e  following /our properties hold: 

(:r Each nonempty totally ordered subset o/ X has a sup; 

(fl) X satisfies the condition (filtr.L); 

(?) Card (Max (X)) < ~ ;  

((~) For each pair o/ distinct elements x and y o/ X ,  there exist at most finitely 
many elements o/ X which are maximal in the set o/ common lower bounds 
o/ x and y. 

PROOF. - First  of all, let us prove necessity of the conditions (~)-(~). Any  spec- 
t ral  space satisfies (~): see [18], Theorem 9. Necessity of (fl) is a consequence 
of [16], Proposition 5, and Lemma 2.1 (b). l~ecessity of (?) follows by recalling 
from [11], Corollary of Proposition 1, section 3 tha t  (?) holds in any  discrete Alexan- 
droff space. Finally, Proposition 2.3 (b) leads to the necessity of (~), since the 
intersection of two quasi-compact open subspaces of a spectral space is itself quasi- 
compact and open. The sufficiency of (~)-(~) results by  verifying the conditions in 
the theorem of HOC~STER [16], Proposition 4 characterizing spectral spaces. Indeed, 
we know tha t  X L is a To-space (by Proposition 2.3 (a)); X L is quasi-compact by  
virtue of the combined effect of (a) and (?) (cf. Proposition 2.3 (b)); by  (~), the col- 
lection of quasi-compact open subsets of X L is closed under finite intersections, and 
moreover forms a basis for the open sets in X~; and, finally, (fl) guarantees tha t  X L 
is sober, by  Proposition 2.3 (c), to complete the proof. 

RE,ARE 2.5. -- (a) I t  is not difficult to verify that ,  in the s tatement  of Theo- 
rem 2.4, condition (fl) m a y  be replaced by  the requirement, <( each decreasing se- 
quence of elements of X stabilizes )~: ef. [6], Proposition 5.9, p. 33. 

(b) Recall from [8, Sec. 2] tha t  a spectral space is discrete Alexandroff if and 
only if it is homeomorphic to the prime spectrum of a g-ring. One therefore im- 
mediately deduces tha t  an ordered set X is L-spectral if and only if X is isomorphic 
as an ordered set to the spectrum of a g-ring. 

We intend next  to see how the passage from an ordered set X to the topological 
space X L is reflected at the level of morphisms. The proof of the following easy 
lemma is omitted. 

LElv~r_~ 2.6. - Let /: X - ~  Y be a morphisms o/ ordered sets (that is, an order- 
preserving function). Then: 

(a) / ~ - - / :  XL-> yL is a continuous map. Moreover, /L is a homeomorphism 
i/  and only i/ / is an isomorphism o/ ordered sets. 

(b) For each X1c  X ,  one has f (X~)r162 and f(X~)c/(X1)~.  

(c) For each ~1c Y, one has / - I ( :YJc / - I (Y~)  and / -I(Y1)r  
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PI~OI'OSITIO~I 2.7. - For /: X--> Y,  a morphism o] ordered sets, the ]ollowing are 
equivalent: 

(i) /: X L --> yL is a closed map; 

(it) For each X l c  X ,  one has / (X~)=/ (X1) r  

(iii) For each x e X ,  one has /(x r = ](x)r 

(iv) For each y~, y e Y and xx e X such that y~<y and ](x~) = y~ there exists 
x e X such that x~<x and / ( x ) ~  y. 

P~ooF. - By  vir tue  of Lemma 2.6 (b), the  conclusions (i) ~ (ii) => (iii) ~ (iv) 
are immediate.  Finally,  to prove ( i v ) ~  (ii), let  y e/(X~) ~, so tha t  /(x~)-~ y~<y 
for some x~ e X~. By  (iv), y ~ / ( x )  for some x e X such tha t  x~<x, whence y e / (X~) ,  
and so / ( X , / c / ( X ~ ) .  As the reverse inclusion is valid in general, (ii) holds, complet- 
ing the proof. 

C0~OLLARY 2.8. -- For /: X---> Y,  a morphism o] ordered sets, the ]ollowing are 
equivalent: 

(i) /: X L - ~  yr. is an open map; 

(it) For each X l c  X ,  one has ](X~)----/(X1)4; 

(iii) For each x e X ,  one has ](x 4) - - / (x)r  

(iv) For each y ~ , y e X  and x ~ X  such that y~<y and ] ( x ) =  y, there exists 
x~E X such that x~<x and / (x~)= y~. 

P~ooF~- Observe tha t  /:  Xo~D-~ YoD~ is a morphism of ordered sets. Since 
f: X~_> yL is an open map if and only if ]: X ~ -~ yR is a closed map,  an applica- 

t ion of Propos i t ion  2.7 completes the p roof .  

For  the applications already seen and those described briefly in the  introduc- 
t ion, it is impor tan t  to know the  relation between a fixed To-topology on a set X 
and the left  topology, denoted X L instead of (Xo~a) L, arising from the  order induced 

by  the given topology. 

PlcoPosI~IO~ 2.9. - (a) I f  /: X--> Y is a continuous (resp, homeomorphiv) map 
o/ To-topological spaces, then ]L~_ ]: XL_~ yL is also continuous (resp., homeomorphic). 

(b) For each To-space X ,  the identity map idx: XL-> X is continuous. 

(e) The lull subcategory o] the category o/topological spaces and continuous maps 
whose objects are the discrete Alexandro// topological spaces is a coreflective 
subcategory. 
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P~OOF. - Assertion (a) follows f rom Lemma 2.6 (a), since ]o~d = / :  Xo~a-* I;o~d 
is a morphism of ordered sets. For  (b), i t  suffices to observe tha t  C[(x) -~ xt-~ C[L(x) 
for each x e X;  and tha t  each closed subset of X is stable under  specializations. As 
for (c), we must  show tha t  the  inclusion functor  has a r ight adjoint  [17], p. 140. 
Clearly, a To-space Y is discrete Alexandroff if and only if 17L= y .  Therefore,  for 
egch continuous map /:  Y - *  X of To-spaces such tha t  Y is discrete Alexandroff, 
there  is a unique continuous m~p /L= /: y = yL__> X L such tha t  / ~ idzo/~. Hence,  

the  required adjoint  exists, and the proof is complete.  

3.  - Spectra l  s p a c e s  a n d  L - t o p o l o g i e s .  

In  the  preceding section, we saw tha t  for each To-topological space, there  is a 
canonically associated discrete Alexandroff topological space having the same under-  
lying set. In  this section, we are interested more specifically in the relations bet- 
ween X and X L in case X is a spectral  space. 

Le t  X be a spectral  space. Denote  by  Xc the set X endowed with the construc- 
table topology [14], (7.2.11), p. 337, tha t  is the coarsest topology in which all the  
closed subsets of X and all the  quasi-compact open subsets of X are closed. Le t  X ~ 
denote X endowed with the (( Hochster  topology ~) (or the (( opposite-order topol- 
ogy ~>)[16], Proposit ion 8, t ha t  is the topology having a basis for its closed sets 

We m a y  take  as known the consisting of the quasi-compact open subsets of X. 
following results:  

(A) 

(B) 

Xc and X H are spectral spaces; 

( X ' ) o r d -  (Xord)op D. Hence, in particular, 

(B1) (X')L= X~; 
(B2) For each x ~ X ,  C~(x)  • xr is an irreducible closed subset o/ X ' ;  

(Ba) The space X is irreducible i / a n d  only i / X  H has a unique closed point; 

(Bd.) X has a unique closed point i/  and only i /  X ~ is irreducible; 

(c) X~ = (X.)o.  

The next  proposit ion records the relations between the closure operators of X,  
X H, X~, X L and X R (denoted by  Cd, Cf ~, C[c, C[ L and C[ R, respectively).  Since 

( (SpecA)z )H= (Spec A)~, one m ay  regard par ts  (a) and (b) of Proposi t ion 3.1 usa  
modest  improvement  upon Lemma 2.5 of [8]. 

PI%OPOSITION 3.1. -- Ie t  X be a spectral space. 

(a) For each Y c X ,  C~(I7) = C?L(C~c(Y)) ; 

(b) For each Y r X ,  CEH(Y) = C~(C~o(Y)) ; 

(c) ( x . ) . =  x .  

Then: 
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P~ooF. - Statement  (a) follows easily from the facts tha t  the constructible 
topology and the L-topology are finer than  the given topology on X;  and tha t  each 
quasi-compact open subset of X is closed in the compact space Xc. Then (b) follows 
from (a), in view of (A), ~B) and (C). Finally, (c) is an immediate consequence of (a) 

and (b). 

I~E~ARK 3.2. -- I t  is not  difficult to see tha t ,  in general, Cdc(C[L(Y)) c C[L(C[c(Y)) 
and CFc(C[R(Y)) c CfR(C~c(Y)). In  [9], (1.2), examples are given in which the inclu- 
sion is strict. 

T~EO~EM 3.3. -- For a spectral space X,  the ]ollowing are equivalent: 

(i) X L = X;  

(if) For each x ~ X,  x~ is a quasi-compact open subset o / X ;  

(iii) Nor each Jamily {U~li e I} o/quasi-compact open subsets oJ X,  the set ~ U~ 
is quasi-compact and open in X;  ~i 

(iv) X is a TD-space; and /or each /amily {U~li~I  } o/ quasi-compact open 
subsets o] X,  Card(Max (~  Ui)) is ]inite; 

(v) Each increasing sequence o] irreducible closed subsets o/ X stabilizes; 
and ]or each /amily {U~lieI  } o] ~iquasi-eompact open subsets o] X,  
Card (l~[ax (Q U~)) is ]inite; 

(vi) Each decreasing sequence o/ irreducible closed subsets o/ X ~ stabilizes; 
and /or each closed subset F o/ X n, there exist Y~Y2,. . .~Y~e F such that 
F = y l  u u . .  u 

(vii) Each open subset o/ X ~ is the complement o/ a quasi-compact open subset 
o/ X;  

(viii) X ~ is a Noetherian space. 

PI~OOF. - In  view of Remark  2.5 (b), the equivalences (i) r (if) ~nd (i) r (viii) 
follow easily from [25], Propositions 1 and 4 of section 5. As for ( v i i i ) ~  (vi), it  
is not  difficult to see tha t  the prime spectrum of a ring is a Noetheriau space if and 
only if each increasing sequence of prime ideals of the ring stabilizes and each radical 
ideal is the intersection of finitely m a n y  prime ideals (cf. [18], Exercise 25, p. 65; 
[3], Proposition 8, p. 123 and Proposition 10, p. 124). Iqext, since each open subset 
of X R is a union of a family of complements of quasi-compact open subsets of X, 
the implication (viii) ~ (vii) follows by  recalling tha t  a topological space is Noethe- 
rian if and only if each of its open subsets is quasi-compact. To show (vii) ~ (iii), 
note in the present situation that ,  for each family {U,[i e I} of quasi-compact open 
sets of X, there exists a quasi-compact open subset U of X such tha t  X ~ U  
= [_J (X\U~),  whence U = ~ U~: As for (iii) ~ (i), each intersection of open sub- 



DAVID E. DOBBS - MARCO FONTANA - I~A J. PA.PICK: On certain, etc. 235 

sets of X is open since the quasi-compact open subsets form a basis for the open 
subsets of X. To prove (iii) ~ (iv), note tha t  the above yields, in the present situa- 
tion, tha t  X is a discrete Alexandroff space, and hence a TD-space, while the second 
assertion in (iv) follows from Proposition 2.3 (b). Next,  (iv) ~ (v) since, in a spec- 
t ral  space which is T~, the infimum of any  nonempty family of points coincides 
with one of those points (cf. [25], Proposition 2, section 1 or [23], Corollary 2.5). 
As for (v) ~ (vi), it  is easy to see tha t  the first assertion in (v) is equivalent to the 
first assetion in (vi); moreover, the second par t  of (vi) follows immediately from the 
second part  of (v) since each closed subset of X H is an intersection of a family of 
quasi-compact open subsets of X. The proof is complete. 

Col~OLIa!au 3.4. - f o r  a spectral space X ,  the /ollowing are equivalent: 

(i) X is a lgoetherian space; 

(if) X H is a discrete AlexandroJJ space; 

(iii) X H = X ~. 

P~ooF. - This is an immediate consequence of Proposition 3.1 (e), Theorem 3.3 
and assertion (B1). 

The equivalence (iii) <=> (iv) in the next  result recaptures the equivalence (b) r 
<=> (e) in [11], Proposition 3. 

C o , c L u n Y  3.5. - For a spectral space X ,  the ]ollowing are equivalent: 

(i) X is a 2goetherian discrete Atexandro]J space; 

(if) X t~ is a .lgoetherian discrete AlexandroJJ space; 

(iii) Card (X) is ]inite; 

(iv) X is a .lgoetherian TD-spaee; 

(v) X ~ is a 2goetherian Tu-space. 

PROOF. - The implications (iii) ~ (i) and (i) ~ (iv) are trivial. The equivalence 
(i) <=> (if) follows easily from Theorem 2.3 and Corollary 2.4, while [11], Proposi- 
tion 3, section 1 establishes the equivalences (v)<=> (iii)<=> (iv). 

4.  - _V-spectral  sets  a n d  C O P - t o p o l o g i e s .  

In  this section, we intend to deepen the s tudy of the <~ duali ty ~) already seen 
to exist (in Corollary 3.4, for instance) between those spectral spaces which are 
discrete Alexandroff and those which are Noetherian, by  expanding and making 
precise the connections even at  the level of ordered sets. 
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P~oPosITIo~ 4.1. - Let X be an ordered set. Then one may define a (unique) 
topology on X which is compatible with the given order in such a way that X becomes a 
Noetherian spectral space i] and only i] the ]ollowing conditions hold: 

(o~') Each nonempty totally ordered subset o] X has an in/; 

(fl') ~ (fittr. R) Each nonempty subset Y o / X  which is upper-directed has upper 
bound y ~ sup(Y)  satis]ying yr ~ Yr ; 

(?') Card (Min (X)) < c~; 

(~') For each pair o/ distinct elements x and y o] X ,  there exist at most /initely 
many elements o] X which are minimal "in the set o/common upper bounds 
o/ x and y. 

Moreover, a topology satis]ying the above conditions must be the COP-topology. 

PROOF. - In  view of Theorem 2.4, the  ordered set Xop D is L-spectral  if and only 
if Xop p satisfies conditions (s Since (XopD)L= X R, we conclude tha t  (X~)" 
is a Noether ian spectral space if and only if X satisfies (s (by Theorem 3.3). 
Moreover, it  is clear tha t  the topology of (XR)" is compatible with the fixed order 
on X and has the finite unions of specializations of points as a basis for its closed 
sets. This topology is the  unique spectral Noether ian topology compatible with 
the given order for, in a spectral Noether ian space, each closed set is a finite union 
of specializations of points. 

An ordered set X satisfying the  above conditions (~')-(~') will be call an N-spec- 
tral set. 

RE~ARK 4.2. -- a)) In  the s ta tement  of Proposit ion 4.1, condition (fl') can be 
replaced by  t h e  condition (~ each increasing sequence of elements of X stabilizes ~) 
(Of. Remark  2.5 (a).) Therefore,  as a corollary of Theorems 2.4 and 3.3, we obtain a 
new proof of a result  of 1~. and S. WI~.GA~9 [27], Proposit ion 2, section 5. 

(b) The ma t t e r  of uniqueness of a Noether ian spectral topology, compatible 
with a given order, was raised earlier by  HOC~ST~ [16], Proposit ion 14. 

COnOLLAEY 4.3. -- Let X be a spectral space. Then X R (resp., X L) is a spectral Space 
i /  and only i /  X is a Noetherian space (resp., a discrete Alexandro]] space). In  this 
case, one has X = X c~ ---- (Xa) H (resp., X H =  (XH) c~ ----- (XL) H~- (Xo,p) c~ that is, 

P~ooP. - One m a y  infer the  s ta tement  f rom the proof of Proposit ion 4.1, bearing 
in mind tha t  X n is a spectral space such tha t  (XR)R= X L. (Cf. also Theorem 3.3 
and Corollary 3.4.). 
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In  view of the  impor tan t  role which the  COP-topologies p lay  in regard to N-spec- 
t ra l  sets, we are led to a more detailed s tudy of these topologies. We begin with 
an easy proposition, whose proof is omitted. 

PlCOP0SITIO~ 4.4. - (a) I / X  is an ordered set, then X c~ is a To-space, (XC~ = X,  
and the identity map idx: XL-+  X c~ is continuous. 

(b) Let /: X--> Y be a morphism o/ ordered sets. Then the mapping /coP__ ]: 
XCOe+ ycoP is continuous i/  and only if, /or each y ~ Y~ one has: 

l - ' ( y * ) =  FI u ... u < , , )  
ieZ 

with x~,~e X ,  l < j < n i .  

(c) Let ]: X ---> ~ be a morphism o/ordered sets. Then/cop is a homeomorphism 
i/ and only i/ / is an isomorphism. 

A morphism of ordered sets which satisfies the condition in the s ta tement  of 
Proposi t ion 4.4 (b) will be called a COP-morphism. 

PI%OPOSITION 4.5. - (a )  Let X be a To-space. Then [writing simply X c~ instead o/ 
(Xord) c~ one has that the identity map idx: X - ~ X  c~ is continuous. 

(b) I / / :  X --> Y is a homeomorphism, then/cop z / :  X c~ -+ :[,cop is also ahomeo- 

morphism. 

(c) The category whose objects are the COP-spaces (that is, the To-spaces X such 
that X --  X c~ and whose morphisms are those continuous maps which are COP- 

morphisms (with respect to the underlying ordered sets) is a reflective subcategory o/ 
the category o/ all To-spaces and all the continuous maps which are COP-morphisms. 

P~ooP. - Par t s  (a) and (b) are immediate.  For  (c), one need only observe tha t ,  
if / :  X --> Y is a continuous map which is also a COP-morphism, then  ]cop: xCOP _+ 
__> ycoP__ y is the unique continuous map such tha t  /C~ 

I~E~C~ARK 4.6. - (a) F rom Proposit ion 4.1 and Corollary 3.4 ( resp. ,  (4.1) and 

Theorem 3.3), one sees readily tha t  the prime spectrum X----Spec (A) of a ring 
is an N-spectral  (resp., Z-spectral) set if and only if X z is a Noether ian (resp., discrete 
Alexandroff) space. 

(b) Le t  ~* : Yz = Spec (B) -~ X z ---- Spec (A) be the continuous map associated 
to a r ing-homomorphism ~: A - +  B. A sufficient condition for ~* to be a COP- 
morphism is t ha t  B satisfy the (~ finite component  ~> condition (/~C) [as in [24], this 
means tha t  each ideal of B has only finitely m an y  minimal prime ideals]; this holds 
if Yz is a I~oetherian space, for example if B is Laskerian (cf. [13], Theorem 4). 
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(c) We stress tha t  al though each Noether ian topological space is a COP- 
space, the  converse fails even for the case of spectral spaces. I t  suffices to consider 
the to ta l ly  ordered spectral  set 

X = {Xo < Xs < x~ < ... < x .  < x.+~ < ... < x~} ,  

which is isomorphic to the  spectrum of a suitable valuat ion domain ([12], p. 95; 
[11], Proposit ion 3). 

We would like nex t  to summarize and make precise the  results comparing the  
different topologies introduced on a spectral  space X. First  of all, the identity map 
id x is continuous in the following diagram: 

X L ~.. X ~ X c~ 

/ / 
X d i ,  - ~ X v . , , ,  ..., 

X ~ =  (XB) L ~ X ~ 
(X-)~176 = (Xoop)~176 

(where X dis denotes the  set X endowed with the  discrete topology): cf. Proposi- 
tions 2.9 and 4.5; moreover, in case X R (resp., X ~) is a spectral space, then x c ~  
= (X~) H (resp., (XopD)c~ = (XL)H): cf. Corollary 4.3. 

One readily sees that the ]otlowing four conditions are equivalent: 

(i) Xc --  X, 

(ii) Xc = X ~, 

(iii) X = X ", 

(iv) X ~ =  X ~i~ = XL; 

similarly, the following five eonditions are equivalent: 

(I) X L = Xc, 

(II) Xai~= Xc, 

(III)  X "  = Xc, 

. (IV) X is a finite space, 

(V) Both X ~ and X are Noetherian spaees. 

I t  is an open question to characterize the  spectral  spaces X such tha t  XL~- X c~ 
Note,  for any  such X,  t h a t  bo th  Min (X) and Max (X) are finite. 



D~WD E. DOBBS - I~[A~C0 F0~TA~A - IE~ J.  PAPICK: On certain, etc. 239 

RE~A~K 4.7. -- I n  order to s tudy the  properties of those prime ideuls of a ring 
which are G-ideals in the  sense of [18J, p. 16, another  topology on a spectral space 

~ Goldman was introduced in [25], section 3. This topology ~ has a basis of open 
sets consisting of the  subspaces which are locally closed in the  original topology 
of X. For  each subset Z on X,  let  Cf~ola(Z ) denote the  closure of Z in the  Goldman 
topology;  an4 let X G~ denote the set X endowed with the  Goldman topology. Then 
one readily sees t ha t :  

(a) CfGo~a(Z ) ----{x e X [ x t :  CE(Z ~ x~)}. Hence, in particular, each point o] X 
is closed in xG~ and each subset o] X which is stable under generalization 
is closed in X G~ 

(b) The identity map idx: X~~ Xo is continuous; 

(o) X is a TD-spaoe if and only i] X ~s -~ X G~ 

(d) XG~ Xo i] and only if X is iVoetherian; 

(e) xG~ - X i/  and only i] X is a discrete space. 

Finally,  with respect to morphisms, we collect and complete the results as follows. 
I] X and ~ are spectral spaces and ]: X --+ Y is a spectral map ( that  is, the  inverse 
image under  f of each quasi-compact open subset is itself a quasi-compact open 
set), then the /ollowing live statements are equivalent: 

(i) ] is homeomorphism; 

(ii) / L =  ]: XL__> XL is a homeomorphism; 

(iii) lord = ]: Xora-+ Yoga is an isomorphism; 

(iv) ] R ~  ]: X~__+ yR is a homeomorphism; 

(v) ]coP__ f: xCOP_> ycoP is a homeomorphism. 

In  view of Proposit ion 2.9, 3.1 and 4.5, a proo] results f rom noticing thu t  each 
continuous bijeetion f rom Xc to Yo is a homeomorphism. 
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