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Abstract

In this paper we study the star operations on a pullback of integral domains. In particular, we
characterize the star operations of a domain arising from a pullback of “a general type” by introducing
new techniques for “projecting” and “lifting” star operations under surjective homomorphisms of
integral domains. We study the transfer in a pullback (or with respect to a surjective homomorphism)
of some relevant classes or distinguished properties of star operations sueh as, w—, b—,

d—, finite type, e.a.b., stable, and spectral operations. We apply part of the theory developed here to
give a complete positive answer to a problem posed by D.F. Anderson in 1992 concerning the star
operations on theP + M" constructions.

0 2004 Published by Elsevier Inc.

1. Introduction and preliminary results

The theory of ideal systems and star operations was developed by W. Krull, H. Prifer,
and E. Noether around 1930, and is a powerful tool for characterizing several relevant
classes of integral domains, for studying their mutual relations and for introducing the
Kronecker function rings in a very generatgi-theoretical setting. A modern treatment of
various aspects of this theory can be found in the volumes by P. Jaffard [32], O. Zariski
and P. Samuel [47, Appendix 4], R. Gilmer [26], M.D. Larsen and P.J. McCarthy [34], and
F. Halter-Koch [28].
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Pullbacks were considered in [19] for providing an appropriate unified setting
for several important “composite-type” constructions introduced in various contexts
of commutative ring theory in order to construct examples and counter-examples
with different pathologies: for instance, Seidenberg’s constructions for (polynomial)
dimensional sequences [43], Nagata's composition of valuation domainskaad/(R)”
constructions [39, p. 35 and Appendix Al, Example 2], Akiba’s AV-domains or Dobbs’
divided domains [1,16], Gilmer'sD + M” constructions [26], Traverso’s glueings for
a constructive approach to the seminormalization [44], Vasconcelos’ umbrella rings
and Greenberg's F-domains [27,45], Boisen—Sheldon’s CPIl-extensions [13], Hedstrom—
Houston’s pseudo-valuation domains [29R %4 X Ds[X]” rings and more generally, the
“ A+ X B[X]"rings considered by many authorsédhe recent excellent survey papers by
T. Lucas [35] and M. Zafrullah [46], which contain ample and updated bibliographies on
this subject).

It was natural at this stage of knowledge to investigate the behaviour of the star
operations in a general pullback setting and with respect to surjective homomorphisms
of integral domains, after various different results concerning distinguished star operations
(like the v—, ther—, or thew— operation) and particular “composite-type” constructions
were obtained by different authors (cf., for instance, [3-5,7,11,12,15,17,20,24,33,38,42],
and the survey papers [10,25]).

The present work was stimulated by the papers by D.D. Anderson and D.F. Anderson
on star operations, and more precisely, by the study initiated by D.F. Anderson concerning
the star operations on thé‘+ M” constructions [9].

In Section 2, after introducing an operation of “glueing” of star operations in a
pullback of integral domains, we will characterize the star operations of a domain
arising from a pullback of “a general type.” For this purpose we will introduce new
techniques for “projecting” and “lifting” star operations under surjective homomorphisms
of integral domains. Section 3 is devoted to the study of the transfer in a pullback
(or with respect to a surjective homomorphism) of some relevant properties or classes
of star operations such as-, t—, w—, b—, d—, finite type, e.a.b., stable, and spectral
operations.

We will apply part of the theory developed here to give a complete positive answer
to a problem posed by D.F. Anderson in 1992 [9] concerning the star operations on the
“D + M” constructions.

Let D be an integral domain with quotient field. Let F(D) denote the set of all
nonzeroD-submodules ofL and let F(D) be the set of all nonzero fractional ideals
of D, i.e., all E € F(D) such that there exists a nonzefoc D with dE € D. Let
f (D) be the set of all nonzero finitely generat®dsubmodules of.. Then obviously,

f(D) S F(D) < F(D).

For each pair of nonzero fractional ide@sF of D, we denote as usual B¥ :; F) the
fractional ideal ofD given by{y € L | yF C E}; in particular, for each nonzero fractional
ideall of D, we setl "1:=(D:y ).

We recall that a mapping: F(D) — F(D), E — E*, is called asemistar operation
on D if the following properties hold for all & x € L andE, F € F(D) (cf. for instance
[21,22,36,37,40,41)):
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(x1) xE)*=xE*,
(x2) ECF = E*C F*;
(x3) E C E* andE* = (E*)* =: E*.

Example 1.1.

(a) If x is a semistar operation ab such thatD* = D, then the map (still denoted by)
= F(D) — F(D), E — E*, is called astar operation onD. Recall [26, (32.1)] that
a star operatiow satisfies the properti€sy), (x3) for all E, F € F(D); moreover, for
each 0% x € L andE € F(D), a star operatior satisfies the following:

(*xx1) (xD)*=xD; (xE)*=xE™*.

A semistar operation o® such thatD C D* is called aproper semistar operation
onD.

(b) The trivial semistar operatioap on D (simply denoted by) is the semistar operation
constant ontd., i.e., the semistar operation defined B := L for eachE € F (D).
Note thatx is the trivial semistar operation ab if and only if D* = L.

(c) Another trivial semistar (in fact, star) operation is ttientity star operationip on D
(simply denoted by/) defined byE4> := E for eachE € F(D).

(d) For eachE € F(D), setE* := |J{F*| F C E, F € f(D)}. Then x; is also
a semistar operation o, which is calledthe semistar operation of finite type
associated to.. Obviously, F* = F*/ for eachF € f(D); moreover, ifx is a star
operation, then ¢ is also a star operation. ¥= ¢, then the semistar (respectively
the star) operation is called asemistarrespectivelystar) operation of finite typ§22,
Example 2.5(4)].

Note that, in generak; < *, i.e., E*/ C E* for eachE € F(D). Thus, in particular,

if E=E*, thenE = E*/. Note also thak; = (x7) s.

There are several examples of nontrivial semistar operations of finite type; the best
known is probably the-operation. Indeed, we start from thg star operationon an
integral domainD (simply denoted by), which is defined by

E" :=(EY) " =(D: (D E))

forany E € F(D), and we setp := (vp) s (or simply,r =wvy).
Other relevant examples of semistar operations of finite type will be constructed later.

A semistar operationr on D is called ane.a.b.(endlich arithmetisch brauchbar
(respectivelya.b. (arithmetisch brauchbg)y semistar operatioif

(EF)*C(EG)* = F*CG*

for eachE € f(D) and allF, G € f(D) (respectivelyF, G € F(D)) [22, Definition 2.3,
Lemma 2.7].

If x is a star operation ob, then the definition of e.a.b. (respectively a.b.) operation is
analogous (for an a.b. star operatién G are taken inF (D)).
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Example 1.2. Let:: R < T be an embedding of integral domains with the same field of
guotientsk and letx be a semistar operation gh Definex,: F(T) — F(T) by setting

E*:=E* foreachE € F(T) (S F(R)).

Then we know [22, Proposition 2.8]:

(a) If ¢ is not the identity map, thes is a semistar, possibly non-star, operation @n
even ifx is a star operation orR.
Note that whenx is a star operation oR and(R :x T) = (0), a fractional ideaFE of
T is not necessarily a fractional ideal 8 hencex, is not defined as a star operation
onT.

(b) If % is of finite type omR, thenx, is also of finite type off.

(c) WhenT := R*, thenx, defines a star operation of.

(d) If xis e.a.b(respectively a.p.on R and if T := R*, thenx, is e.a.b(respectively a..
onT.

_ Conversely, le be a semistar operation on the overringf R. Definex': F(R) —
F (R) by setting

E* :=(ET)* foreachE € F(R).

Then we know [22, Proposition 2.9, Corollary 2.10]:

(e) «* is a semistar operation oR.

(f) If x:=dr, then(dr)' is a semistar operation of finite type dt, which is denoted
also byxr, (i.e., it is the semistar operation gt defined byE*(™) := ET for each
E € F(R)).
In particular, if T = R, thenxz) =dgr and, if T = K, thenxg, = eg. Note that if
R C T, thenxry is a proper semistar operation &n

(9) If xis e.a.b(respectively a.h.on T, thenx' is e.a.b(respectively a.h.on R.

(h) For each semistar operationon 7', we have(x'), = *.

() For each semistar operatior on R, we have(x,)' > x (since E®)' = (ET)* =
(ET)* 2 E* for eachE € F(R)).

Other relevant classes of examples are recalled next.

Example 1.3. Let A be a nonempty set of prime ideals of an integral donRiwith
quotient fieldK . Set

E* = ﬂ{ERp | Pe A} for each nonzer®-submoduleE of K.
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If A isthe empty set, then we st := eg. The mappingt — E*4, for eachE € F(R),
defines a semistar operation nMoreover [21, Lemma 4.1],

(a) For eachE € F(R) and for eachP € A, ERp = E*ARp.

(b) The semistar operatio®, is stable (with respect to the finite intersections,, for
all E, F € F(R) we have(E N F)*a = E*a N F*a,

(c) ForeachP e A, P*ANR=P.

(d) For each nonzero integral idedl of R such that/*4 N R # R, there exists a prime
ideal P € A such that/ C P.

A semistar operation: on R is calledspectralif there exists a subset of Spe¢R)
such thatk = x 4; in this case, we say thatis the spectral semistar operation associated
with A.

We say that is aquasi-spectral semistar operatigar thatx possesses enough primes
if, for each nonzero integral ideélof R such thatf* N R # R, there exists a prime ide&
of R suchthat’ € P andP* N R = P. For instance, it is easy to see tlifat is a semistar
operation of finite type, thenis quasi-spectral.

From (c) and (d), we deduce thedich spectral semistar operation is quasi-spectral.

Given a semistar operatianon R, assume that the set

IT*:={P € Spe¢R) | P #0andP* N R # R}
is nonempty. Then the spectral semistar operatioR afefined byxsp := x7+ is called
the spectral semistar operation associateditdNote that ifx is quasi-spectral such that
R* # K, thenIT* is nonempty aneksp < * [21, Proposition 4.8, Remark 4.9].

It is easy to see thatis spectral if and only if = xgp.
For each semistar operatieron R, we can consider

¥ = (*f)sp
Then we know [21, Propositions 3.6(b), 4.23(1)]:

(e) * is a spectral semistar operation of finite type Bpandif M (x ;) denotes the set of
all the maximal elements in the gdtnonzero integral ideal aR | 7*/ N R # R}, then

>T< :*M(*f)'
It is also known [21, p. 185] that for eadhhe F(R),
E*=| J{(E:x F)| Fe f(R). F*=R*}.

(f) If x is a star operation orR, thenx is a (spectra) star operation(of finite typg on R
andx < *.
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If x:= vg, using the notation introduced by Wang Fanggui and R.L. McCasland [18],
we will denote bywg (or simply byw) the star operatiobz = (z)sp (cf. also [6,30]).

The construction of a spectral semistar igti®n associated to a set of prime ideal can
be generalized as follows.

Example 1.4. Let R := {R, | » € A} be a nonempty family of overrings @t and define
*r . F(R) — F(R) by setting

E*R .= ﬂ{ER,\ |»e A} foreachE € F(D).
Then we know [22, Lemma 2.4(3), Example 2.5(6), Corollary 3.8]:

(a) The operationey, is a semistar operation oR. Moreover, ifR = {Rp | P € A}, then
*R = kAL

(b) E*RR) = ER) for eachE e F(R) and for eachi € A.

(c) If R =Wis afamily of valuation overrings at, thenxyy, is an a.b. semistar operation
onD.

We say thatwo semistar operations oP, x; andx,, areequivalentf (x1) r = (x2) r.
Then we know ([23, Proposition 3.4nd [26, Theorem 32.12]):

(d) Each e.a.b. semistarespectively stgroperation onR is equivalent to a semistar
(respectively stgroperation of the typeyy for some familyV of valuation overrings
of R (respectively for some familyy of valuation overrings oR such thatR = (|{W |
W e W}).

If W is the family ofall the valuation overrings aR, thenxy, is calledthe bg-semistar
operation(or simplythe b-semistar operation oR). Moreover, if R is integrally closed,
thenR’r = R [26, Theorem 19.8], and thus the operatiodefines a star operation at
which is calledthe b-star operation26, p. 398].

Example 1.5. If {x, | A € A} is a family of semistar (respectively star) operations”yn
then/\, {*, | A € A} (denoted simply by\ =,), defined by

EN% = ({E* |»e A} foreachE e F(R) (respectivelyE e F(R)),

is a semistar (respectively star) operationRarThis type of semistar operation generalizes
the semistar (respectively star) operation of type(whereR := {R, | » € A} is a non-
empty family of overrings oR; Example 1.4), since

== [\ *ro).

wherex(g,; is the semistar operation dhconsidered in Example 1.2(f).
Note the following observations:
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(a) If at least one of the semistar operations in the farhidy | » € A} is a star operation
on R, then x; is still a star operation orR.

(b) Let:: R — T be an embedding of integral domains with the same field of quotkents
and let{x, | » € A} be a family of semistar operations @ Then

(A=) = Acwo.

(c) Lett: R — T be an embedding of integral domains with the same field of quotients
and let{x, | A € A} be a family of semistar operations @h then

(A*) = Ao

2. Star operationsand pullbacks
For the duration of this paper we will mainly consider the following situations:

(b) T represents an integral domaiy an ideal of T', k the factor ring7/M, D an

integral domain subring ok and¢: T — T /M =: k the canonical projection. Set
R :=¢ YD) =: T x; D the pullback ofD inside T with respect tap, hencer is
an integral domair(subring of7). Let K denote the field of quotients &f

(p*) Let L be the field of quotients db. In the situation(p), we assume, moreover, that
L C k,and denote by := ¢~1(L) =: T x; L the pullback ofL insideT with respect
to¢. ThensS is an integral domain with field of quotients equalko In this situation,
M, which is a prime ideal iR, is a maximal ideal inS. Moreover, ifM # (0) and
D C k, thenM is a divisorial ideal ofR, actually,M = (R : T).

Letxp (respectivelyr) be a star operation on the integral domairfrespectivelyT’).
Our first goal is to define in a natural way a star operationrRenvhich we will denote
by ¢, associated to the given star operationdbandT. More precisely, if we denote by
Star(A) the set of all the star operations on an integral domgithen we want to define
amap

@ :StanD) x StarT) — StarR), (xp,*7) > ©.

For each nonzero fractional ideabf R, set

°:= ﬂ{x—l(p_]_((xI;;M)*D)

where if(xI + M)/M is the zero ideal oD (i.e., if xI + M C M), then we set

()

xel™ x+# o} NIT)*,
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Proposition 2.1. Keeping the notation and hypotheses introduce@in then< defines
a star operation on the integral domait (=T x; D).

Pr oof.

Claim 1. For each nonzero fractional idedlof R, I C I°.
We have

1°2 m{xlcpl<¥> ‘x el x 7&0} NIT
=(x @I+ M) |xel ™ x£0}NIT

=(Wi+x"'M|xer ™ x£0}nIT 21

Claim 2. For each nonzero elemenof K, (zR)® = zR (in particular, R® = R).
We have

v (5
(e {(5) )
:z<<pl<%>> NzT =zRNzT =zR.

Therefore, by Claim 1, we deduce thaR)® = zR.

xez IR, x# o} N (zT)*T

Claim 3. For each nonzero elementof K and for each nonzero fractional idedlof R,
(zD)® =zI°.

Note that given G« z € K, for each nonzera € I~ there exists a unique e (z/)~1
such thate = yz. Therefore, we have

()
=ﬂ (yZ)lwl(($> > ‘yz el y#O} nNarTy

=N z‘ly‘lso—l((#) ) ‘ yean™ vy 0} Nty

I+ M\
() e ]

— Z_l(ZI)<>~

xel™ x+# o} N(IT)*T

Thus, we immediately conclude th@tl)® = z1°.
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Claim 4. For each pair of nonzero fractional idealsC J of R, I® C J°.

SinceJ 1 c 171, we have
J+M\*P

Jo— -1 —1f (X

P << M

I+ M\™

S -1 -1 (*
N (5))
I+ M\

S -1 -1 (*
N (5))

Claim 5. For each nonzero fractional idedlof R, I C I° C I?, and henc&/®) 1 =71,

xeJ L x# 0} NJT)T

xeJ T x+£ 0} NUIT)*T

xel™ x+# 0} NUTT =1°.

Sincel' =(\{zR | I CzR, z € K}, by Claim 2, we deduce that
ICzR = I°C(zR)°=1zR;
hencer® C 1°.
Claim 6. For each nonzero fractional idedl of R, (I°)° =I°.

Since(1°)~1 = 11 for each nonzero idedl of R, we have
I°+ M\*P
=N (7))

Al (()7)

Note that for 0% x € I~ with x1 € M, we have

I° 4+ M\ I+ M\*P
e xI°cM (andso x71p~?t AL =x"tpt ki ,
M M

since
*D
1°c xlqol((ﬂ;[M) ) =x"IM.

Now for 0+ x € I~1 with xI ¢ M, we have

xI° 4+ M\™P xI + M\ xI° 4+ M\™P xI + M\
o | X — C andso [ ———— = ,
M M M M

xe(I9)h x# o} n(r°r)™

xel™t x# 0} neT)™.
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since
1o ety t( (RN
- M
xI + M\*P
= xI°Cg¢!
wree((57))
xI°+M xI +M\*P xI + M\*P
_— I<> C -1 — =
=)= ((F5) )= ()
xI°+ M *DC xI + M\*P
M - M '
Lastly,

o (I°T)"" cUT)™ (andso (I°T)" =UT)*"),
since
I°cAn = I°TCUT) = (I°T)" cUT)7.

Therefore, we can easily conclude
S -1 -1 xI®+ M\*P _1 *
(1°) =ﬂ{x ) <<T xel™, x#0n(1°T)"

Al ()

The previous argument shows thats a (well-defined) star operation on the integral
domainR. O

xel™ x ;éo} NUIT)T =1°.

Remark 2.2.

(a) Note that in the proof of Proposition 2.1 is possibly a nonmaximal ideal &f
(andR), even though we assume tht(= M N R) is a prime ideal ofR.
(b) Inthe pullback settin¢p), for each nonzeroidedlof R with I € M, I° C M, because

*D
Iz gx_lgo_l((“ +M> >
M

for eachx € 171\ (0) and 1e R € 71, thus

*D
o))

In particular, if M # (0), thenM = M*°.
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(c) If M is the ideal(0), thenT =k and R = D. In this extreme situation, we have
o =xp A (x7)', wheret: R = D < T =k is the canonical inclusion.
Note that it can happen that=xp A (x7)* < *p. For instance, lek be a Krull domain
of dimension> 2, P a prime ideal ofR with ht(P) > 2, T := Rp, and M := (0)
(henceR = D andT =k). Setxp :=vp andxy :=dy. ThenP*> = P¥D = PR = R,
but P® = P'> N (PT)*" = RN PRp = P.

(d) LetM # (0). If D =L =k (in particular,M must be a nonzero maximal ideal Bf
and necessarilyp is the (unique) star operatiafp of D = L = k), thenR =T.
In this extreme situation, we have thatandxy are two star operations ah (with
o < x7) that are possibly different. For instance,Tif is an integral domain with
a nonzero nondivisorial maximal ideM (e.g.,T :=k[X, Y], M := (X,Y)) and if
*7 :=v7, thenM® = M by (b), butM*" = M'T =T.
If D=k, butD C L, then it is not difficult to see that = 7 if and only if, for each
nonzero ideal of R =T with I £ M,

I*T+Mc I+ M\*
M —\ M '

Our next example will explicitly show the behaviour of the star operation some
special cases of the pullback constructiph

Example 2.3. With the notation and hypotheses introducedfijy assume, moreover, that
T is local with nonzero maximal ideal and D = L is a proper subfield ok. In this
special case of the situatigph™), xp = dp = ep is the unique star operation dn. Let /
be a nonzero fractional ideal at.

(@ If 1171 =R, thenI® =1 = Ik,

(b) If 1171 C R, thenI® = Ik N (IT)*". Moreover, if(IT)*" = x~1T for some nonzero
x eI, thenI® = [k (C (IT)*7). If IT)*T # x~1T forall x e I, thenI® =
(IT)*T.

(© If [k:L]>2andif T C M1 = (R :x M), thendgr # o # vg for all the star
operationssy onT.

(d) Let[k:L]=2.1If T is (local buj not a valuation domain, thesiz + < for all the star
operationsky onT. If T = (R :x M) and ifxy = vy, theno = vg.

(a) is obvious, becaudeis invertible, hencd is divisorial (in fact,! is principal, since
Risalsolocal) and sé = I° = IV’ (C (IT)*7).

(b) Note that for each nonzero ide&bf R with the property thai /~! C R, we have
necessarily that/ —1 € M. Moreover, for each nonzesoe -1, fromx/ € M, we deduce
that/ € x~1M and so we have thdt® = ({x "M | x € I™1, x # 0}. Therefore,

o))

xel ™ x+# 0} NUIT)*T
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Nl ()

=(Wx'M|xel™ x£0 nUT)" =1""NUT)™.

xel ™ x+# o} NUIT)*T

In order to prove the second part of (b), note that in this case, for egch©® 71, we
have

ICx R = IcxM = ITcxMT=x"M

= dATY7TC(x M) =x7IMT C 7T

Therefore, if(I1T)*" = x~1T for some nonzera € -1, thenl/’* C xR cx~ 1T =
(IT)*T. Thus, in this casel® = Ik, Assume that/7)*” C x~1T for all x e I-1. Then
(IT)*T € x~1M and thus

UT)™" < ﬂ{xilM |xel™ x#£0) =1,

hencel® = (IT)*T.

(c)LetO#£a e M,andletz € T\ R. Setl := (a,az)R. Thenobviously T =aT (since
zisinvertible inT), thus(IT)*T =aT =IT.

Note that, in this case/T)*" =aT C x 1T for all x € I~1. As a matter of fact, if
aT = x~1T for somex € 171, thenax = u is a unitin7 andax € R (because: € I and
x € I™1). Henceax is a unit in R. Now we reach a contradiction, since we deduce that
ICx*R=aRCl,ie.,l=aR.

By (b), we have thal® = (IT)*T =aT = IT 2 I, henceo # dg.

Assume also thaf € M~L. Sincel® = (IT)*" =aT,

1" = (I°)"* = @T)"* =a(R:x (R:x T))=a(R:x M) 2aT =TT =1°.

Thereforeo # vg.

(d) In the present situation, we can findb € M such thauT Z bT andbT Z aT. Set
I :=(a,b)R.

It is easy to see that is not a principal ideal ofR. (If I = (a,b)R = cR, then
a=cri1,b =cro,c =as1+ bsy and so 1= r1s1 + ro2s2 for somery, s1, 12, s2 € R; hence
eitherrisy or rpsp = 1 — r1s1 is @ unit in the local ringR. For instance, if1s1 is a unitin
R, thenry is also a unitink and socR =aR. ThusbR C aR, contradicting the choice of
a andb.)

Note that/ is not a divisorial ideal ofR. As a matter of fact, ifl = I'k, then I
should be also an ideal df (i.e., I = IT) by [24, Corollary 2.10]. On the other hand,
if ze T\ R,thenaz € IT =1 = (a,b)R and scaz = ar1 + brp, i.e.,a(z — r1) = brp for
somery, 2 € R. If z —r1 € M, thenz € r1 + M C R, which contradicts the choice af
If z—r1 €T \ M, thena = bro(z — r1)~1 € bT, which contradicts the choice afandb.
Hence,l # IT and sol # [k,
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If (IT)*" =x~1T for some nonzera: € 171, then (by (b))I° = IVF # I, and so
dg # o. Assume that/ T)*7 # x 1T forall x € I~1, then (by ()Y ° = (IT)** D IT DI,
and sadg # <.

Finally, suppose thal' = (R :x M) and thatxy = vy. Let J be a nonzero fractional
ideal of R. If J is divisorial, then obviously® = J = JY&, Assume that is not divisorial,
thenJJ~1 C R. If (JT)*" = x~1T for some nonzera € J~1, then (by (b))J® = J'%.

If (JT)'T #x~1T for all x € J~1, then (by (b))J° = (JT)'T. SinceT = (R :x M) =
(M :x M), every divisorial ideal off" is divisorial as an ideal oR by [24, Corollary 2.9].
Therefore,

JR=(I) " =(IDT)* =TT =J°,
hence we conclude that= vg.
The previous construction of the star operatioon the integral domair® arising from
a pullback diagram gives the idea for “lifting a star operation” with respect to a surjective
ring homomorphism between two integral domains.
Corollary 2.4. Let R be an integral domain with field of quotierks M a prime ideal ofR.

Let D be the factor ringR/M and letp : R — D be the canonical projection. Assume that
* IS a star operation orD. For each nonzero fractional idedl of R, set

()
o ((5))

where, as before, ifzI + M)/ M is the zero ideal oD, then we set

() -

Thenx? is a star operation orR.

xelfl, x;éO}

xeKk, ngR},

Proof. Mutatis mutandishe arguments used in the proof of Proposition 2.1 showsthat
is a star operation oR. O

Using the notation introduced in Section 1, in particular, in Example 1.2, we
immediately have the following corollary.

Corollary 2.5. With the notation and hypotheses introducediphand Propositior2.1, if
we use the definition given in Corollag4, we have

o= (xp)? A (x1)".
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We next examine the problem of “projecting a star operation” with respect to a surjective
homomorphism of integral domains.

Proposition 2.6. Let R, K, M, D, ¢ be as in Corollary2.4 and let L be the field of

quotients ofD. Letx be a given star operation on the integral dom&nFor each nonzero
fractional ideal F of D, set

Fr:={ye((¢ *(>7'F))") |yeL. F<yD}.
Thenx,, is a star operation orD.
Proof. The following claim is a straightforward consequence of the definition.
Claim 1. For each nonzero fractional ided of D, F C F*¢.
Claim 2. For each nonzera € L, (zD)* = zD (in particular, D*¢ = D).
Note that
@Dy =(Y{re((¢(v"2D))") |y € L. 2D S yD} S z((¢7H(D))")
= zp(R*) = z¢(R) = zD.
The conclusion follows from Claim 1.

Claim 3. For each nonzero fractional ideaF of D and for each nonzerq < L,
(ZF)*«’ :ZF*w_

Given 0+# z € L, for each nonzero € L, setw := yz € L. Then

F =(ve((e ' (v"F))") [y e L, FSyD}
() re
=z we((¢~(w™*zF))") |w e L, zF SwD)

=z ((Mwe((e *(w2F))") [we L, 2F cwD})

— Z_l(ZF)*(ﬂ-
Hence, we conclude thét F)*e = z F*o.

Claim 4. For each pair of nonzero fractional ideals C F> of D, (F1)*¢ C (F2)*¢.
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Note that ify € L and F> € y D, then obviouslyF; C y D, therefore
(F* =({ve((¢ (v *F2))") | ye L. F2SyD}
(el t(ytF))") | ye L. FACyD}=(Fy)*.
Claim 5. For each nonzero fractional idedl of D, (F*¢)*e = F*¢,
Note that from Claims 1, 2, and 4, ¥fis a nonzero element df, we have
FCyD <= FYC@yD)"=yD,
therefore
(F*)" =({re((e ™ (v"F*))") |y eL. F** SyD)
=Moo F*)") [yeL, FcyD).
On the other hand,
FeyD = Fvcye((e(v7F)) = y ' FYco((e™(07F)).
Therefore,
o) CoTHe((e T THR)) ) = (0T THR))
since
(¢ (v7iF) 297 (yIF) 2 M =Ker(p).
Now, we can conclude:
() =({ye(lp ™7 F*))") [y e L, FcyD)
<ol (671 F))) [ ye L. FcyD)

Niye((e (7 2F)") |y e L, FSyD}=F*,

and so, by Claim 1(F*)* = F*. 0O

In case of a pullback of typgp™) the definition of the star operatiey, given above is
simplified as follows.
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Proposition 2.7. LetT, K, M, k, D, ¢, L, S, andR be as in(p™). Letx be a given star
operation on the integral domaiR. For each nonzero fractional ided of D, we have

(go—l(F»*.

Fv=g((p7H(F)") = =

Proof. For the extreme caség = (0) or D =k, it trivially holds, so we may assume that
M # (0) and D C k. We start by proving the following claim.

Claim. Let/ be a fractional ideal of® suchthatM C I € S =¢ (L) and lets € S\ M.
Then(sI + M)*=sI*+ M.

Choose € S suchthattt — 1€ M. Thent(sI + M)* = (¢sI +tM)* C (ts] + M)* =
(I + M)* = I'*. Thereforest(sI + M)* C sI*, sost(s] + M)* + M C sI*+ M C
(sI + M)*. Putm := st — 1. Sincem(sl + M)* = (msl + mM)* C M* = M (where
the last equality follows from the fact tha/ is a divisorial ideal ofR), we have
st(sI +M)Y*+M=A+m)(sI + M)*+ M = (sI + M)*. Thus we can conclude that
(sI +M)*=sI*+ M.

Now, let F be a nonzero fractional ideal @ and let/ := ¢~1(F). For each element
y € L such thatF C yD, we can findsy, 7, € S\ M such thatp(sy) = y ande(ty) = y L.
Using the above claim, we have:

F*w=ﬂ vo((¢ ™ (v"*F))") |yeL, FcyD)
yo((tyI + M)*) | ye L, F CyD}

yo(tyI*+M)|yeL, F<yD}

o(sy(yI*+M))|yeL, F<SyD}

@(syty I* + sy )|yeL, ngD}

o(sytyI*+ M) |ye L, F S yD}

{
{
{
{o
fo
{o(sytyI* +syM + M) |yeL, F<yD}
{o
fo

(Me(GytyI +M)*) |y e L, F CyD)
I* (¢ ')
elL, FCyD )= —=——""
=elr) |y yDY=o(I) = =——
Remark 2.8. As a consequence of Proposition 2.7 (amdhe situation dscribed in that
statement) we have the following:
If I is a nonzero fractional ideal aR such that/ € S ands/ C R for somes € S\ M,
thenl* C § for any star operatiorx on R. As a matter of fact,

IFCI*S=TI*(M+5S)=I*M +sI*S C(IM)* + (sI)*SCM*+S=M+S=S.
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Proposition 2.9. LetT, K, M, k, D, ¢, L, S, andR be as in(p™). Let« be a given star
operation on the integral domaip, let x := x¥ be the star operation oR associated
to » (which is defined in Corollarg.4) and letx, (= (x*),) be the star operation ol
associated ta (which is defined in PropositioR.6). Thenx = x, (= (x?),).

Proof. For each nonzero fractional ide&l of D and for eachy € L such thatF C yD,
J :=y~1F is a nonzero integral ideal db. Setl, := ¢~ 1(J) = ¢~1(y~1F) (C R). Note
that 7, is a nonzero ideal oR such thatM C I, € R, and sop(Iy) = I,/M = J (S D).
Moreover, we have

(I,)* = ﬂ{x_l(p_l((w>*> xelt x# 0}
-1 *
(522 ) ones]

I, CxM, x eK})

-1 *
_ _af(x L +M
-(Of (3
x 7, + M\*
N -1 Y
(Nf (=)
— (ﬂ{xM |1, CxM, x € K})
x7H, + M\*
N -1 Y
(Nf (=)
e For the first component of the previous intersection, note that sihége maximal in

SandM C I, C R, I,S = S. On the other hand, € xM, thusp~}(D) =R C S =
1,S CxMS =xM. Therefore, we have

I, CxRCK, butl, ¢ xM})

I, CxRCK, butl, gxM}).

(M I, SxM S K} 297 (D) 297 ((y1F)").
o For the second component of the previous intersection, note that

xYyCcR and Mcl,CcR = x'I,SCS and ,S=S

= xles.

On the other hand, ify,  xM (I, C xR) andx1e S, thenx~1 e §\ M, and so
o(x1) e p(S\ M) =L\ {0}. Note also thatx 11, + M)/M = ¢(x 1) (I,/ M).

Set
Li=¢ N (7)) ey ) =1y),

hencel) /M = (y~*F)* = (I,/M)*.
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Then we have

ﬂ{x¢1<< L +M)> I, CxRCK, butlygxM}

(%))
)
\

I, CxRCK, butl, gxM}

§IvN ElvN

)
o)
=(){xe~ ( —y> I,CxRCK, butlygxM}

=(Wx(x"t1, + M) | I, S xRS K, butl, & xM}

I,CxRCK, butl, ¢ xM}

=&, +xM| I, SxRCK, butly ¢ xM} =1, =¢ Y ((y"'F)"),

since forx =1 we havel, CxR C K butl, Z xM.

Note that the first component of the intersection represergiing might not appear,
but the second component necessarily appears, since at leastfot we have that
Iy, € xR C K butl, ¢ xM. Putting together the premiis information about the two
components of the intersection, we have

(PO = U =9 H(yF)).
Therefore we conclude that
Fo =(yelle™ O F))) [yeL, FcyD)
yo(Uy)*)|yeL, F<yD}

{
{
{ye(e™((>7F)")) |y €L, F<yD)
{
{yy

y(yilF |yeL FCyD}

N
M
M
(Myy'F*|yeL, FSyD}=F". O

Remark 2.10. With the notation and hypotheses of Proposition 2.9, for each nonzero
fractional idealF’ of D, we have

F*=g(p71()™).

As a matter of fact, by the previous proof and Proposition 2.7, we haverthat F*» =
-1 "
o) /M.

Corollary2.11. LetT, K, M, k, D, ¢, L, S, andR be as in(p™).
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(a) The map(—),, : StaR) — Star D), * — x*,, is order-preserving and surjective.
(b) The map(—)?: StaD) — StaR), » — ¥, is order-preserving and injective.
(c) Let be a star operation o®. Then for each nonzero idealof R with M c I C R,

1" =47 Y((e(D)").
Proof. (a) and (b) are straightforward consegoes of the definitions and Proposition 2.9,
since(—)? is arightinverse of—), (i.e., (—)y o ()¢ = 1starp))-

(c) Let x := ¥, Then by Proposition 2.9, we know tha}, = . Therefore, using
Proposition 2.7, we have

(D))" = (o))" = w#)” = IM = Iﬁ
and hence (o)) =1*". O
The next result shows how the composition map
(—)? o (), : StarR) — StarR)

compares with the identity map.

Theorem 2.12.LetT, K, M,k, D, ¢, L, S, andR be as in(p™). Assume thab C k. Then
for each star operatior on R,

* < ((*)w)w-

Proof. Let I be a nonzero integral ideal &. For each nonzero e I, if xI ¢ M, then
by Proposition 2.7,

xI+M *“’_(x]—i—M)*D(xI)*—i—M
M o M = M

Now using the facM* = M for M # (0), we have

oo o (2)7)
- <ﬂ{x—l(p_1((xl;/_[M)*¢>

NN M| xer™ x#0 x1 < M})

> <ﬂ{x_l(p_1(WT+M) ‘x el x#0, xI ZM})

n(Ntm [xer™ x 20, 17 M)

xelfl, x;éO}

xel ™t x+#0, xlgM})
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> (M @n + M) [xer™ x#0, xi g M})n 1"
o (N H(@n?) [xer™ x#0 xigMl)nr* =1 o

In Section 3, we will show that in generakl ((x),)¢. However, in some relevant cases,
the inequality is, in fact, an equality:

Corollary 2.13. LetT, K, M, k, D, ¢, L, S,andR be as in Theorer?.12 Then

vR:((UR)w)(p; (vp)? = vg; (VR)y =D.

Proof. Use Proposition 2.9, Corollary 2.11(b}h@orem 2.12, and [26, Theorem 34.1(4)].
More precisely, note thag), < vp, and sovg < ((vR)y)? < (vp)? < vr. On the other
hand, if(vg)y < vp, thenvg = ((vr)y)? < (vp)?, which is a contradiction. O

Our next goal is to apply the previous results for giving a componentwise description of
the “pullback” star operation considered in Proposition 2.1.

Proposition 2.14. LetT, K, M, k, D, ¢, L, S, andR be as in(p™). Assume thad # (0)
andD C k. Let

@ :StanD) x StaT) — Sta(R), (xp,*7)— ¢ := (*p)? A (x7)",
be the map considered in Propositidriand Corollary2.5. The following properties hold
(@ Cp = *p;
(b) o/ = (vr). Ax7 (€ StarT));
(€) o= (0p)? A ()"
Proof. (a) Without loss of generality, we only cadsr the case of integral ideals bf. Let

J be anonzerointegral ideal &f and let/ := ¢~1(J). SinceM C I C R, we havel S = S,
whereS :=¢~1(L), and sol T = T. Therefore, by Proposition 2.7 and Corollary 2.11(c),

T =(I°) = (1P N IOT) = (1% N U T)* ") = (I*P" N T) = p(1*0)
=g (™)) =T
(b) Without loss of generality, we only cader the case of integral ideals @f. Let

I be a nonzero ideal of' (in particular, ! is a fractional ideal ofR). Then for each
xel 1=(R:xI),we havexIT =xI C R, soxI C (R :x T)= M. Therefore,

160 = ﬂ{x‘lw_l(((p(xl))m) | xel ™t x# O}
=({x M |xel™ x£0} =1,
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and so

[0 =1° =0 A *T — VR O *T = [WR)e ( [*T — JWRIA*T

Note that/® (C I'®) is an ideal ofR. Moreover,/* is an ideal ofT’, because for each
nonzerax € T,

I =x(I""NI'T) =D N )T S I NPT =],

Finally, sincexy is a star operation offf, it is easy to check that, (restricted toF (7))
belongs to Stafr).
(c) Sinceo < vg < ((vR),)Y, (using also Example 1.5) we have that

o= (xp)? A (k1) = (xp)* A ((WR))' A (1) = (0)? A ((WR) Ax7)’

= (Ow)(p A (o). d

Example 2.15. With the same notation and hypotheses of Proposidd, we show that,
in general,o, # x7.

(1) Let T := k[X,Y]x,y) and letM := (X, Y)T. ThenT is a 2-dimensional local
UFD. Choose a subfield) := L of k such thatlk : L] = 2. In this situation we have that
TC(R:x M) C(T:x M), and(T :x M) =T becausd is 2-dimensional local UFD
(hence, Krull) with maximal ideaM. Therefore,l = (R :x M). By Example 2.3(d), if
*x7 :=vr,theno =vg andM'T =T.ButM® = M° =M"R =M 4T = M'T = M*T.

(2) Note thato, £ 7, even if L = k. It is sufficient to consider a slight modification of
the previous example. Lé? be any integral domain (not a field) with quotient fidldLet
T:=L[X, Y]y andletM := (X,Y)T. Seté := (vp)? A (vr)*. Then

M = M® = M@ A MO = pvr A 0 =
becausé't = M andM 1) = (MT)'T = M'T =T.
Remark 2.16.
(a) Note that, with the same notation and hypotheses of PropositiontBelthapd is
not one-to-one in general.

This fact follows immediately from Exanhg 2.15 and Proposition 2.14(b) and (c),
since

(*p)? A (x7)" =0 = (04)? A ()"
(b) Inthe same setting as abotee map® is not onto in general.

For instance, in the situation described in Example 2.3(d), we have thaim(®).
Another example, even in cage= k, is given next.
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Example2.17. Let D be al-dimensional discrete valuation domain with quotient field
SetT := L[X?, X3], M := X°L[X]=XL[X]NT,andK := L(X). Letp and R be as in
(p™). Thenuvg ¢ Im(®).

Note that, for eack € Im(®), ¢ < (vp)? A (vr)* < vg. In order to show thaty ¢
Im(@®), it suffices to prove thatwp)? A (vr)' # vg. The fractional overring” of R is not
a divisorial ideal ofR, since

T"* =(R:x (R:x T))=(R:x M)2L[X]DT.
Therefore,
T(UD)(p/\(UT)l — TUR/\(UT)l — TUR N T(UT)[ — TUR N TUT — TUR NT=TC TUR_
Theorem 2.18. With the notation and hypotheses of Proposit2oi4, set
StanT'; vg) := {*r € StanT) | xr < (vr).}.
Then

(a) StaT; vg) = {*r € StarT) | (vg A (x7)"), =#7} = {* | € Sta(R)} N StanT)
= {* | x e StarR) andT* = T}.

(b) The restriction®’ := @ |starp)xStaxT:v) IS ONE-t0-0ONE

(©) Im(@') = StaR; (pT)) := {* € Sta(R) | T* = T andx = (x,)? A (+,)'}.

Proof. (a) We start by proving the following claim.

Claim. Let x7 € StaKT; vg) and letxp € StaKD) be any star operation o. Set, as
usual,o := (*p)? A (x7)'. Theno, = xr.

Note that, by Corollary 2.13,
o=@ ((*p.*1)) <3 :=P((p,*7)) = (Wp)? A (37)" =g A (x7)" € StalR).
Hence, by using Theorem 2.14(b), Examples 1.2(h) and 1.5(b), we have
(R A1 =0, <8 = (vr A (x1)"), = WR) A ((37)"), = (WR) A *T,

thuso, = ¢, = x7, becauser € StarT’; vg).
From the previous argument we also deduce that

*r <(WR) = (VR AG1)'), =T

Now, letx € StaR) be a star operation oR such that«, € Sta7T). Then obviously
*, < (vR),, whencex, € StarT'; vg), andT*=T* =T.
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If + € Stan(R) is such tha"™* = T , then clearly we have, € StarT).

If x7 € StanT'; vg), then by the claimyr = o, with & € Stal(R), hencexy € {x, | x €
StarR)} N StanT).

(b) is a straightforward consequenddlee claim and of Proposition 2.14(a).

(c) follows from the claim and from Proposition 2.14(a) and (ci

We next apply some of the theory developed above for answering a problem posed by
D.F. Anderson in 1992.

Example 2.19 (* D + M"-constructiong. Let T be an integral domain of the typget+ M,
whereM is a maximal ideal off andk is a subring off" canonically isomorphic to the
field T/M, and letD be a subring ok with field of quotientsL (C k). SetR:=D + M.
Note thatR is a faithfully flat D-module.

Given a star operationon R, D.F. Anderson [8, p. 835] defined a star operation’bn
in the following way: for each nonzero fractional idgalof D, set

F*? .= (FR)*NL.

Note thatFR = F + M. From [8, Proposition 5.4(b)] its known that for each nonzero
fractional idealF of D,

(1) F*'° + M = (F + M)*;
(2) F*> =(F+M)*NL = (F + M)*Nk.

Claim. If ¢ : R — D is the canonical projection and i, is the star operation defined in
Proposition2.6, thenxp = *,,.
In particular, by[9, Proposition 2(a), (c)lwe deduce that

(@) (dr)y =dp, (tr)y =1tp, (VR)y =vp, and
(B) Grplp = (kp) -

Note that ify is a nonzero element of the quotient fidldf D, theny belongs tck, and
thus,y is a unitinT and soy~1M = M. Therefore, for each € L such thatF C yD, we
have

yo((e * (7)) = ye((vHF + M)*) = yo((y ' F +y~M)")
yo(yHEF + M)*) = yo(y H(F*? + M))
= yo(y L 4 yTIM) = yo(y L + M)

=y(y T F*P) = FP,

hence (Proposition 2.8*¢ = F*P.
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By applying Proposition 2.9 and Corollary 2.11(a) to the particular cage-efD + M
(special case db)), we know that the map

(=)g:StaD + M) — StaD), *+> %4, =x*p,
is surjective and order-preserving antias the injective order-preserving map
(=) :Sta(D) — Sta D + M), x> ¥,

as a right inverse. This fact gives a complete positive answer to a problem posed by
D.F. Anderson (cf. [9, p. 226]).

3. Transfer of star properties

In this section we want to investigate the general problem of the transfer—in the
pullback setting—of some relevant properties concerning the star operations involved.
In particular, we pursue the work initiated by D.F. Anderson in [9] for the case of the
“D + M"-constructions. We start by studying which of the properties (a) and (b) of
Example 2.19 hold in a more general setting.

Proposition 3.1. LetT, K, M, k, D, L, ¢, andR be as in(p™).
(@) Let R :={R,. | » € A} be a family of overrings ofR contained inT such that

{R,. | A € A} =R, and letD := {D, := ¢(R,) | » € A} be the corresponding family
of subrings ok (with ({D,. | A € A} = D), then

(*R)gp = *D.
(b) If D:={D, | » € A} is a family of overrings oD such thai \{D; | » € A} = D and

if R:={Ry :=¢ 1(D;)|xe A} is the corresponding family of subrings Bf(with
N{R,. | » € A} = R), then in general

*R < (xp)¥.
Proof. (a) Note that in the present situatigrm(D,) = R;, for eachi € A , D =

N{D;. | » € A}, and for each nonzero fractional idealof D, J*R = ¢((¢~1(J))*R)
(Proposition 2.7). Moreover,

o((e X)) = ¢(ﬂ{¢_1(J)RA e A}) - (p(ﬂ{(p_l(f)(p_l(DA) |2 e A})
=o(e (U Dr 13 e A))) =0(p72(s*)) = 1.

(b) Note thatp(R;) = ¢(¢~X(D;)) = D, for each » € A. Therefore, by (a),
(*R)e = *p, thus((xR),)¥ = (xp)¥. If D =k, thenD = L is a field, thusD = {D} and
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= {R}. So, obviouslyxr =dr < (*p)?. If D C k, then the conclusion follows from
Theorem 2.12. O

Proposition 3.1(a) can be generalized to a st&tet concerning a surjective homomor-
phism between two integral domains:

Proposition 3.2. LetR, K, M, D, ¢ be as in Corollary2.4. Let{x, | » € A} be a family of
star operations oR. Then

(A=), = A\ee.

Proof. Let J be a nonzero fractional ideal &f and lety be in the quotient field. of D.
Then

JNDe = (Y709 | o e A)
=N{(Nbel@ 2™ |7 c3D}) | e a
=N (el 0727 [2e al) [ s <)
=fre (NI
=@ (™

Proposition 3.3. LetR, K, M, D, ¢ be asin Corollary2.4. Then

07 (M) e a}) |1 cyD)

DY) 1€yp)=a0e o

(dR)w =dp.

Proof. For each nonzero fractional idealof D, we have

70 =y Ye((e720)™) [y e 72 y#0)
= e(let o)) |ye ™ y#0}
=\ ten|yes ™t y#0j=s=s%. @

The next couple of examples explicitly shakat the inequalities in Theorem 2.12 and
Proposition 3.1(b) can be strict inequalities (izeg ((x)y)? andxr < (xp)¥).

Example 34. Let T, K, M, k, D, ¢, L, S, and R be as in(b™). Assume, moreover,
that T is local with nonzero maximal idealf, D = L is a proper subfield ok, and that
T C M~ = (R: M). In this situation,

dr < (dp)? = ((dr)y)”.
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With the notation of Proposition 3.1(b), take := {D}, henceR = {R}, thusxp =
dp = vp andxr = dg. In this situation, by Corollary 2.13xp)¥ = vg. Therefore, by
Proposition 3.3 and Example 2.3(c) and (d),

*p)? = (dp)? = ((dr)y)” = vk > dg = *R.

Note that it is possible to give an example in whiekt ((x),)¢ anddg < (dp)?, even
in the case thab C L =k:

Example 3.5. Let D be al-dimensional discrete valuation domain with quotient figld
SetT := L[X?, X3], M := (X2, X3)L[X]=XL[X]NT,andK := L(X). Letp andR be
asin(p™) with L =k. Thendg < vg = ((dr)y)?.

Since (dr)y = dp = vp and (vp)? = vg (Corollary 2.13), we havé(dr)y)? = vg.
Now consider, for instance, the fractional id&abf R. We know, from Example 2.17, that
T is not a divisorial ideal oR, i.e., 7% = T < T'k. Thus we havelg < vg = ((dr)p)?.

The next goal is to show thdtr), = tp (but, in generalir < (1p)? = ((tr)y)?). We
start with a more general result concerning the preservation of the “finite type” property.

Proposition 3.6. LetT, K, M, k, D, ¢, L, S, andR be as in(pb™). Letx be a given star
operation on the integral domaiR.

(a) If = is a star operation of finite type oR, thenx, is a star operation of finite type
onD.

(b) If x is any star operation o, then(x ), = (%) 7.

Proof. (a) To prove the statement we will use the following facts:

(1) For each integral idedl of R such thatM c I,

*

I\* P y
(ﬁ) = (D)™ =p(I )_M (Proposition 2.7).

(2) For each nonzeroidealof R, (I + M)* D> I*+ M.

(3) For each nonzero idedl of D and for eachy € L with J C yD, if F, is a finitely
generated ideal oR such thatF, C I, := ¢~ 1(y~1J), then yp(F,) is a finitely
generated ideal ab with yp(F)) € J.

For each nonzero idedl of D, we have
7 =(ve((e t(y~1))") | yeL. J S yD}
=) [yeL. JcyD}

=Ne(UlFs 1 B et Fesw))|ver, 1cyp)
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{Ule(F) [ B ety Fref®)}|velL, Jcyp)

Fy+M
Up—

Ul LM)

U y(F’;M)*w

‘Fygly, Fyef(mHyeL, ngD}

FyCly, Fye f(R)} ‘y €L, Jc yD}

Fy C 1, F, ef(R)} ‘ yeL, ngD}

(V(@F))™ | Fy 1y Fye (R} | veL, J S yD)

{G*|GcJ. Gef)|yeL, J<yp)

U

[U{(y(P(Fy))*w |FyCly, Fye f(R))|yeL. J gyD}
(U

{

G*|GcJ, Ge f(D)} CJ*,

where we may assume eagh ¢ M so that we can use Fact (1).

Thus,J* = | J{G* | G C J,G € f(D)}.

(b) Since both(x ), and(x,) s are star operations of finite type @nby (a), it suffices
to show that for each nonzero finitely generated ideaf D, J*/)¢ = J*)7 Recall that
if J is a nonzero finitely generated ideal bf thengp~1(J) is a finitely generated ideal
of R [20, Corollary 1.7]. Therefore,

JEf = J*o = {y(p(((pil(yil.]))*) | yelL, JC yD}

={ye(le* (")) |yeL, JSyD)
= J(*f)(ﬂ O

Proposition 3.7. LetT, K, M, k, D, ¢, L, S, andR be as in(p*). Then
(tR)go =1p.
Proof. Easy consequence of Corollary 2.13 and Proposition 3.6(0).

Remark 3.8. In the same situation of Exampe5, choosingD to be a Dedekind domain
with infinitely many prime ideals, we have

tr < (tp)? = ((tr)y)? .

Using Proposition 3.7, we havep)? = ((tr),)?. We claim that, in the present situation,
the set of the maximak-ideals ofR coincides with MaxR).

Note first that since diifT’) = 1, the contraction taR of each nonzero prime ideal
of T has height 1 [19, Theorem 1.4], so it ig@prime of R [32, Corollaire 3, p. 31].
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Let Q0 € Max(R). If Q 2 M, then Q is the contraction of a prime ideal @f, so Q is
atg-prime. If Q > M, thenQ/M = (Q/M)"> = Q'R /M by Proposition 2.7, and hence
we haveQ'® = Q. Therefore, in this case alsg, is arg-prime.

Note thatM is a divisorial prime ideal irR, hence in particulaM is a primerg-ideal
and it is contained in infinitely many maximak¢)ideals, therefor® is not a TV-domain,
i.e., tr # vg [31, Theorem 1.3, Remark 2.5]. Sin¢&lr),)¥ = (dp)¥ = (vp)¥ = vg,
automatically we havé(tg),)? = (tp)? = vg. Thus, in this example, we havg < (tp)?.

Note also that this example shows thati§ a star operation of finite type ab, thenx?
is a star operation orR, which is not necessarily of finite tyge.g., takex :==tp = (tg)y).

In the pullback setting that we are considerinds also natural to ask about the transfer
of the property of being a “stable” star operation.

Proposition 3.9. Let T, K, M, k, D, ¢, L, S, and R be as in(p*) and letx be a star
operation onR. Then

Fp = ().

Proof. If D =k, then sinceD = L is a field, obviously we havé, = (:k:;). Assume that
D Ck.

Let J be a nonzero integral ideal ab and let/ := ¢~ 1(J). We first show that
J* C J&) By Proposition 2.7/* = I*/M. Moreover, recall that

700 = |y € D|yJiC J for some finitely generated ided] of D such that/;” = D}

(respectively,/* = {x € R| xI1 € I for some finitely generated ide& of R such that
If = R}). Lety € J*. Theny = ¢(x) for somex € I*. SoxI; C I for some finitely
generated ideal; of R such that/f = R. SetJ; := ¢(I1) = (I1 + M)/M. ThenJy is
nonzero finitely generated, and by Proposition 27;_7" =1+ M)*/M =R/M = D.
Sincex1 C I, yJ1=¢(xI1) € ¢(I) = J, and hence € J ). L

Conversely, let be a nonzero integral ideal @. If y € J*¢) = J&)r = 7&e (Pro-
position 3.6(b)), theryJ; C J for some finitely generated ided] such thatll(*f)“’ =D.
Set Iy := ¢~ 1(J). SinceJl(*f)“’ = I:f /M = D (Proposition 2.7)1," = R. Therefore,
there exists a finitely generated subidéabf 71 such that/; = R. Write y := ¢(x) for
somex € R. Sincexlo C xI1 C I := ¢~ 1(J), x € I*, and hence (using Proposition 2.7
again)y e I*/M =J®¢. o

Corollary 3.10. LetT, K, M, k, D, ¢, L, S, andR be as in(p™). Then
(wR)w =wp.

Proof. Recall thatwg = vg and wp = vp. The conclusion follows from Proposi-
tion3.9. O
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Remark 3.11. The example considered in Rem&l8 shows that we can havep <
((wr)p)? = (wp)®.

Since MaxR) = M(tg) (= the set of the maximak-ideals, according to the notation
in Example 1.3(e))wgr = *a(p) = dr. In particular,7"% = T. On the other hand, we
know that ((dgr),)¢ = (dp)? = (vp)? = vg. Thus we have((wg),)? = (wp)? = vr.
As we have already noticed (Example 3.5)js not a divisorial ideal ofR, i.e., T'* D
T =T™r. Thus, in this case, we hawer < (wp)?.

Since the stable star operatiéns a particular type of spectral star operation, the next
goal is a possible extension of Proposition 3.9he case of spectral star operations. We
start with the following lemma.

Lemma3.12.LetT, K, M, k, D, ¢, L, S, andR be asin(p™). Assume thab C k.

(a) Let P be a prime ideal ofR containingM. SetQ := ¢(P) andR(p ) := (p_l(DQ).
ThenR(p,(p) =RpNT.

(b) Let A(#£ @) C Spe¢R) and assume that := x4 € Star(R). SetA; :={P € A |
P D M}. For each nonzero integral idedl of R containingM, we have

I* = ﬂ{IR(P,w) | P e A1)

(Note thatA1 # @.)

Proof. (a) is straightforward.

(b) If M = (0), thenA = Ay and Rp ) = Rp, so it trivially holds. Assume that
M # (0). Let I be an integral ideal oR containingM. Recall that for eacl? € A \ Aq,
there exists a uniquB’ € SpecT) suchthatt’ "R = P andRp = Tp/ [19, Theorem 1.4],
hence in particular\; # @ (otherwisex, would not be a star operation d@t). We have

1*=(URp|PeA)= (ﬂ{IRP | P eA1}> n (ﬂ{IRP |Pe A\Al})

= (ﬂ{IRP | P eA1}> m(ﬂ{RP | PeA\Al})

> (ﬂ{IRP |Pe A1}> NT 2(URp.y) | P € A1),

Conversely, lek € I* and letP € A1 (which is nonempty). Then there existg R \ P
such thatx € 1. Sinceg(s) € D \ ¢(P), ¢(s) is a unit element oD, (p), and hence there
existst € R(p ) suchthaip(r)p(s) =1, orequivalentlyss —1e M. Putts —1=:m e M,
thentsx = (14 m)x = x + mx. Sincetsx € IRp,y) andmx e MI* CTMR=M C I C
IRp, 4, WE havex =tsx —mx € IR(p,p. O
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Proposition 3.13. LetT, K, M, k, D, ¢, L, S, andR be as in(p™). Let A be a nonempty
set of prime ideals oR and assume that := x5 € StarR). SetA, := {p(P) | P €
A, P 2> M} (C SpecD)). Then

(*A)(p =*A,-

Proof. If D =k, then sinceD = L is a field, we obviously havex,), = xa,. Assume
that D C k, thenA, # @. Let J be a nonzero integral ideal d? and let] := o 1().
Set Ay ={P e A| P> M}, henced, = {p(P) | P € A1}. Since! is an integral
ideal of R containing M, I* = (\{IRpp,y | P € A1} by Lemma 3.12(b), and so,
using Proposition 2.7, we hawg*s = ¢(I*) = ({¢(I)Dyp) | P € A1} = ({J Dyp) |
PeA}={JDg|QeA,}=J". O

Remark 3.14.

(1) Note that from Proposition 3.13 we can deduce another proof of Proposition 3.9.
As a matter of fact, for each star operati®ron R, % = x4, where A := M(xy)
(Example 1.3(e)). In the present situatiofy, := {P € M(x¢) | P 2 M}. By using
Propositions 2.7 and 3.6(b), it is easy to see that

PeAr < Q:=¢(P)eM((x)y).

(2) Note that ifx := x4 is a spectral star operation o, thenx? is not necessarily
a spectral star operation orR (in particular, (x)? # xa¢, Where A? := {P ¢
SpecR) | ¢(P) € A}).
To show this fact, letD be a 1-dimensional discrete valuation domain with quotient
field L and maximal idealN. Let T := L[X?, X3] and let M := X2L[X] =
XL[X] N T. Under these hypotheses, IRt be the integral domain defined (as a
pullback of type(p™*)) from D, T and the canonical projectian: T — L. Then,R is
a 2-dimensional non-Noetherian local domain. Ket= Max(D) = {N}. Thenx :=
*A =dp =vp and«? = (vp)¥ = vg (Corollary 2.13). SinceA? = Max(R), xa» =
dg. Suppose that” is spectral, then by Propositions 3.13 and 2.9, we have necessarily
that«¥ coincides withx ¢, i.€.,vg = *? = x¢ = dp. This is a contradiction, since

TV =(R:x (R:x T)) = (R:x M) 2 L[X] 2T =T*.

Proposition 3.15. Let T, K, M, k, D, ¢, L, S, and R be as in(p™). If x is an a.b.
(respectively e.a.p.star operation onR, thensx, is an a.b.(respectively e.a.p.star
operation onD.

Proof. Let J be a nonzero finitely generated ideal Bfand letJ;, J> be two arbitrary
nonzero ideals o> such that(J J1)* C (JJo)*e. Setl := ¢~ 1(J), I; := ¢~ 1(J;) for
i =1,2. SinceJ is finitely generated andS = S (becausd > M and M is a maximal
ideal of S), there exists a finitely generated subidéglof I such thaty(lp) = J and
IpS = S. Then, by Proposition 2.7, we hawdol1 + M)* C (lol2 + M)*. Note that
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Iol; D IoM = IgM S = IoSM = SM = M for i = 1, 2, thus we havélgl1)* C (Iol2)*.
Sincely is finitely generated and is an a.b. star operatiof,* C I>* and soJ1*¢ C Jo*v.
The statement for the e.a.b. case folldwsn Proposition 3.6(b) and from the fact that
ise.a.b.ifand only ifkr isa.b.. O

Remark 3.16.

(1) Under the assumption of Propositi@nl5 if vz is e.a.b., therfvg), = vp is e.a.b.. In
other words, ifR is avg-domain, thenD is avp-domain[26, p. 418].

(2) Letx be an a.b(respectively e.a.pstar operation onD. Then, in general? is not
an a.b.(respectively e.a.pstar operation onk.
To show this fact, také®, T, andR as in Remark 3.14(2). Sinde is a 1-dimensional
discrete valuation domain, its unique star operatign(= bp = vp) is an a.b. star
operation (and hence an e.a.b. star operation). Striseot integrally closed (because

X € K \ R is integral overR), R has no e.a.b. star operations (and hence no a.b. star

operations).
Note that it is possible to give an example of this phenomenon alsoRititegrally
closed.

Example 3.17. Let D be al-dimensional discrete valuation domain with quotient field
let T .= L[X,Y] and M := (X,Y)L[X,Y]. Under these hypotheses, I&:= D +
(X,Y)L[X, Y] be the integral domain defindds a pullback of typé&™)) from D, T and
the canonical projectio : T — L. Then(bp)? is not e.a.b(and hence not a.pon R.

Note that M is a divisorial ideal of R of finite type, in fact, M = I'®, where
I := (X,Y)R. Now, chooseus,az € D \ (0) such thata1D € apD (e.g., putay := a,
as := a?, wherea is a nonzero nonunit element iR). Set/1 := a1R and I := asR.
Then(11;)'® = (a; )R = a;1'* = a; M = M (where the last equality holds becausés
a unitinT) for eachi =1, 2. Thus we havélI1)"® = (I12)"%. On the other hand, since
()" =1 =a;R=a;(D+ M) =a;D + M foreachi =1, 2, anda1D € a>D, we have
that (I1)"® € (I2)V®. Thereforepg is not an e.a.b. operation. Singeis a 1-dimensional
discrete valuation domain, the unique star operadlpr= bp = vp on D is an a.b. star
operation (and hence an e.a.b. star operationyput (vp)¢ (Corollary 2.13) is not e.a.b.
(and hence not a.b.).

Recall that given an integral domalh the paravaluation subrings df, in Bourbaki's
sense [14, Chapter 6, 81, Exercise 8], are the subrin@saiftained as an intersection of
T with a valuation domain having the same quotient field"ak is easy to see that R is
a subring ofT" then the integral closure @t in T coincides with the intersection of all the
paravaluation subrings df containingR [14, Chapter 6, 81, Exercise 9].

Lemma3.18. LetT, K, M, k, D, ¢, L, S, andR be as in(p™). Assume thab C L =k.
Assume, moreover, th#t is integrally closedor equivalently, thatR is integrally closed
in T). Let P := P(R, T) (respectivelyV, V1, W) be the set of all the paravaluation
subrings ofT containingR (respectively the set of all valuation overrings Bf the set
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of all valuation overringgV1, N1) of R such thatNy N R 2 M; the set of all the valuation
overrings ofD). Sethg 7 := »p (respectivelypg := xy, x1 :=xy,, bp := ). Then

(a) br.T (respectivelypp) is a star operation orR (respectively omD); bg and x; are
semistar operations oR. Moreover,

brT <*1 Ax(1} < bpg.

(b) (br,7)p =bp.

(c) If R is integrally closedwhich happens if is integrally closed, thenx; A xry and
bg are star operations oR. Moreover,(bg), = bp andbg < (bp)?.

(d) If T :=V is a valuation domain, thebg 7 = *1 = *1 A %1} = bg.

Proof. Note that if (Vo, N2) € V \ V1, thenN> N R 2 M, and so there exists a unique
prime idealQ> in T such thatRy,ngr = T, [19, Theorem 1.4]. Therefor&, O Ry,ng =
Tp,2T.

(a) The first part of this statement is an obvious consequence of the definitions and the
assumption thar is integrally closed i’ (and equivalentlyD is integrally closed [19,
Corollary 1.5]). For eacli € F(R), we have

1=V |VeV)= (ﬂ{lvl |Vie vl}) n (ﬂ{lvz | Vs e V\Vl})
> (ﬂ{lvl V1 e vl}) AIT = 1" 10 D (ﬂ{l(vm T) | Vlevl})
> (Nfrvnm|vev))=rer

(b) Note that sincd. is a field, the paravaluation subrings bfcontainingD coincide
with the valuation rings ir. containingD [14, Chapter 6, 81, Exercise 8(d)]. Moreover, if
W is a valuation overring ob, theny~1(W) is a paravaluation subring @f containingR
[14, Chapter 6, 8§81, Exercise 8(c)]. On the other handyifn T is a paravaluation
subring of T (whereV’ is a valuation domain in the field, quotient field ofR), then
necessarily (V' NT) is a paravaluation subring @f{T) = L, i.e., itis a valuation domain
in L containingD [14, Chapter 6, 81, Exercise 8(d)]. Therefore, for edch F(D),
o 1(Jbr) = (¢=1(J))?&7 . Now, we can conclude, since we know that for edch F (D),
JrDe = ((9~1(J))PRT) /M (Proposition 2.7).

(c) If R is integrally closed, thehy, is a star operation oR [26, Corollary 32.8], and
S0 by (a) it follows thaki A x(7) is also a star operation aR.

Let W = {W, | » € A}. For each € A, let R;, := ¢~ 1(W,). Then, by the argument
used in the proof of (b), we hav@ = {R,, | A € A}. Denote byA’ the integral closure of
an integral domaim. SinceRr,, is integrally closed irf', R;, = R’ NT. Let!} : R; — Ry’
and, : R, — T be the canonical embeddings, and sgt= (bR/)‘/A A (dr)* for each
A € A (note that(dr)* coincides with the semistar operatiefr, on Ry ). Thenx; is a
star operation oiR,, (see also [2, Theorem 2]).

Claim 1. Let I be an integral ideal ok properly containingV. Then(I Ry)** = I R;,.
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Let 0, be the maximal ideal of the valuation domaii.. If ¢(IR)) = (IR))/M #
yQ, forall y € L\ (0), then sincep(I R;) is a divisorial ideal of the valuation domai#,
¢o(IR)) = ¢((IRy)*) (and hence(IR;)** = IR;) by Proposition 2.7. Assume that
¢o(IR))=(R))/M = yQ, for somey € L \ (0). Chooses € S\ M such thatp(s) =y
and let P, := ¢~1(Q;) C Ry,. Then IR, = sP, + M, and by the claim in the proof
of Proposition 2.7, we havélR;)** = sP,** + M. By (b), R, = V., N T for some
valuation overring/;, of R, which has centeP, on R;, thus P, ** = (P)\RA’)I’RA’ NPT C
PV, NT = P;. Therefore, in either case, we haileR; )*» = I'R;..

Claim 2. (bg)y < (br,1)y (= bp by (b)).

It suffices to show that for each nonzero integral idéalf D, J@®e C JOr1s e,
for each integral ideal of R properly containingu, I°x C [P&7 Let I be such an ideal.
Then

I°%7 = (WIRy | h e A= {UR)™ | 1 € A} =ﬂ{(1R;)bRi NIT | e A}
=ﬂ{(1R;)bRi NT|re Al :ﬂ{(IR;)bRi |reAlnT
=ﬂ{ﬂ{1v | V eV, := {valuation overrings oR} } } | 1 A} nr
gﬂ{lvweV}:ﬂ’R.

Therefore, by Claim 2, (a), and the first part of (c), we conclude ¢haj, = bp.
Finally, by Theorem 2.12, we havwg < ((bgr)y)? = (bp)®.

(d) If T := V is a valuation domain, then each valuation overringRds comparable
with V. As a matter of fact, i’ is a valuation overring oR andV’ € V, then there exists
y € V'\ V, hencey~! € M, thus for eactv € V, we havev = v(y1y) = (vy by e
MV’ C V', ThereforeV C V'. From this observation, we immediately deduce that when
T is a valuation domairhg, 7 =*1 =*1 Ax7} =bg. O

Remark 3.19. In a pullback situation of typép™), when D is integrally closed, we have
already noticed that iR is not integrally closed, then there is no hope ttig$)¥ = bg
(Remark 3.16(2)). More explicitly, Example 3.17 shows that we can haveg (bp)?,
even whenR is integrally closed. The next example shows that< (bp)? is possible
even under the hypotheses of Lemma 3.18(d).

Example 3.20. Let T := V be a valuation domain with maximal ided and letg:V —
V /M =: k be the canonical projection. L&? be a Dedekind domain with infinitely many
prime ideals and with quotient fieltl = k. SetR := ¢~1(D). Thenby < (bp)?.

By the same argument as in Remark 3.8, we can seeRhiat not a TV-domain,
i.e., 1 # vg. Meanwhile, sinceRr is a Prufer domainhr = dg = tg, and sinceD is a
Dedekind domainbp = vp and so(bp)? = (vp)? = vg (Corollary 2.13). Therefore, we
havebr =1r < vg = (bp)¥.
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