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Sunto. — Ogni insieme parziolmente ordinato :(X, <) ammeite, varie Ty-topologie I~ « compa-
tibili » con <, mel senso che < coincide con Pordine indotto da 7 su X (cf. Hochster [30]).
Tra tali topologie la meno fine é la COP(== closures of poinis)-topologia, cioé la topologia
meno fine per la quale Vinsieme {ye X: x <y} & chiuso per ogné we X. Lo pik fine &
L(= left)-topologia discreta di Alexandroff, X", avenle come base per gli aperti gli insiemd
{y e X: y<u} al variare di & in X. In questo lavoro sono date condizions su X affinché questo
abbio una struttura topologica spelirale noetheriona. Inoltre, vengono caratterizzati gli insiemi
pargialmente ordinati X per i quali X* & uno spazio spetirale; vengono anche caratterizeati
gli spazi spetirali ¥ la cui topologia coincide con la L-topologia associata all'ordine indotio.
La topolegia dell’ « ordine opposte » (opposite-order topology di Hochster, op. cit. Prop. 8)
determina una « dualité » tra le L-topologie spelirali e le topologie spetivali noetheriane.
Se ¥ = Spec (4) con la topologia di Zariski, allora Y7 coincide con la O(= ordine)-
topologia di G. Picavet.

1. — Introduction and summary.

After identifying two necessary conditions for an ordered set to be a spectral
set (that is, order-isomorphic to the prime spectrum of a ring), KAPLANSKY [18], p. 7
raises the question of giving an order-theoretic characterization of the set of prime
ideals of a ring. In its full generality, this problem is still open, although numerous
properties of spectral sets are now known, particularly for totally ordered sets or
trees ([21], [22]) and for ordered sets of dimension <1 ([5], [22]). The analogous
topological question of characterizing spectral spaces, (that is, topological spaces
homeomorphic to the prime spectrum of a ring endowed with the Zariski topology [3])
has been completely settled by HOCHSTER ([16]); cf. [19], Appendice. As described
below, this paper is concerned with both the order-theoretic and the topological
aspects of the subject, pursuing the study begun in [8].

Although there are close connections between the topological structures and
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the order-theoretic structures on a set, it is known that, in general, order conveys
less information than does topology (cf.[11], [20], [22, Example 2.2]). However,
the distinetion between topology and order ceases in some remarkable cases, for
instance for Noetherian spectral spaces (cf. [16, Proposition 14], [26], [27], [22],
[15]). Accordingly, order plays a central role in our approach. Our intent is to
deepen the study of certain classes of spectral spaces whose topology is determined
by the order-theoretic data. The classes of interest are «extreme» in the sense
described below.

One may introduce, onto any given ordered set X, several topologies which are
compatible with the given order (in a sense made precise at the beginning of sec-
tion 2). In the class of such topologies compatible with the order on X'; we may
identify the ¢extreme» members, that is the coarsest and the finest ones. The
coarsest is the COP-topology («closures of points» topology [22]), which is the
coarsest topology in which o' = {y e X|x<y} is closed, for each ze X, we shall
let X°°F denote X endowed with the COP-topology. The finest topology on X,
which is compatible with the given order is the left-topology (or L-topology [4,
Ex. 2, p. 89]), that is, the topology with basis for open sets consisting of the sets
#¥= {y € Xly<a}; let X* denote X equipped with the left topology. Clearly, if X,
denotes X with its order reversed, then (X )*= X&?, where X2 denotes X endowed
with the right-(or IE-)topology, that is the topology with a Dbasis, for open sets
consisting of the sets 2! (as » ranges over X).

Much of this paper is devoted to the study of the L-topology and the COP-
topology for the case of spectral spaces. Along the way, we also study the « opposite-
order » topology and the constructible topology on arbitrary spectral spaces. Corol-
lary 4.3 and Proposition 3.1 are typical of results connecting these notions. Other
results to be noted include Theorem 2.4, characterizing those ordered sets which
are spectral spaces with respect to the L-topology; and Theorem 3.3, describing a
« duality » of sorts between topology of the spectral L-topologies and the Noetherian
spectral topologies. As a consequence of these results, we obtain in Remark 4.2 (a)
another proof of the characterization of Noetherian spectral spaces[27].

If the ordered set X is the set Spec (4) of all prime ideals of a ring 4 (commu-
tative with 1), then we shall denote X, (resp., X,) the set X endowed with the
Zariski topology (resp. the flat topology [8], that is, the topology having as closed
the subsets of the form im (f*), where f* is the application canonically associated
to a ring-homomorphism f: 4 — B (with domain 4), inducing an A4-flat structure on B).

2. — Spectral L-sets.

We begin with some terminology and notation which is to be used throughout
this paper. )

Let X be a topological space. For each Y c X, let C/(Y) denote the closure of Y
in X;if ¥ is a singleton set {y}, we simply write C/(y) instead of C#({y}). If X is a



Davip E. DoBBS - MARCO FONTANA. - IrA J. PAPIOK: On certain, efe. 229

T,-space, then [16], p. 53 constructs a (partial) order on X as follows:
r<y < yelflx) fora,yelX.

Let X, denote X equipped with this order.

On the other hand, if X is an ordered set then for each subset ¥ of X, let ¥'
(resp., ¥*) denote the set of elements x € X for which there exists y € Y such that
x>y (resp., v<y). The set v (resp., YY) is called the set of specializations (resp.,
generalizations) of elements of ¥. If ¥ = {y} is singleton, write y' (resp., y*) instead
of {y}! (resp., {y}). Clearly,

Y= Uyt and Y= Uy,

yeY yey

On an ordered set X, there are several ways to construct a fopology compatible with
the given order, that is, a topology whose induced order (in the gense of the preced-
ing paragraph) coincides with the given order on X. Indeed, it is easy to see that a
topology 7, defined on an ordered set X, is compatible with the given order on X
if and only if the following two conditions hold:

(a) For each » € X, the set #' is closed in J;

(b) Each closed subset of J is stable under specializations.

We then see, with the aid of Lemma 2.1 below, that as asserted in the introdue-
tion, X* (resp., X°°F) is indeed the finest (resp., coarsest) topology compatible with
the given order on X.

We may now define this section’s object of study. An ordered set X is said to
be L-spectral (resp., R-spectral) in case the topological space XZ (resp., X®) is a spec-
tral space, in the sense of [16].

Lemma 2.1. — Let X be an ordered set. Then:
(a) Y Y is a Kuratowski operator (on the set of subseis of X).
(b) For each Yc X, Ct{Y) = Y.
(¢) A subset U of X is open in X% if and only if U = U".

Proor. — For (a), one may directly verify the conditions stated in[4], Ex. 9,
p. 90. Moreover, (¢) follows since U¥= |Ja*. For (b), first note using (¢) that

xelU

Ctiy) > y' for each ye X, so that O/4Y)> Y' (> ¥). To complete the proof, it is
enough to show that ¥' is closed in X%, and this holds since each element » € .t
is contained in the XZ-open neighborhood ' which is disjoint from ¥*.
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For an ordered set X, let Max (X) and Min (X) denote the sets of maximal ele-
ments of X and of minimal elements of X, respectively. We then have the following
direct consequence of Lemma 2.1.

COROLLARY 2.2. — Let X be an ordered set. Then:
(@) x is a closed point of X if and only if e Max (X).
(b) @ is an open point of X% if and only if x e Min (X).

e) X% is a T)-topological space if and only if X" is a discrete space.
( /4

We pause to recall that a topological space X is called a Tp-space in case, for
each Y c X, the set of accumulation points of Y is closed (cf. [7]; [2], Definition 3.1).
Any (T,) diserete Alexandroff space (*) is a Tp-space[2], Theorem 5.2. Follow-
ing [14], p. 49, we call a space X sober if each irreducible closed subspace of X has a
unique generic point.

PRrROPOSITION 2.3. — Let X be an ordered set. Then:
(@) X is o T,, discrete Alexandroff space, and hence a T p-space.

(b) If U is a nonempty open subset of XZ, then the following are equivalent:
(i) U is quasi-compact;

kg
(ii) There exist @y, ...,z,€ U with n = n(U)>1 such that U = |J @¥;
i=1

(iii) Card (Max (U)) < oo, and each chain in U has an upper bound in U.
(¢) If X satisfies the following condition:

(filir.Z) each monempty lower-directed subset Y of X has a greatest lower
bound y = inf (Y) such that y' = Y,

then X* is a sober space.

PROOF. — Assertion (a) is a direct consequence of the definitions. Moreover, (¢) fol-
lows by remarking that-each irreducible closed subspace of X* must be a lower-
directed set. As for (b), note first that ' is quasi-compact and open for each » € X,
50 that any finite union of generalizations of elements of X is also quasi-compact
and open. Conversely, any quasi-compact open V in XZ may be expressed as such a

finite union, since V = |J #*. Moreover, if # is the minimum number of elements
xEV
needed to express the given U as U = #{U ... U &}, it is clear that then (and only

then) one has Max (U) = {#,, ..., #,}. These considerations lead to (b), completing
the proof.

(9 A diserete Alexandroff space is a T, topological space X such that, for each ¥ c X,
the closure of Y is the union of the closures of the points of ¥, [1, p. 28].
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THEOREM 2.4. — Let X be an ordered set. Then X is an L-spectral set if and only
if the following four properties hold:

() Each nonempty totally ordered subset of X has a sup;
(B) X satisfies the condition (filtr.%);

(y) Card (Max (X)) < oo;

)

8) For each pair of distinct elements x and y of X, there exist at most finitely
many elements of X which are maximal in the set of common lower bounds
of @ and y.

Proor. ~ First of all, let us prove necessity of the conditions («)-(d). Any spee-
tral space satisfies (x): see [18], Theorem 9. Necessity of (f) is a consequence
of [16], Proposition 5, and Lemma 2.1 (). Necessity of (y) follows by recalling
from [11], Corollary of Proposition 1, section 3 that () holds in any discrete Alexan-
droff space. Finally, Proposition 2.3 (b) leads to the necessity of (§), since the
intersection of two quasi-compact open subspaces of a spectral space is itself quasi-
compact and open. The sufficiency of («)-(é) results by verifying the eonditions in
the theorem of HoCHSTER [16], Proposition 4 characterizing spectral spaces. Indeed,
we know that X~ is a T,-space (by Proposition 2.3 (a)); X* is quasi-compact by
virtue of the combined effect of («) and (p) (cf. Proposition 2.3 (b)); by (), the col-
lection of quasi-compact open subsets of X7* is closed under finite intersections, and
moreover forms a basis for the open sets in XZ; and, finally, (§) guarantees that X~
is sober, by Proposition 2.3 (¢), to complete the proof.

REMARK 2.5. — (a) It is not difficult to verify that, in the statement of Theo-
rem 2.4, condition (f) may be replaced by the requirement, « each decreasing se-
quence of elements of X stabilizes »: c¢f. [6], Proposition 5.9, p. 33.

() Recall from [8, Sec. 2] that a spectral space is discrete Alexandroff if and
only if it is homeomorphic to the prime spectrum of a g-ring. One therefore im-

mediately deduces that an ordered set X is L-spectral if and only if X is isomorphic
as an ordered set to the spectrum of a ¢-ring.

We intend next to see how the passage from an ordered set X tothe topological
space X7 is reflected at the level of morphisms. The proof of the following easy
lemma is omitted.

LEMMA 2.6. — Let f: X - Y be a morphisms of ordered sets (that is, an order-
preserving function). Then:

(a) fe=f: Xt — YL is a continuous map. Moreover, f* is a homeomorphism
if and only if f is an isomorphism of ordered sets.

(b) For each X,c X, one has f(X1)c (X" and f#(X})c (X,
(¢) For each Y,c Y, one has fY ) cfy Tl and (X)) cF1T).
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PRrOPOSITION 2.7. — For f: X — ¥, a morphism of ordered sets, the following are
equivalent:

(i) f: X Y~ is a closed map;
(ii) For each X,c X, one has {(X}) = f(X,);
(iii) For each x e X, one has f(a') = f(a)t;

(iv) For each y,, y€ Y and € X such that y,<y and f(x,) = y,, there exists
xze X such that v,<x and f(x) = y.

ProoF. ~ By virtue of Lemma 2.6 (b), the eonclusions (i) <= (ii) = (iii) =~ (iv)
are immediate. Finally, to prove (iv) = (ii), let y € f(X,)!, so that f(@) = y,<y
for some z,€ X,. By (iv), ¥ = f(«) for some x € X such that #; <@, whence y € fxh,
and so ]‘(Xl)T C f(XI). As the reverse inclusion is valid in general, (ii) holds, complet-
ing the proof.

COROLLARY 2.8. —~ For f: X — ¥, a morphism of ordered sets, the following are
equivalent:

(i) f: Xt — Y is an open map;
(ii) For each X,c X, one has f(X{) = f(X,);
(iii) For each x e X, one has f(&') = f()';

(iv) For each y,,ycX and xc X such that y,<y and f(x) =y, there ewists
x, € X such that vy <x and f(x,) = 9,.

Proo¥r. — Observe that f: X, — ¥, is a morphism of ordered sets. Since
f: X% — YZ is an open map if and only if f: X*— Y2 is a closed map, an applica-

tion of Proposition 2.7 completes the proof.

For the applications already seen and those described briefly in the introduc-
tion, it is important to know the relation between a fixed T,-topology on a set X
and the left topology, denoted X instead of (X4)% arising from the order induced
by the given topology.

PROPOSITION 2.9. — (a) If f: X — Y is a continuous (resp., homeomorphic) map
of Ty-topological spaces, then ft= f: X% — YI is also continuous (resp., homeomorphic).

(b) For each Ty-space X, the identity map idg: X*— X is continuous.

(¢) The full subcategory of the category of topological spaces and continuous maps
whose objects are the discrete Alexandroff topological spaces is a coreflective
subcategory.
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Proor. — Assertion (a) follows from Lemma 2.6 (a), since f ., =f: X ,—~ Y
is & morphism of ordered sets. For (b), it suffices to observe that 0¢(#) = o' = O¢%(w)
for each # € X; and that each closed subset of X is stable under specializations. As
for (¢), we must show that the inclusion functor has a right adjoint [17], p. 140.
Clearly, a T,space Y is discrete Alexandroff if and only if Y= Y. Therefore, for
each continuous map f: ¥ — X of T,-spaces such that Y is discrete Alexandroff,
there is a unique continuous map fi= f: ¥ = Y% — X% guch that f ==id,off. Hence,
the required adjoint exists, and the proof is complete.

3. — Spectral spaces and L-topologies.

In the preceding section, we saw that for each T-topological space, there is a
canonically associated discrete Alexandroff topological space having the same under-
lying set. In this section, we are interested more specifically in the relations bet-
ween X and X% in case X is a spectral space.

Let X be a spectral space. Denote by X, the set X endowed with the construe-
tible topology [14], (7.2.11), p. 337, that is the coarsest topology in which all the
closed subsets of X and all the quasi-compact open subsets of X are cloged. Let X%
denote X endowed with the « Hochster topology » (or the « opposite-order topol-
ogy ») [16], Proposition 8, that is the topology having a basis for its closed sets
congisting of the quasi-compact open subsets of X. We may take as known the
following results:

(4) X, and X¥ are speciral spaces;
(B) (XA),.= (X, d)opp- Henece, in particular,
(By) (XMt = X*;
(B:) For each we X, 0% (x) = ¥ is an irreducible closed subset of X¥;
(B;) The space X is irreducible if and only if X¥ has a unique closed point;
)

(By) X has a unique closed point if and only if X¥ is irreducible;

(0) Xo= (X¥)c.

The next proposition records the relations between the closure operators of X,
X", Xy, X2 and X® (denoted by 7, C/H, Cf,, /5 and C¢®, respectively). Sinee
((Spec 4),)% = (Spec 4),, one may regard parts (a) and (b) of Proposition 3.1 asa
modest improvement upon Lemma 2.5 of [8].

Prorostrion 3.1. — Let X be a spectral space. Then:

(@) For each Y c X, 0£(Y) = O¢:(C4(Y));
(b) For each Y c X, C/2(Y) = CL2(04(Y));
() (Xm)# = X.
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Proor. — Statement (a) follows easily from the facts that the constructible
topology and the L-topology are finer than the given topology on X; and that each
quasi-compact open subset of X is closed in the compact space X,. Then (b) follows
from (a), in view of (4), (B) and (C). Finally, (¢) is an immediate consequence of (a)
and (b). .

REMARK 3.2. — It is not difficult to see that, in general, CZ,(C¢%(Y)) c O¢L(C4(Y))
and C4,(C/A(X)) c C/R(04(Y)). In[9], (1.2), examples are given in which the inclu-
sion is striet.

TuroREM 3.3. — For a spectral space X, the following are equivalent:
(i) Xt= X,
(ii) For each ze X, #" is a quasi-compact open subset of X;

(iii) For each family {U,li € I} of quasi-compact open subsets of X, the set [ U,
is quasi-compact and open in X; iel

(iv) X s a Tp-space; and for each family {U[ieI} of quasi-compact open
subsets of X, Card (Max (N Uz)) is finite;

(v) Each increasing sequence of irreducible closed subsets of X stabilizes;
and for each family {U,lieI} of Equasi-compact open subsets of X,
Card (Max (N U))) is finite;

(vi) Hach decreasing sequence of irreducible closed subsets of X® stabilizes;
and for each closed subset F of XH, there exist Y1, Yoy ..., Yo € F such that
F=yluylu..Uyl

(vil) Each open subset of X® is the complement of a quasi-compact open subset
of X;

(vill) X¥ is a Noetherian space.

Proor. — In view of Remark 2.5 (b), the equivalences (i) <> (ii) and (i) < (viii)
follow easily from [25], Propositions 1 and 4 of section 5. As for (viil) <= (vi), it
is not difficult to see that the prime spectrum of a ring is a Noetherian space if and
only if each increasing sequence of prime ideals of the ring stabilizes and each radical
ideal is the intersection of finitely many prime ideals (cf.[18], Exercise 25, p. 65;
[3], Proposition 8, p. 123 and Proposition 10, p. 124). Next, since each open subset
of X# is a union of a family of complements of quasi-compact open subsets of X,
the implication (viii) = (vii) follows by recalling that a topological space is Noethe-
rian if and only if each of its open subsets is quasi-compact. To show (vii) = (iii),
note in the present situation that, for each family {U;|i € I} of quasi-compact open
sets of X, there exists a quasi-compact open subset U of X such that X\U =
= U (X \TU,), whence U = N U.: As for (iii) = (i), each intersection of open sub-
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sets of X is open since the quasi-compact open subsets form a basis for the open
subsets of X. To prove (iii) = (iv), note that the above yields, in the present situa-
tion, that X is a discrete Alexandroff space, and hence a T',-space, while the second
assertion in (iv) follows from Proposition 2.3 (b). Next, (iv) = (v) since, in a spec-
tral space which is T,, the infimum of any nonempty family of points coincides
with one of those points (cf.[25], Proposition 2, section 1 or [23], Corollary 2.5).
As for (v) = (vi), it is easy to see that the first assertion in (v) is equivalent to the
first assetion in (vi); moreover, the second part of (vi) follows immediately from the
second part of (v) since each closed subset of X¥ is an intersection of a family of
quasi-compact open subsets of X. The proof is complete.

COROLLARY 3.4, — For a spectral space X, the following are equivalent:
(i) X is & Noetherian space;
(ii) X¥ is a discrete Alexandroff space;
(iii) X# = X,
ProoF. — This is an immediate consequence of Proposition 3.1 (¢), Theorem 3.3
and assertion (B,).
The equivalence (iii) <= (iv) in the next result recaptures the equivalence (b) <>
<> (6) in [11], Proposition 3.
CoroLrARY 3.5. — For a spect}al space X, the following are equivalent:
(i) X is a Noetherian discrete Alevandroff space;
(ii) X# is a Noetherian discrete Alexandroff space;
(iii) Card (X) s finite;
(iv) X is a Noetherian T,-space;
(v) X% is a Noetherian Tp-space.
ProoOF. — The implications (iii) =~ (i) and (i) = (iv) are trivial. The equivalence

(i) <> (ii) follows easily from Theorem 2.3 and Corollary 2.4, while [11], Proposi-
tion 3, section 1 establishes the equivalences (V)<= (iii) <= (iv).

4. — N-spectral sets and COP-topologies.

In this section, we intend to deepen the study of the «duality » already seen
to exist (in Corollary 3.4, for instance) between those spectral spaces which are
discrete Alexandroff and those which are Noetherian, by expanding and making
precise the connections even at the level of ordered sets.
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ProroSITION 4.1. — Let X be an ordered set. Then one may define a (unique)
topology on X which is compatible with the given order in such a way that X becomes a
Noetherian spectral space if and only if the following conditions hold:

(') Each nonempty totally ordered subset of X has an inf;

(B') = (filtr.®) Each nonempty subset ¥ of X which is upper-directed has upper
bound y = sup (Y) satisfying y* = Y¥;

(y') Card (Min (X)) < oo;

(6') For each pair of distinct elements x and y of X, there exist at most finitely
many elements of X which are minimal “in the set of common upper bounds
of v and y.

Moreover, a topolbgy satisfying the above conditions must be the COP-topology.

PrOOF. — In view of Theorem 2.4, the ordered set X,  is L-spectral if and only
if X, satisfies conditions (a')-(d'). Since (X, )*= X? we conclude that (X*#
is a Noetherian speetral space if and only if X satisfies («')-(6') (by Theorem 3.3).
Moreover, it is clear that the topology of (X%)¥ is compatible with the fixed order
on X and has the finite unions of specializations of points as a basis for its closed
sets. This topology is the unique spectral Noetherian topology compatible with
the given order for, in a spectral Noetherian space, each closed set is a finite union

of specializations of points.

An ordered. set X satisfying the above conditions («')-(6') will be call an N-spec-
tral set.

REMARK 4.2. — a)) In the statement of Proposition 4.1, condition (8') can be
replaced by -the condition «each inereasing sequence of elements of X stabilizes »
(Cf. Remark 2.5 (a).) Therefore, as a corollary of Theorems 2.4 and 3.3, we obtain a
new proof of a result of R. and 8. WiEGAND [27], Proposition 2, section 5.

{b) The matter of uniqueness of a Noetherian spectral topology, compatible
with a given order, was raised earlier by HoCHSTER [16], Proposition 14.

COROLLARY 4.3. — Let X be a spectral space. Then X® (vesp., X*) is a spectral space
if and only if X is a Noetherian space (resp., a discrete Alexandroff space). In this
case, one has X = X°OF = (XB)E (resp., XH — (X)OP — (X4 = (X, )%, that is,
XL ((XH)COP)H).

ODD)

Proor. — One may infer the statement from the proof of Proposition 4.1, bearing
in mind that X# is a spectral space such that (X#)2= XZ (Cf. also Theorem 3.3
and Corollary 3.4.).
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In view of the important role which the COP-topologies play in regard to N-spec-
tral sets, we are led to a more defailed study of these topologies. We begin with
an easy proposition, whose proof is omitted.

PROPOSITION 4.4. — (a) If X is an ordered set, then X°°F is a Ty-space, (X°°F) = X,
and the identity map idyg: X* — X°F is continuous.

() Let f: X - Y be a morphism of ordered sets. Then the mapping [°F = f:
XOO0P . YOO is continuous if and only if, for each y € Y, one has:

f)

iy

iyt =N (90‘11U wﬁ,zu Uz

i€l
with x; ;€ X, 1<j<n,.

(¢) Let f: X — Y be a morphism of ordered sets. Then f°°F is a homeomorphism
if and only if f is an isomorphism.

A morphism of ordered sets which satisfies the condition in the statement of
Proposition 4.4 (b) will be called a COP-morphism.

PROPOSITION 4.5. — (@) Let X be a Ty-space. Then [writing simply XF instead of

(X..)°°F] one has that the identity map idg: X — XOF is continuous.

ord

() If f: X — Y is a homeomorphism, then f°°F = f: X% — Y OP 5 glso ahomeo-
morphism.

(e) The category whose objects are the COP-spaces (that is, the Ty-spaces X such
that X = X°F) and whose morphisms are those continwous maps which are COP-
morphisms (with respect to the underlying orvdered seis) is a reflective subcategory of
the category of all Ty-spaces and all the continuous maps which are COP-morphisms.

Proor. — Parts (a) and (b) are immediate. For (¢), one need only observe that,
if f: X — Y is a continuous map which is also a COP-morphism, then f°°F: X°°F
— Y°P — Y is the unique continuous map such that f°°Foid, = f.

REMARK 4.6. — (a) From Proposition 4.1 and Corollary 3.4 (resp., (4.1) and
Theorem 3.3), one sees readily that the prime spectrum X = Spec (4) of a ring
is an N-spectral (vesp., L-spectral) set if and only if X, is a Noetherian (resp., discrete
Alexandroff) space.

(b) Let ¢*: ¥, = Spec (B) — X, = Spec (4) be the continuous map associated
to a ring-homomorphism ¢: 4 —B. A sufficient condition for ¢* to be a COP-
morphism is that B satisfy the «finite component » condition (FC) [as in [24], this
means that each ideal of B has only finitely many minimal prime ideals]; this holds
it ¥, is a Noetherian space, for example if B is Laskerian (cf. [13], Theorem 4).
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(¢) We stress that although each Noetherian topological space is a COP-
space, the converse fails even for the case of spectral spaces. It suffices to consider
the totally ordered spectral set

X = {0 <0, < B e < By < Wy < oo < W)

which is isomorphic to the spectrum of a suitable valuation domain ([12], p. 95;
[11], Proposition 3).

We would like next to summarize and make precise the results comparing the
different topologies introduced on a spectral space X. First of all, the identity map
id, is continuous in the following diagram:

X= - X S Y COP

el v

s — X

XR — (XH)L I XH - (XE)COP p— (XODD)OOP

(where X®* denotes the set X endowed with the discrete topology): ef. Proposi-
tions 2.9 and 4.5; moreover, in case X* (vesp., X&) is a spectral space, then X°F =
= (XB) (resp., (X,,,)°% = (X%)¥): cf. Corollary 4.3.

One readily sees that the following four conditions are equivalent:

(i) Xc = X;
(i) X, = X*,
(iil) X = X=,

(iv) X% = X% = X7,
similarly, the following five conditions are equivalent:
(I) X== X,
(II) X% = X,
(I11) X2= X,,
(IV) X is a finite space,
(V) Both X% and X are Noetherian spaces.

It is an open question to characterize the spectral spaces X such that X% = XC¢OF,
Note, for any such X, that both Min (X) and Max (X) are finite.
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REMARK 4.7. — In order to study the properties of those prime ideals of a ring
which are G-ideals in the sense of [18], p. 16, another topology on a spectral space
was introduced in [25], section 3. This « Goldman topology » has a basis of open
sets consisting of the subspaces which are locally closed in the original topology
of X. For each subset Z on X, let (¢;,4(Z) denote the closure of Z in the Goldman
topology ; and let X% denote the set X endowed with the Goldman topology. Then
one readily sees that:

(@) OlgualZ) ={we X ot = C4(Z N &)}, Hence, in particular, each point of X
is closed in X%, and each subset of X which is stable under generalization
is closed in X9,

(b) The identity map idg: X% — X, is continuous;
(6) X is a Tp-space if and only if XU = XG4,
(d) X% = X, if and only if X is Noetherian;
(e) X% = X if and only if X is a discrete space.
Finally, with respect to morphisms, we collect and complete the results as follows.
If X and Y are spectral spaces and f: X — Y is a speciral map (that is, the inverse

image under f of each quasi-compact open subset is itself a quasi-compact open
set), then the following five statements are equivalent:

(i) f is homeomorphism;
(ii) ff==f: Xt > Y% is a homeomorphism;
(i) fora=F: Xopa = Yopq 15 an isomorphism;
(iv) ff=f: X2— YZ is a homeomorphism;
(v) f°9F = f: X°F - YOOF 45 a4 homeomorphism.

In view of Proposition 2.9, 3.1 and 4.5, a proof results from noticing that each
continuous bijection from X, to Y, is a homeomorphism.
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