
NAGATA TRANSFORMS

AND LOCALIZING SYSTEMS

Marco Fontana1 and Nicolae Popescu2

1Dipartimento di Matematica, Università degli Studi,
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ABSTRACT

The main purpose of this paper is to undertake a more in-
depth study of the link between Nagata ideal transforms and
the rings of fractions with respect to localizing systems. The
principal result obtained here is a characterization of when the
Nagata ideal transform TðIÞ of an ideal I of an integral
domain R is a ring of fractions of R with respect to a loca-
lizing system; in this case, we also give a description of the
localizing system F of R such that TðIÞ ¼ RF .
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let R be an integral domain with quotient field K. For each ideal I of
R, the following overring of R

TRðIÞ ¼ TðIÞ :¼ [
n�0
ðR : InÞ ¼ fz 2 K : ðR :R zRÞ � In for some n � 0g

ð1:1Þ
is called the Nagata (ideal) transform of R with respect to I.

Ideal transforms are a very useful tool in various aspects of commu-
tative ring theory. A particularly important application was the treatment of
Hilbert’s XIVth Problem given by Nagata in [N1], [N2] and [N3]. Nagata
transforms were also employed in the study of the catenary chain con-
jectures (cf. [R1] and [R2]) and Brewer, Brewer7Gilmer and Hedstrom have
proved that Nagata transforms are very useful in the study of the overrings
of an integral domain (cf. [Br], [BrG], [He1] and [He2]).

Other interesting applications of the ideal transforms are mentioned
in[F], where an ample bibliography is listed.

Outside the Noetherian setting, the behaviour of Nagata transform is
not entirely satisfactory.[F] Kaplansky in[K] considered, for each ideal I of R,
the following overring of R:

ORðIÞ ¼ OðIÞ :¼ fz 2 K : radððR :R zRÞÞ � Ig ð1:2Þ

called (in [F]) the Kaplansky (ideal) transform of R with respect to I. It is
straightforward that, for each ideal I, TðIÞ � OðIÞ and, if I is finitely gen-
erated, then TðIÞ ¼ OðIÞ.

A generalized multiplicative system (or a multiplicative system of ideals)
S of R is a multiplicatively closed set of ideals of R. The following overring
of R:

RS :¼ fx 2 K : xI � R for some I 2 Sg

is called the generalized transform or the (generalized) ring of fractions of R
with respect to S (cf. [HOP], [H], [AB], [BS]). This terminology is justified by the
fact that if NðIÞ :¼ fIn : n � 0g then NðIÞ is obviously a generalized multi-
plicative system of R and

TðIÞ ¼ RNðIÞ; ð1:3Þ

and by the fact that the ring of fractions S�1R of R with respect to a
multiplicative system S of R coincides with RS , where S ¼ fsRj s 2 Sg.
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Note that if S is a generalized multiplicative system of R, then

�S :¼ fJ : J ideal of R such that J � I for some I 2 Sg

is a generalized multiplicative system called the saturation of S and R �S ¼ RS.
A generalized multiplicative system S is saturated if S ¼ �S.
A distinguished class of generalized multiplicative systems is given by

the localizing (or topologizing) systems of ideals introduced by Gabriel [Ga]

(cf. also [B, p. 157], [P], [C] and [St]). We recall that a localizing system of ideals F
of R is a set of ideals of R verifying the following conditions:

I 2 F and I � J) J 2 F ; ðLS1Þ

I 2 F ; J ideal of R such that ðJ :R iRÞ 2 F for each i 2 I) J 2 F :
ðLS2Þ

For instance, for each subset D of prime ideals of R,

FðDÞ :¼ fI : I ideal of R such that I 6� P for each P 2 Dg

is a localizing system of R. If P is a prime ideal of R, we denote simply by
FðPÞ the localizing system FðfPgÞ. It is obvious that:

FðDÞ ¼ \fFðPÞ : P 2 Dg:

A localizing system of finite type is a localizing system F such that for
each I 2 F there exists a finitely generated ideal J 2 F with J � I. It is well
known that if F is a localizing system of finite type then F ¼ FðFÞ, where
F :¼ fP : P prime ideal of R and P =2Fg.[FHP, Lemma 5.1.5]

The converse is not true in general, since F is a localizing system of
finite type if and only if F ¼ FðDÞ, where D is a quasi-compact subspace of
SpecðRÞ.[FHP, Proposition 5.1.8]

Since a localizing system F is a multiplicatively closed and saturated
system of ideals,[FHP, Proposition 5.1.1] we can consider the generalized ring of
fractions RF of R with respect to F . Note that it is possible to find an
overring of an integral domainRwhich is a ring of fractions ofRwith respect
to a generalized multiplicative system of ideals but is such that none of the
multiplicative systems giving rise to this overring is a localizing system.[F]

If F ¼ FðDÞ for some subset D of prime ideals of R, then it is well
known that
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RF ¼ \fRP : P 2 Dg
[FHP, Proposition 5.1.4].

For each ideal I of R, let

DðIÞ :¼ fP 2 SpecðRÞ : P 6� Ig

K ¼ KðIÞ :¼ FðDðIÞÞ ¼ fJ ideal of R : P 2 SpecðRÞ; J � P

) I � Pg;

then Kaplansky [K] (and Hays[Ha, Theorem 1.7]) proved that

OðIÞ ¼ RKðIÞ: ð1:4Þ

Because, when I is finitely generated, TðIÞ ¼ OðIÞ, the equality (1.4)
generalizes a result obtained by Brewer[Br, Theorem 1.5]. Furthermore, Eq. (1.4)
provides an extension of the following representation given by Nagata[N3,

Lemma 2.4]: if I is a nonzero ideal of a Krull domain R, then

TRðIÞ ¼ \fRQ : Q 2 SpecðRÞ; Q 6� I and htðQÞ ¼ 1g
¼ \fRP : P 2 SpecðRÞ; P 6� Ig ¼ RKðIÞ:

ð1:5Þ

In this situation, the ring TRðIÞ, which is always by Eq. (1.3) a gen-
eralized ring of fractions of R with respect to the multiplicatively closed set
of ideals NðIÞ, is also a ring of fractions of R with respect to a localizing
system (i.e., KðIÞ).

Note that the inclusion TðIÞ � OðIÞ, that holds in general, may be also
deduced from the inclusion of the system of ideals NðIÞ � KðIÞ. This
inclusion can be proved synthetically by the fact that:

J 2 NðIÞ ) radðIÞ ¼ radðJ \ IÞ ð1:6Þ

and by the following explicit description of KðIÞ:

KðIÞ ¼ fJ : J ideal of R such that radðIÞ ¼ radðJ \ IÞg ð1:7Þ
[FHP, Remark 5.8.5 (a)].

The main purpose of this paper is to undertake a more in-depth study
of the link between Nagata ideal transforms and rings of fractions with
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respect to localizing systems. Indeed, one of the reasons that makes
Kaplansky’s generalization of the ideal transform very satisfactory in the
not necessarily Noetherian context is the fact that OðIÞ ¼ RF , where F is the
localizing system KðIÞ (cf. also [F] and [FH]). The principal result obtained
here is a characterization of when the Nagata ideal transform TðIÞ is a ring
of fractions of R with respect to a localizing system; in this case, we also give
a description of the localizing system F of R such that TðIÞ ¼ RF .

2. THE NAGATA LOCALIZING SYSTEM

Let R be an integral domain and K its quotient field.
We call the Nagata localizing system associated to an ideal I of R, and

we denote it by NðIÞ, the smallest localizing system of R containing I.
Obviously NðIÞ contains the saturation of the multiplicatively closed system
of ideals NðIÞ considered in Sec. 1.

Proposition 2.1. Let R be an integral domain. For each ideal I of R, we set

N 0ðIÞ :¼ fJ : J ideal of R; J � In for some n � 1g

and, for each ordinal number a; we define by transfinite induction a set of ideals
N aðIÞ of R in the following way:

7 if a is not a limit ordinal, i.e., a ¼ bþ 1 for some ordinal number
b � 0,

N aðIÞ :¼ fJ : J ideal of R such that there exists Jb 2 N bðIÞ with
ðJ :R xRÞ 2 N bðIÞ; for each x 2 Jbg;
7 if a is a limit ordinal,

N aðIÞ :¼ [b<aN bðIÞ:

Then, for each ordinal number a � 0;

(a) The set N aðIÞ is a saturated multiplicative system of ideals of R.
(b) The Nagata localizing system NðIÞ coincides with [aN aðIÞ:

Proof. (a) We want to show that the set N aðIÞ verifies the following
properties:

(1) If a � b � 0, then N aðIÞ � N bðIÞ;
(2) J 2 N aðIÞ; J0 an ideal of R with J � J0 ) J0 2 N aðIÞ;
(3) J; J0 2 N aðIÞ ) JJ0 2 N aðIÞ.
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(1) is obvious, because if J 2 N bðIÞ, then ðJ :R xRÞ ¼ R, for each
x 2 J 2 N bðIÞ.

For (2) and (3) it is sufficient to show the statements when a ¼ 0 and,
by transfinite induction, when a is not a limit ordinal (i.e., a ¼ bþ 1, for
some ordinal number b � 0).

The case a ¼ 0 is obvious, because N 0ðIÞ is the saturation of the
multiplicative ideal system NðIÞ.

Assume that for a given ordinal number b � 0, N bðIÞ verifies (2) and
(3). It is easy to see that property (2) is verified also by N bþ1ðIÞ, by the
definition of N bþ1ðIÞ.

For 1 � k � 2, let Jk ideal of N bþ1ðIÞ hence:
� there exist Jk;b 2 N bðIÞ and
� ðJk :R xkRÞ 2 N bðIÞ, for each xk 2 Jk;b.

Since ðJ1 :R x1RÞðJ2 :R x2RÞ 2 N bðIÞ and ðJ1 :R x1RÞðJ2 :R x2RÞ � ðJ1J2 :R
x1x2RÞ; then we have:

ðJ1J2 :R x1x2RÞ 2 N bðIÞ; for all x1x2 2 J1;bJ2;b:

By the fact that the elements of the type x1x2 generate J1;bJ2;b, we can
conclude easily that J1J2 2 N bþ1ðIÞ.

(b) Set N�ðIÞ :¼ [aN aðIÞ. Note that for each ordinal number a, N aðIÞ
satisfies (LS1) hence also N�ðIÞ satisfies (LS1).

Furthermore, from the definitions, it follows easily that
I 2 N �ðIÞ � N ðIÞ, and in order to conclude we show that N�ðIÞ satisfies
also (LS2), i.e., N�ðIÞ is a localizing system of R.

Let L 2 N �ðIÞ and let H be an ideal of R such that ðH :R xRÞ 2 N �ðIÞ,
for each x 2 L. Therefore ðH :R xRÞ 2 N axðIÞ for some ordinal number ax
depending on x 2 L, where L 2 N bðIÞ, for some ordinal number b � 0.
Hence, if a :¼ supfax : x 2 L; bg, then ðH :R xRÞ 2 N aðIÞ for each x 2 L,
with L 2 N aðIÞ, and thus H 2 N aþ1ðIÞ � N �ðIÞ. u

Proposition 2.2. With the notation introduced above,

J 2 NðIÞ ) radðJ \ IÞ ¼ radðIÞ:

Proof. The statement is obvious if J 2 N 0ðIÞ (cf. also (1.6)). By using
Proposition 2.1 and transfinite induction, it is sufficient to show that if the
statement holds for each J 2 N bðIÞ, when 0 � b � a, then the statement
holds for each J 2 N aþ1ðIÞ. We can assume that J 2 N aþ1ðIÞ and J �= I
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(because if I � J then J 2 N 0ðIÞ). Then there exists Ja 2 N aðIÞ with ðJ :R
xRÞ 2 N aðIÞ for each x 2 Ja.

Let P be a prime ideal containing J \ I. Assume that P �= I, hence
P � J. By induction radððJ :R xRÞ \ IÞ ¼ radðIÞ, for each x 2 Ja. Note that
xðJ :R xRÞ � J for each x 2 Ja, hence also xððJ :R xRÞ \ IÞ � J � P for each
x 2 Ja \ I. Two cases are possible.

Case 1. ðJ :R xRÞ \ I � P, for some x 2 Ja \ I. In this case I � P because
radððJ :R xRÞ \ IÞ ¼ radðIÞ and, hence, we reach a contradiction.

Case 2. x 2 P, for each x 2 Ja \ I. Since Ja 2 N aðIÞ, then radðJa \ IÞ ¼
radðIÞ. In this situation, we have that P � Ja \ I hence P � I: a contra-
diction.

We conclude that the only possible situation is the following: if a prime
ideal contains J \ I then it contains I, hence radðJ \ IÞ ¼ radðIÞ. u

Remark 2.3. Recall that we have already noticed (cf. 1.4) and (1.7)) that
the Kaplansky transform ORðIÞ is the ring of fractions with respect to the
localizing system KðIÞ ¼ fJ : J ideal of R such that radðJ \ IÞ ¼ radðIÞg. By
the previous proposition we have NðIÞ � KðIÞ and hence we (re)obtain
easily that TRðIÞ � RNðIÞ � RKðIÞ ¼ ORðIÞ.

For each ordinal number a, we can define by transfinite induction an
overring of the Nagata transform TRðIÞ in the following way:

T0;RðIÞ :¼ TRðIÞ

7 if a is not a limit ordinal, i.e., a ¼ bþ 1 for some ordinal number
b � 0, then

Ta;RðIÞ :¼ TTb;RðIÞðITb;RðIÞÞ

7 if a is a limit ordinal, then

Ta;RðIÞ :¼ [b<aTb;RðIÞ:

If no ambiguity occurs, we will denote simply by Ta the ring Ta;RðIÞ,
thus Taþ1 ¼ TðITaÞ.

For each ordinal number a, we can consider the following subring
of K

RN aðIÞ :¼ fx 2 K : ðR :R xRÞ 2 N aðIÞg;
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since, for each ordinal number a � 0, N aðIÞ is a (saturated) multiplicative
system of ideals of R (Proposition 2.1(a)).

Lemma 2.4. With the notation introduced above, then

(a) TRðIÞ ¼ RN 0ðIÞ;
(b) T1;RðIÞ ¼ RN 1ðIÞ;
(c) for each ordinal number a � 2, Ta;RðIÞ � RN aðIÞ;
(d) RNðIÞ ¼ [aRN aðIÞ.

Proof. (a). It is a clear that N 0ðIÞ is the (multiplicative system of ideals of
R) saturation of N ðIÞ considered in Sec. 1, thus TRðIÞ ¼ RNðIÞ ¼ RN 0ðIÞ.

(b). We denote simply by Ta the domain Ta;RðIÞ, for each ordinal
number a � 0. Let y 2 T1, then yðIT0Þn � T0 and yIn � T0 for some n � 0.

Set J :¼ ðR :R yRÞ. For each x 2 In, we have yx 2 T0, hence ðJ :R
xRÞ ¼ ðR :R xyRÞ 2 N 0ðIÞ (by (a)). Therefore J ¼ ðR :R yRÞ 2 N 1ðRÞ.
Conversely, let y 2 K be such that ðR :R yRÞ 2 N 1ðIÞ. We know that there
exists n � 0 such that, for each x 2 In, ððR :R yRÞ :R xRÞ 2 N 0ðIÞ. In par-
ticular, there exists Nx � 0 (depending on x) such that ðR :R yxRÞ � INx ,
hence yx 2 T0, i.e., yI

n � T0, and thus yðIT0Þn � T0. This fact implies that
y 2 T1.

(c) is proved by transfinite induction. To avoid the trivial case, we can
assume that a is not a limit ordinal, then a ¼ bþ 1, for some ordinal
number b � 0, and the proof is analogous to that of (b). More precisely, let
y 2 Ta ¼ Tbþ1 then yInTb � Tb for some n � 0. Set J :¼ ðR :R yRÞ. Since
yx 2 Tb for each x 2 In, then using the inductive hypothesis (i.e.,
Tb � RN bðIÞ) we have ðJ :R xRÞ ¼ ðR :R yxRÞ 2 N bðIÞ. Since x varies in In

and In 2 N 0ðIÞ � N bðIÞ for each b � 0, then J 2 N bþ1ðIÞ ¼ N aðIÞ, thus
y 2 RN aðIÞ.

(d). It is obvious that [aRN aðIÞ � RNðIÞ. Conversely, if x 2 RNðIÞ then
there exists an ordinal number a and an ideal Ja 2 N aðIÞ such that
Ja � ðR :R xRÞ. Therefore ðR :R xRÞ 2 N aðIÞ and hence x 2 RN aðIÞ. u

Theorem 2.5. Let I be an ideal of an integral domain R. The following are
equivalent:

(i) There exists a localizing system F of R such that TRðIÞ ¼ RF ;
(ii) TRðIÞ ¼ RNðIÞ;
(iii) TRðIÞ ¼ T1;RðIÞ.

Proof. (i)) (ii). The set LSRðTRðIÞÞ :¼ fG : G localizing system of R such
that RG ¼ TRðIÞg ordered under set–theoretic inclusion has a first element
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G [FHP, Lemma 5.1.19]. More precisely, �G ¼ [aGa where G0 :¼ fJ : J ideal of R
such that J � ðR :R yRÞ for some y 2 TRðIÞg and if a is not a limit ordinal,
i.e., a ¼ bþ 1 for some ordinal b, then

Ga :¼ fJ ideal of R such that there exists an ideal J0 of R and J00 2 Gb
with J � J0 and ðJ0 :R y00RÞ 2 Gb for each y00 2 J00g;

if a is a limit ordinal, then

Ga :¼ [b<aGb:

Note that if y 2 TRðIÞ, then y 2 ðR : InyÞ for some ny � 0, thus
ðR :R yRÞ � Iny . From this fact we deduce that J 2 G0 implies that J contains
a power of the ideal I, hence G0 � N 0ðIÞ. Therefore, by transfinite induction
and by Proposition 2.1, it follows that �G � NðIÞ. We can conclude that �G ¼
NðIÞ by the minimality property of NðIÞ, thus TRðIÞ ¼ R �G ¼ RNðIÞ.

(ii) ) (iii) follows from Lemma 2.4, because T0 � T1 � RNðIÞ.
(iii) ) (i). For each ordinal number a, we denote simply by Ta the

ring Ta;RðIÞ.
In the present situation, for each ordinal number a � 0, obviously we have

Ta ¼ T0:

Furthermore, we claim that, for each ordinal number a � 0,

Ta ¼ RN aðIÞ ¼ [fðRN aðIÞ : JÞ : J 2 N aðIÞg: ð2:5:1Þ

For a ¼ 0 (or a ¼ 1) the first equality in Eq. (2.5.1) holds in general by
Lemma 2.4(a) (or (b)) (without the assumption T0 ¼ T1).

It is obvious, in general, that

RN aðIÞ � [fðRN aðIÞ : JÞ : J 2 N aðIÞg

because, by definition, x 2 RN aðIÞ is equivalent to the fact that J :¼ ðR :R
xRÞ 2 N aðIÞ and thus x 2 ðR : ðR :R xRÞÞ � ðRN aðIÞ : JÞ.

In order to show that the second equality in (2.5.1) holds when a ¼ 0,
we take x 2 K such that xJ � TRðIÞ, for some J 2 N 0ðIÞ, and we want to
prove that x 2 TRðIÞ. Without loss of generality we can assume that J ¼ In,
for some n � 1. For each y 2 In we have xy 2 TRðIÞ and, thus, xyImy � R for
some my � 0. Therefore ððR :R xRÞ :R yRÞ ¼ ðR :R xyRÞ � Imy , hence ðR :R
xRÞ 2 N 1ðIÞ and thus we conclude that x 2 T1;RðIÞ ¼ TRðIÞ.

Let a � 1. We can assume by transfinite induction that Eq. (2.5.1)
holds for each ordinal number b < a.
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If a is a limit ordinal then, by the definitions, it is obvious that
Eq. (2.5.1) holds also for a.

We assume that a ¼ bþ 1, for some ordinal number b � 0, and we
want to prove that the first equality in Eq. (2.5.1) holds.

Let x 2 RN aðIÞ, hence ðR :R xRÞ 2 N aðIÞ and, to avoid the trivial case,
we can assume that ðR :R xRÞ 62 N bðIÞ. This means that there exists an ideal
J 2 N bðIÞ such that, for each y 2 J, we have ðR :R xyRÞ ¼ ððR :R xRÞ :R
yRÞ 2 N bðIÞ. By the inductive hypothesis, xy 2 Tb ¼ RN bðIÞ for each y 2 J.
Therefore x 2 ðRN bðIÞ : JÞ with J 2 N bðIÞ and thus, also by the inductive
hypothesis, x 2 RN bðIÞ ¼ Tb � Ta. ByLemma 2.4 (c) we conclude that the first
equality in Eq. (2.5.1) holds, i.e., Ta ¼ RN aðIÞ. For the second equality in
Eq. (2.5.1), let x 2 K be such that xJa � RN aðIÞ for some Ja 2 N aðIÞ and, to
avoid the trivial case, we can assume that Ja 2 N bðIÞ. By definition ofN aðIÞ,
there exists an ideal Hb 2 N bðIÞ such that ðJa :R hRÞ 2 N bðIÞ, for each
h 2 Hb. Since ðxJa :R xhRÞ ¼ ðJa :R hRÞ, then xhðxJa :R xhRÞ � xJa � Ta ¼
Tb ¼ RN bðIÞ, thus by the inductive hypothesis xh 2 RN bðIÞ for each h 2 Hb.
Therefore x 2 ðRN bðIÞ : HbÞ and, again by the inductive hypothesis, ðRN bðIÞ :
HbÞ � RN bðIÞ ¼ Tb ¼ Ta ¼ RN aðIÞ, hence we deduce that x 2 RN aðIÞ.

By Lemma 2.4(d) and Eq. (2.5.1) we can conclude immediately that
T0 ¼ RNðIÞ. u

Example 2.6. Let k be a field and fXn : n � 1g a countable set of inde-
terminates over k . Let S be the additive monoid of all sequences of non
negative integers s ¼ ðsn : n � 1Þ. Set

Xs :¼
Y

n�1
Xsn

n :

In the set M :¼ fXs : s 2 Sg we can define in a natural way a multi-
plicative monoid structure. Consider R :¼ k½M� the monoid ring for M over
k, then R is an integral domain; let K be the quotient field of R. Consider the
following elements of S:

u :¼ ð1; 2; . . . ; n� 1; n; nþ 1; . . . . . .Þ

and for each m � 2,

uðmÞ :¼ ð1; 2; . . . ;m� 1; 1;mþ 1; . . . . . .Þ:

(For m ¼ 1; uð1Þ ¼ u.)
Let ym :¼ XuðmÞ and let I be the ideal of R generated by ym, for

m � 1.
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It is not difficult to see that the element 1=Xm, which belongs to K, is
inside T0 ¼ TRðIÞ, for all m � 1.

If z :¼ Xu, we claim that the element 1=z which is in K, does not belong
to T0. As a matter of fact if, for some h � 1, ð1=zÞIh � R then, in particular,
ð1=zÞyhhþ1 would belong to R. But

1

z
yhhþ1 ¼

1

Xhþ1

Y

n�1
n 6¼hþ1

Xhn�n
n

does not belong to R, hence we have a contradiction.
However, 1=z belongs to T1 ¼ TTRðIÞðITRðIÞÞ because, for each m � 1,

ð1=zÞym = 1=Xm�1
m belongs to T0, because, -as, noticed before- 1=Xm 2 T0

and T0 is a ring. We conclude that, in the present situation, T0 6¼ T1, hence,
by Theorem 2.5 we deduce that TRðIÞ is not a ring of fractions of R with
respect to some localizing system.
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