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Abstract

It is proved that if 2 < d < oo, then there exist a treed domain
R of Krull dimension d and an integral domain 7' containing R as a
subring such that the extension R C T' does not satisfy the going-down
property. Rather than proceeding ring-theoretically, we construct a
suitable spectral map ¢ connecting spectral (po)sets, then use a rea-
lization theorem of Hochster to infer that ¢ is essentially Spec(f) for a
suitable ring homomorphism f, and finally replace f with an inclusion
map R — T having the asserted properties.

1 Introduction and Summary

The purpose of this note is to construct a ring-theoretic example by us-
ing some order-theoretic machinery and relatively little calculation. In the
next paragraph, we review the relevant ring-theoretic background and state
the main result. In the following paragraph, we review the relevant order-
theoretic machinery and outline our approach. Full details are given in Sec-
tion 2.

All rings considered below are commutative with identity; all ring ex-
tensions and all ring homomorphisms are unital. A ring homomorphism
f A — B is said to satisfy going-down if, whenever P, C P; are prime
ideals of A and Q) is a prime ideal of B such that f~'(Q;) = Py, there
exists a prime ideal Q3 of B such that @, C Q; and f~1(Q2) = P,. A ring
extension A C B is said to satisfy going-down if the inclusion mapi: A — B
satisfies going-down. Following [2] and [7], we say that an integral domain
R is a going-down domain in case R C T satisfies going-down for all integral
domains T containing R as a subring (equivalently, for all integral domains
T contained between R and its quotient field). The most natural examples
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of going-down domains are arbitrary Priifer domains and integral domains
of Krull dimension at most 1. The fundamental order-theoretic fact about
such rings is [2, Theorem 2.2]: any going-down domain is a treed domain.
(For each integral domain A, the set Spec(A) of all prime ideals of A is a
poset via inclusion; A is said to be a treed domain in case Spec(A), as a
poset, is a tree, that is, in case no prime ideal of A contains incomparable
prime ideals of A.) Remarkably, the converse is false, as [8, Example 4.4]
presents a construction, due to W. J. Lewis, of an extension R C T’ of two-
dimensional domains such that R is a treed domain and R C T does not
satisfy going-down. Like the construction of Lewis, the only other known
example of this phenomenon [4, Example 2.3] depends on a specific type of
ring-theoretic construction (k + J(A), as in [13, (E2.1), p. 204]) whose anal-
ysis involves a considerable amount of calculation. It seems natural to ask if
one can use order-theoretic methods to produce a treed domain R that is not
a going-down domain without having to appeal to the details of a specific
ring-theoretic construction. We do so here for all possible Krull dimensions
d of R, namely, 2 < d < oo.

A key concept in our approach is that of an L—spectral set. Recall from
[11, p. 53] that the underlying set of any Tp—topological space Z can be
given the structure of a poset as follows: for x,y € Z, 2 <y &y € {x—} A
To—topology T on a poset (W, <) is said to be compatible with < in case <
coincides with the partial order induced by 7 on W. Recall from [1, Exercice
2, p. 89] that the finest topology on W that is compatible with the given
partial order < is the left topology on W, namely, the topology having an
open basis consisting of the sets w¥ := {v € W | v < w} as w runs through
the elements of W. Let W’ denote W equipped with the left topology. As
in [6], a poset W is called an L—spectral set if W is a spectral space, i.e., is
homeomorphic to Spec(A) (with the Zariski topology) for some ring A. (As
usual, the Zariski topology on Spec(A) is defined to be the topology that has
an open basis consisting of the sets { P € Spec(A) | a ¢ P} as a runs through
the elements of A.) In Section 2, we construct L—spectral sets Y, X and a
spectral map ¢ : Y* — X’ in the sense of [11, p. 43|, namely, a continuous
map of spectral spaces for which the inverse image of any quasi-compact open
set is quasi-compact. Y and X are chosen as small as possible for ¢ to fail to
satisfy the order-theoretic analogue of the going-down property. Verification
of the above-stated topological properties of X,Y and ¢ proceeds order-
theoretically, by appealing to some results in [6]. Then, since the spectral
map ¢ is surjective, we can apply [11, Theorem 6 (a)]. This result allows us to
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avoid introducing — or analyzing — a specific ring theoretic construction, for
it essentially permits the identifcations Y = Spec(B), X = Spec(A) and ¢ =
Spec(f), for a suitable ring homomorphism f : A — B. (As usual, Spec(f) :
Spec(B) —Spec(A) is defined by @ — f71(Q).) The proof concludes by
using standard ring-theoretic tools to replace f : A — B with an inclusion
map ¢ : R < T having the desired properties.

2 The construction

We begin by defining the three-element poset Y := {yo,y1,y2} by imposing
the requirements that yo < y; and yo < yo (With y; and ys unrelated). Before
analyzing Y order-theoretically with essentially no calculations, we indicate
how detailed a ring-theoretical approach to the properties of Y would be. It
can be seen ring-theoretically that Y is a spectral set: consider, for instance,
the poset structure imposed by the Zariski topology on Spec(D), where D is
the localization of Z at the multiplicatively closed set Z\ (2ZU 3Z). From this
point of view, the Prime Avoidance Lemma (cf. [10, Proposition 4.9]) allows
the identifications yo = {0}, y; = 2D and y, = 3D. Using the definition of
the Zariski topology, one can then show after some case analysis that the
open sets of Y = Spec(D) are 0,Y, {yo}, {vo,v1} and {yo, y2}-

Fortunately, Y can be studied directly by order-theoretic means, without
recourse to the above ring D. In the process, one learns even more: Y is
an L—spectral set. To see this, one need only verify the four order-theoretic
conditions (a) — (d) in the characterization of L—spectral sets in [6, Theorem
2.4]. Since Y is finite, it is evident that the following three conditions
() each nonempty linearly ordered subset of Y has a least upper bound,
(7)Y has only finitely many maximal elements, and
(0) for each pair of distinct elements z,y € Y, there exist only finitely

many elements of Y which are maximal in the set of common

lower bounds of x and y
all hold in Y. Moreover, checking () amounts to the easy verification that
each nonempty lower-directed subset Z of Y has a greatest lower bound z
such that {y € Y | 2 <y} ={y €Y | w <y for some w € Z}. By using
the definition of the left topology on Y, we obtain the same list of open
sets as in the above ring-theoretic approach. This is not a coincidence, since
an application of either the Main Theorem (whose order-theoretic criteria
evidently hold in any finite poset) or Corollary 2.6 of [3] reveals that any
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finite poset has only one order-compatible topology.

We next introduce the three-element linearly ordered poset X := {zo, z1,
x9} by imposing the requirements that zy < z; < z9. (Since X has a
unique maximal element, the eventual treed domain A will be automatically
quasilocal, that is, will have a unique maximal ideal.) One could verify ring-
theoretically that X is a spectral set (arising from, for instance, a valuation
domain of Krull dimension 2) and then, by considering the Zariski topology,
identify the open sets of X as (), X, {zo} and {zo, z1}. We leave these details
to the reader, as the above-cited results from [3] ensure that a “left topology”
approach would produce the same list of open sets in X. Of course, such an
approach is appropriate, for by considering conditions (a)—(¢) in [6, Theorem
2.4], one shows easily that any finite linearly ordered set is an L—spectral
set.

The function ¢ : Y — X is defined by ¢(y;) = z; for i = 1,2,3. Observe
that ¢ is surjective and order-preserving. Of course, ¢ is not an order-
isomorphism). Indeed, we have constructed ¢ so as to fail to have the order-
theoretic analogue of the going-down property, for no y; satisfies both y; < ys
and ¢(y;) = z;.) One could use the above lists of open sets to check that when
viewed as a map Y* — X ¢ is continuous, since ¢ '({z¢}) = {yo} and
0 1({zo,21}) = {yo,y1}. However, this detail can be avoided by appealing to
[6, Lemma 2.6 (a)], which states that any order-preserving map of posets is
continuous when these posets are each equipped with the left topology. Being
a continuous function between finite spectral spaces, ¢ is also a spectral map
(as the quasi-compact open subsets are the same as the open subsets). In
short, ¢ : Y& — X7 is spectral and surjective.

The above data are made to order for the realization assertion in [11,
Theorem 6 (b)]. This result states that when Spec is viewed as a contravariant
functor from the category of commutative rings (and ring homomorphisms) to
the category of spectral spaces (and spectral maps), then Spec is invertible
on the (nonfull) subcategory of all spectral spaces and surjective spectral
maps. In particular, one infers the existence of a ring homomorphism f :
A — B and homeomorphisms « :Spec(4) — X, § :Spec(B) — Y (where
Spec(A) and Spec(B) are each endowed with the Zariski topology) such that
ao Spec(f) = ¢ o . It follows that Spec(f) is surjective. Moreover, since
the homeomorphisms «, # are necessarily order-isomorphisms, it also follows
that Spec(f) has all the order-theoretic properties of . In particular, f does
not satisfy going-down.

We next reduce to the case of injective f. Indeed, the First Isomorphism

4



A SPECTRAL CONSTRUCTION

Theorem gives the factorization f = j o m, where 7 : A — A/ker(f) is
the canonical projection and j : A/ker(f) < B is the canonical injection.
Note that Spec(n) is a homeomorphism (hence, an order-isomorphism), the
key point being that P Dker(f) for each prime ideal P of A. (To see this,
take a prime ideal @) of B such that P =Spec(f)(Q) = f'(Q) and observe
that ker(f) = f~1({0}) C f~4(Q).) As Spec(j) = (Spec(w)) o Spec(f), we
see that j does not satisfy going-down. By abus de langage, we henceforth
replace f with j, viewed as an inclusion (and thus replace A with A/ker(f)).
Notice also that (either the “old” or the “new”) A is a quasilocal ring of
Krull dimension 2, thanks to the order-isomorphism a and the construction
of X.

Since f does not satisfy going-down, we see via [5, Lemma 3.2 (a)] that
the injection freq : Areq — Breq Of associated reduced rings also does not
satisfy going-down. (Recall that if E is any ring, then E,.q := E/vE, where
VE denotes the set of all nilpotent elements of E. It is well known that
applying the Spec functor to the canonical projection £ — E,..; produces a
homeomorphism. Of course, f,.q is defined by a + VA — f(a) +v/B.) By
more abus de langage, we replace f with f,.4 (which is now viewed as an
inclusion). Observe that (the “new”) A is quasilocal and of Krull dimension
2. Moreover, we have now reduced to the case in which both A and B are
reduced rings (that is, rings with no nonzero nilpotents) each having a unique
minimal prime ideal, that is, integral domains.

For d = 2, putting (R, T,7) := (A, B, f) produces, as asserted, an inclu-
sion map i : R < T of integral domains such that R is (quasilocal and) of
Krull dimension d and 7 does not satisfy going-down. To produce such an
example in which 7 is contained between R and its quotient field, one need
only invoke the characterization of going-down domains in [7, Theorem 1].

Suppose next that 3 < d < oco. Take R and (either) T" as above, and let F
denote the quotient field of T'. Using, for instance, the proof of [10, Corollary
18.5], we can construct a valuation domain of the form V' = F' + M such that
V has Krull dimension d —2 and M is the maximal ideal of V. (As usual, we
take oo+ 1 := oo for each real number r.) Observe that the integral domains
R+M C T+ M have the same quotient field, since they share M as a common
nonzero ideal. The standard lore of the classical (D+ M )—construction, as in
[10, Exercise 12, p. 202], yields that Spec(R+M) = Spec(V)U{P+M | P €
Spec(R)}; of course, one also has a similar description of Spec(T + M).
(The same conclusions are available via [9, Theorem 1.4] since, for instance,
R + M is the pullback of the canonical projection V. — V/M = F and
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the inclusion R < F'.) As valuation domains are quasilocal treed domains,
it follows that R + M inherits from R the property of being a (quasilocal)
treed domain. Moreover, with “dim” denoting Krull dimension, we have that
dim(R+ M) = dim(R) + dim(V) = 2+ (d —2) = d. Finally, as in the proof
of [7, Corollary], the above description of prime spectra implies that the
extension R+ M C T+ M inherits from R C T the failure of the going-down
property. Consequently, R + M < T 4+ M has the asserted properties, to
complete the proof.

In closing, we contrast the above role of pullbacks (which we used only
in the case d > 3) with their role in Lewis’s two-dimensional example. That
example had been only sketched in [8]. A fuller explanation of it, as in [4,
Remark 2.1 (a), second paragraph], involves the use of either the “maximal
quotient map” machinery of [12] or the fundamental gluing result on the
prime spectra of pullbacks [9, Theorem 1.4] to analyze a pullback of the form
k+ J(A). On the other hand, our approach needed such gluing information
only for (the arguably more computationally tractable) pullbacks of classical
D + M type. In sum, our approach has used the order-theoretic character-
ization of spectral spaces when the ambient topology on a poset is the left
topology and an order-theoretic verification that the function ¢ is a spectral
map, Hochster’s fundamental result on invertibility of the Spec functor for
surjective spectral maps, and relatively straightforward ring theory consist-
ing of isomorphism theorems and a description of the prime spectrum of the
classical (D + M)— construction.
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