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Abstract


In this paper we study the star operations on a pullback of integral domains. In particul
characterize the star operations of a domain arising from a pullback of “a general type” by intro
new techniques for “projecting” and “lifting” star operations under surjective homomorphism
integral domains. We study the transfer in a pullback (or with respect to a surjective homomor
of some relevant classes or distinguished properties of star operations such asv−, t−, w−, b−,
d−, finite type, e.a.b., stable, and spectral operations. We apply part of the theory developed
give a complete positive answer to a problem posed by D.F. Anderson in 1992 concerning
operations on the “D + M” constructions.
 2004 Published by Elsevier Inc.


1. Introduction and preliminary results


The theory of ideal systems and star operations was developed by W. Krull, H. P
and E. Noether around 1930, and is a powerful tool for characterizing several re
classes of integral domains, for studying their mutual relations and for introducin
Kronecker function rings in a very general ring-theoretical setting. A modern treatment
various aspects of this theory can be found in the volumes by P. Jaffard [32], O. Z
and P. Samuel [47, Appendix 4], R. Gilmer [26], M.D. Larsen and P.J. McCarthy [34]
F. Halter-Koch [28].
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Pullbacks were considered in [19] for providing an appropriate unified se
for several important “composite-type” constructions introduced in various con
of commutative ring theory in order to construct examples and counter-exa
with different pathologies: for instance, Seidenberg’s constructions for (polyno
dimensional sequences [43], Nagata’s composition of valuation domains and “K + J (R)”
constructions [39, p. 35 and Appendix A1, Example 2], Akiba’s AV-domains or Do
divided domains [1,16], Gilmer’s “D + M” constructions [26], Traverso’s glueings f
a constructive approach to the seminormalization [44], Vasconcelos’ umbrella
and Greenberg’s F-domains [27,45], Boisen–Sheldon’s CPI-extensions [13], Heds
Houston’s pseudo-valuation domains [29], “D + XDS[X]” rings and more generally, th
“A+XB[X]” rings considered by many authors (see the recent excellent survey papers
T. Lucas [35] and M. Zafrullah [46], which contain ample and updated bibliographie
this subject).


It was natural at this stage of knowledge to investigate the behaviour of the
operations in a general pullback setting and with respect to surjective homomorp
of integral domains, after various different results concerning distinguished star oper
(like the v–, the t–, or thew– operation) and particular “composite-type” constructi
were obtained by different authors (cf., for instance, [3–5,7,11,12,15,17,20,24,33,3
and the survey papers [10,25]).


The present work was stimulated by the papers by D.D. Anderson and D.F. And
on star operations, and more precisely, by the study initiated by D.F. Anderson conc
the star operations on the “D + M” constructions [9].


In Section 2, after introducing an operation of “glueing” of star operations
pullback of integral domains, we will characterize the star operations of a do
arising from a pullback of “a general type.” For this purpose we will introduce
techniques for “projecting” and “lifting” star operations under surjective homomorph
of integral domains. Section 3 is devoted to the study of the transfer in a pul
(or with respect to a surjective homomorphism) of some relevant properties or c
of star operations such asv–, t–, w–, b–, d–, finite type, e.a.b., stable, and spec
operations.


We will apply part of the theory developed here to give a complete positive an
to a problem posed by D.F. Anderson in 1992 [9] concerning the star operations
“D + M” constructions.


Let D be an integral domain with quotient fieldL. Let F (D) denote the set of a
nonzeroD-submodules ofL and let F (D) be the set of all nonzero fractional idea
of D, i.e., all E ∈ F (D) such that there exists a nonzerod ∈ D with dE ⊆ D. Let
f (D) be the set of all nonzero finitely generatedD-submodules ofL. Then obviously,
f (D) ⊆ F (D) ⊆ F (D).


For each pair of nonzero fractional idealsE,F of D, we denote as usual by(E :L F) the
fractional ideal ofD given by{y ∈ L | yF ⊆ E}; in particular, for each nonzero fraction
idealI of D, we setI−1 := (D :L I).


We recall that a mapping� :F (D) → F (D), E �→ E�, is called asemistar operation
on D if the following properties hold for all 0�= x ∈ L andE,F ∈ F (D) (cf. for instance
[21,22,36,37,40,41]):
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(�1) (xE)� = xE�;
(�2) E ⊆ F ⇒ E� ⊆ F�;
(�3) E ⊆ E� andE� = (E�)� =: E��.


Example 1.1.


(a) If � is a semistar operation onD such thatD� = D, then the map (still denoted by
� :F (D) → F (D), E �→ E�, is called astar operation onD. Recall [26, (32.1)] tha
a star operation� satisfies the properties(�2), (�3) for all E,F ∈ F (D); moreover, for
each 0�= x ∈ L andE ∈ F (D), a star operation� satisfies the following:


(��1) (xD)� = xD; (xE)� = xE�.


A semistar operation onD such thatD � D� is called aproper semistar operation
onD.


(b) The trivial semistar operationeD onD (simply denoted bye) is the semistar operatio
constant ontoL, i.e., the semistar operation defined byEeD := L for eachE ∈ F (D).
Note that� is the trivial semistar operation onD if and only if D� = L.


(c) Another trivial semistar (in fact, star) operation is theidentity star operationdD onD


(simply denoted byd) defined byEdD := E for eachE ∈ F (D).
(d) For eachE ∈ F (D), set E�f := ⋃{F� | F ⊆ E, F ∈ f (D)}. Then �f is also


a semistar operation onD, which is calledthe semistar operation of finite typ
associated to�. Obviously,F� = F�f for eachF ∈ f (D); moreover, if� is a star
operation, then�f is also a star operation. If� = �f , then the semistar (respective
the star) operation� is called asemistar(respectivelystar) operation of finite type[22,
Example 2.5(4)].
Note that, in general,�f � �, i.e.,E�f ⊆ E� for eachE ∈ F (D). Thus, in particular
if E = E�, thenE = E�f . Note also that�f = (�f )f .
There are several examples of nontrivial semistar operations of finite type; th
known is probably thet-operation. Indeed, we start from thevD star operationon an
integral domainD (simply denoted byv), which is defined by


EvD := (
E−1)−1 = (


D :L (D :L E)
)


for anyE ∈ F (D), and we settD := (vD)f (or simply,t = vf ).
Other relevant examples of semistar operations of finite type will be constructed


A semistar operation� on D is called ane.a.b. (endlich arithmetisch brauchbar)
(respectivelya.b.(arithmetisch brauchbar)) semistar operationif


(EF)� ⊆ (EG)� ⇒ F� ⊆ G�


for eachE ∈ f (D) and allF,G ∈ f (D) (respectivelyF,G ∈ F (D)) [22, Definition 2.3,
Lemma 2.7].


If � is a star operation onD, then the definition of e.a.b. (respectively a.b.) operatio
analogous (for an a.b. star operation,F,G are taken inF (D)).
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Example 1.2. Let ι :R ↪→ T be an embedding of integral domains with the same fiel
quotientsK and let∗ be a semistar operation onR. Define∗ι :F (T ) → F (T ) by setting


E∗ι := E∗ for eachE ∈ F (T )
(⊆ F (R)


)
.


Then we know [22, Proposition 2.8]:


(a) If ι is not the identity map, then∗ι is a semistar, possibly non-star, operation onT ,
even if∗ is a star operation onR.
Note that when∗ is a star operation onR and(R :K T ) = (0), a fractional idealE of
T is not necessarily a fractional ideal ofR, hence∗ι is not defined as a star operati
onT .


(b) If ∗ is of finite type onR, then∗ι is also of finite type onT .


(c) WhenT := R∗, then∗ι defines a star operation onT .
(d) If ∗ is e.a.b.(respectively a.b.) onR and ifT := R∗, then∗ι is e.a.b.(respectively a.b.)


onT .


Conversely, let� be a semistar operation on the overringT of R. Define�ι :F (R) →
F (R) by setting


E�ι := (ET )� for eachE ∈ F (R).


Then we know [22, Proposition 2.9, Corollary 2.10]:


(e) �ι is a semistar operation onR.
(f) If � := dT , then(dT )ι is a semistar operation of finite type onR, which is denoted


also by�{T } (i.e., it is the semistar operation onR defined byE�{T } := ET for each
E ∈ F (R)).
In particular, ifT = R, then�{R} = dR and, if T = K, then�{K} = eR. Note that if
R � T , then�{T } is a proper semistar operation onR.


(g) If � is e.a.b.(respectively a.b.) onT , then�ι is e.a.b.(respectively a.b.) onR.
(h) For each semistar operation� onT , we have(�ι)ι = �.
(i) For each semistar operation∗ on R, we have(∗ι)


ι � ∗ (sinceE(∗ι)
ι = (ET )∗ι =


(ET )∗ ⊇ E∗ for eachE ∈ F (R)).


Other relevant classes of examples are recalled next.


Example 1.3. Let ∆ be a nonempty set of prime ideals of an integral domainR with
quotient fieldK. Set


E�∆ :=
⋂


{ERP | P ∈ ∆} for each nonzeroR-submoduleE of K.
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If ∆ is the empty set, then we set�∅ := eR . The mappingE �→ E�∆ , for eachE ∈ F (R),
defines a semistar operation onR. Moreover [21, Lemma 4.1],


(a) For eachE ∈ F (R) and for eachP ∈ ∆, ERP = E�∆RP .
(b) The semistar operation�∆ is stable (with respect to the finite intersections),i.e., for


all E,F ∈ F (R) we have(E ∩ F)�∆ = E�∆ ∩ F�∆.


(c) For eachP ∈ ∆, P�∆ ∩ R = P .
(d) For each nonzero integral idealI of R such thatI�∆ ∩ R �= R, there exists a prime


idealP ∈ ∆ such thatI ⊆ P .


A semistar operation∗ on R is calledspectralif there exists a subset∆ of Spec(R)


such that∗ = �∆; in this case, we say that∗ is the spectral semistar operation associat
with ∆.


We say that∗ is aquasi-spectral semistar operation(or that∗ possesses enough prime)
if, for each nonzero integral idealI of R such thatI∗ ∩R �= R, there exists a prime idealP


of R such thatI ⊆ P andP ∗ ∩ R = P. For instance, it is easy to see thatif ∗ is a semistar
operation of finite type, then∗ is quasi-spectral.


From (c) and (d), we deduce thateach spectral semistar operation is quasi-spectral
Given a semistar operation∗ onR, assume that the set


Π∗ := {
P ∈ Spec(R)


∣∣ P �= 0 andP ∗ ∩ R �= R
}


is nonempty. Then the spectral semistar operation ofR defined by∗sp := �Π∗ is called
the spectral semistar operation associated to∗. Note that if∗ is quasi-spectral such th
R∗ �= K, thenΠ∗ is nonempty and∗sp� ∗ [21, Proposition 4.8, Remark 4.9].


It is easy to see that∗ is spectral if and only if∗ = ∗sp.


For each semistar operation∗ onR, we can consider


∗̃ := (∗f )sp.


Then we know [21, Propositions 3.6(b), 4.23(1)]:


(e) ∗̃ is a spectral semistar operation of finite type onR, andif M(∗f ) denotes the set o
all the maximal elements in the set{I nonzero integral ideal ofR | I∗f ∩R �= R}, then


∗̃ = �M(∗f ).


It is also known [21, p. 185] that for eachE ∈ F (R),


E∗̃ =
⋃{


(E :K F)
∣∣ F ∈ f (R), F ∗ = R∗}.


(f) If ∗ is a star operation onR, then∗̃ is a (spectral) star operation(of finite type) onR


and ∗̃ � ∗.
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If ∗ := vR , using the notation introduced by Wang Fanggui and R.L. McCasland
we will denote bywR (or simply byw) the star operatioñvR = (tR)sp (cf. also [6,30]).


The construction of a spectral semistar operation associated to a set of prime ideal c
be generalized as follows.


Example 1.4. Let R := {Rλ | λ ∈ Λ} be a nonempty family of overrings ofR and define
�R :F (R) → F (R) by setting


E�R :=
⋂


{ERλ | λ ∈ Λ} for eachE ∈ F (D).


Then we know [22, Lemma 2.4(3), Example 2.5(6), Corollary 3.8]:


(a) The operation�R is a semistar operation onR. Moreover, ifR = {RP | P ∈ ∆}, then
�R = �∆.


(b) E�RRλ = ERλ for eachE ∈ F (R) and for eachλ ∈ Λ.


(c) If R =W is a family of valuation overrings ofR, then�W is an a.b. semistar operatio
onD.


We say thattwo semistar operations onD, �1 and�2, areequivalentif (�1)f = (�2)f .


Then we know ([23, Proposition 3.4] and [26, Theorem 32.12]):


(d) Each e.a.b. semistar(respectively star) operation onR is equivalent to a semista
(respectively star) operation of the type�W for some familyW of valuation overrings
ofR (respectively for some familyW of valuation overrings ofR such thatR = ⋂{W |
W ∈ W}).


If W is the family ofall the valuation overrings ofR, then�W is calledthebR-semistar
operation(or simply theb-semistar operation onR). Moreover, ifR is integrally closed
thenRbR = R [26, Theorem 19.8], and thus the operationb defines a star operation onR,


which is calledtheb-star operation[26, p. 398].


Example 1.5. If {∗λ | λ ∈ Λ} is a family of semistar (respectively star) operations onR,
then


∧
λ{∗λ | λ ∈ Λ} (denoted simply by


∧∗λ), defined by


E
∧∗λ :=


⋂{
E∗λ | λ ∈ A


}
for eachE ∈ F (R)


(
respectivelyE ∈ F (R)


)
,


is a semistar (respectively star) operation onR. This type of semistar operation generaliz
the semistar (respectively star) operation of type�R (whereR := {Rλ | λ ∈ Λ} is a non-
empty family of overrings ofR; Example 1.4), since


�R =
∧


�{Rλ},


where�{Rλ} is the semistar operation onR considered in Example 1.2(f).
Note the following observations:







M. Fontana, M.H. Park / Journal of Algebra 274 (2004) 387–421 393


ts


ts


t


at


y
e


(a) If at least one of the semistar operations in the family{∗λ | λ ∈ Λ} is a star operation
onR, then


∧∗λ is still a star operation onR.
(b) Let ι : R ↪→ T be an embedding of integral domains with the same field of quotienK


and let{∗λ | λ ∈ Λ} be a family of semistar operations onR. Then(∧
∗λ


)
ι
=


∧
(∗λ)ι.


(c) Let ι : R ↪→ T be an embedding of integral domains with the same field of quotienK


and let{�λ | λ ∈ Λ} be a family of semistar operations onT , then(∧
�λ


)ι =
∧


(�λ)
ι.


2. Star operations and pullbacks


For the duration of this paper we will mainly consider the following situations:


(þ) T represents an integral domain,M an ideal ofT , k the factor ringT/M, D an
integral domain subring ofk andϕ :T → T/M =: k the canonical projection. Se
R := ϕ−1(D) =: T ×k D the pullback ofD insideT with respect toϕ, henceR is
an integral domain(subring ofT ). LetK denote the field of quotients ofR.


(þ+) Let L be the field of quotients ofD. In the situation(þ), we assume, moreover, th
L ⊆ k, and denote byS := ϕ−1(L) =: T ×k L the pullback ofL insideT with respect
to ϕ. ThenS is an integral domain with field of quotients equal toK. In this situation,
M, which is a prime ideal inR, is a maximal ideal inS. Moreover, ifM �= (0) and
D � k, thenM is a divisorial ideal ofR, actually,M = (R : T ).


Let �D (respectively�T ) be a star operation on the integral domainD (respectivelyT ).
Our first goal is to define in a natural way a star operation onR, which we will denote
by �, associated to the given star operations onD andT . More precisely, if we denote b
Star(A) the set of all the star operations on an integral domainA, then we want to defin
a map


Φ : Star(D) × Star(T ) → Star(R), (�D, �T ) �→ �.


For each nonzero fractional idealI of R, set


I� :=
⋂{


x−1ϕ−1
((


xI + M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (IT )�T ,


where if(xI + M)/M is the zero ideal ofD (i.e., if xI + M ⊆ M), then we set


ϕ−1
((


xI + M


M


)�D
)


= M.
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Proposition 2.1. Keeping the notation and hypotheses introduced in(þ), then� defines
a star operation on the integral domainR (= T ×k D).


Proof.


Claim 1. For each nonzero fractional idealI of R, I ⊆ I�.


We have


I� ⊇
⋂{


x−1ϕ−1
(


xI + M


M


) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ IT


=
⋂{


x−1(xI + M)
∣∣ x ∈ I−1, x �= 0


} ∩ IT


=
⋂{


I + x−1M
∣∣ x ∈ I−1, x �= 0


} ∩ IT ⊇ I.


Claim 2. For each nonzero elementz of K, (zR)� = zR (in particular, R� = R).


We have


(zR)� =
⋂{


x−1ϕ−1
((


xzR + M


M


)�D
) ∣∣∣∣ x ∈ z−1R, x �= 0


}
∩ (zT )�T


⊆ z


(
ϕ−1


((
R + M


M


)�D
))


∩ zT


= z


(
ϕ−1


(
R


M


))
∩ zT = zR ∩ zT = zR.


Therefore, by Claim 1, we deduce that(zR)� = zR.


Claim 3. For each nonzero elementz of K and for each nonzero fractional idealI of R,
(zI)� = zI�.


Note that given 0�= z ∈ K, for each nonzerox ∈ I−1 there exists a uniquey ∈ (zI)−1


such thatx = yz. Therefore, we have


I� =
⋂{


x−1ϕ−1
((


xI + M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (IT )�T


=
⋂{


(yz)−1ϕ−1
((


yzI + M


M


)�D
) ∣∣∣∣ yz ∈ I−1, y �= 0


}
∩ (IT )�T


=
⋂{


z−1y−1ϕ−1
((


yzI + M


M


)�D
) ∣∣∣∣ y ∈ (zI)−1, y �= 0


}
∩ (IT )�T


= z−1
(⋂{


y−1ϕ−1
((


yzI + M


M


)�D
) ∣∣∣∣ y ∈ (zI)−1, y �= 0


}
∩ (zIT )�T


)
= z−1(zI)�.


Thus, we immediately conclude that(zI)� = zI�.
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Claim 4. For each pair of nonzero fractional idealsI ⊆ J of R, I� ⊆ J �.


SinceJ−1 ⊆ I−1, we have


J � =
⋂{


x−1ϕ−1
((


xJ + M


M


)�D
) ∣∣∣∣ x ∈ J−1, x �= 0


}
∩ (JT )�T


⊇
⋂{


x−1ϕ−1
((


xI + M


M


)�D
) ∣∣∣∣ x ∈ J−1, x �= 0


}
∩ (IT )�T


⊇
⋂{


x−1ϕ−1
((


xI + M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (IT )�T = I�.


Claim 5. For each nonzero fractional idealI of R, I ⊆ I� ⊆ Iv , and hence(I�)−1 = I−1.


SinceIv = ⋂{zR | I ⊆ zR, z ∈ K}, by Claim 2, we deduce that


I ⊆ zR ⇒ I� ⊆ (zR)� = zR;


henceI� ⊆ Iv .


Claim 6. For each nonzero fractional idealI of R, (I�)� = I�.


Since(I�)−1 = I−1 for each nonzero idealI of R, we have


(
I�)� =


⋂{
x−1ϕ−1


((
xI� + M


M


)�D
) ∣∣∣∣ x ∈ (


I�)−1
, x �= 0


}
∩ (


I�T
)�T


=
⋂{


x−1ϕ−1
((


xI� + M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (


I�T
)�T .


Note that for 0�= x ∈ I−1 with xI ⊆ M, we have


• xI� ⊆ M


(
and so x−1ϕ−1


((
xI� + M


M


)�D
)


= x−1ϕ−1
((


xI + M


M


)�D
))


,


since


I� ⊆ x−1ϕ−1
((


xI + M


M


)�D
)


= x−1M.


Now for 0 �= x ∈ I−1 with xI �⊆ M, we have


•
(


xI� + M
)�D


⊆
(


xI + M
)�D


(
and so


(
xI� + M


)�D


=
(


xI + M
)�D


)
,


M M M M
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since


I� ⊆ x−1ϕ−1
((


xI + M


M


)�D
)


⇒ xI� ⊆ ϕ−1
((


xI + M


M


)�D
)


⇒ xI� + M


M
= ϕ


(
xI�) ⊆ ϕ


(
ϕ−1


((
xI + M


M


)�D
))


=
(


xI + M


M


)�D


⇒
(


xI� + M


M


)�D


⊆
(


xI + M


M


)�D


.


Lastly,


• (
I�T


)�T ⊆ (IT )�T
(
and so


(
I�T


)�T = (IT )�T
)
,


since


I� ⊆ (IT )�T ⇒ I�T ⊆ (IT )�T ⇒ (
I�T


)�T ⊆ (IT )�T .


Therefore, we can easily conclude


(
I�)� =


⋂{
x−1ϕ−1


((
xI� + M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (


I�T
)�T


=
⋂{


x−1ϕ−1
((


xI + M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (IT )�T = I�.


The previous argument shows that� is a (well-defined) star operation on the integ
domainR. �
Remark 2.2.


(a) Note that in the proof of Proposition 2.1,M is possibly a nonmaximal ideal ofT
(andR), even though we assume thatM (= M ∩ R) is a prime ideal ofR.


(b) In the pullback setting(þ), for each nonzero idealI of R with I ⊆ M, I� ⊆ M, because


I� ⊆ x−1ϕ−1
((


xI + M


M


)�D
)


for eachx ∈ I−1 \ (0) and 1∈ R ⊆ I−1, thus


I� ⊆ ϕ−1
((


I + M


M


)�D
)


= M.


In particular, ifM �= (0), thenM = M�.
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(c) If M is the ideal(0), thenT = k and R = D. In this extreme situation, we hav
� = �D ∧ (�T )ι, whereι :R = D ↪→ T = k is the canonical inclusion.
Note that it can happen that� = �D ∧(�T )ι � �D . For instance, letR be a Krull domain
of dimension� 2, P a prime ideal ofR with ht(P ) � 2, T := RP , andM := (0)


(hence,R = D andT = k). Set�D := vD and�T := dT . ThenP�D = PvD = PvR = R,
butP � = PvD ∩ (PT )�T = R ∩ PRP = P .


(d) Let M �= (0). If D = L = k (in particular,M must be a nonzero maximal ideal ofT ,
and necessarily,�D is the (unique) star operationdD of D = L = k), thenR = T .
In this extreme situation, we have that� and�T are two star operations onT (with
� � �T ) that are possibly different. For instance, ifT is an integral domain with
a nonzero nondivisorial maximal idealM (e.g.,T := k[X,Y ], M := (X,Y )) and if
�T := vT , thenM� = M by (b), butM�T = MvT = T .
If D = k, butD � L, then it is not difficult to see that� = �T if and only if, for each
nonzero idealI of R = T with I �⊆ M,


I�T + M


M
⊆


(
I + M


M


)�D


.


Our next example will explicitly show the behaviour of the star operation� in some
special cases of the pullback construction(þ).


Example 2.3. With the notation and hypotheses introduced in(þ), assume, moreover, th
T is local with nonzero maximal idealM and D = L is a proper subfield ofk. In this
special case of the situation(þ+), �D = dD = eD is the unique star operation onD. Let I
be a nonzero fractional ideal ofR.


(a) If II−1 = R, thenI� = I = IvR .
(b) If II−1 � R, thenI� = IvR ∩ (IT )�T . Moreover, if(IT )�T = x−1T for some nonzero


x ∈ I−1, thenI� = IvR (� (IT )�T ). If (IT )�T �= x−1T for all x ∈ I−1, thenI� =
(IT )�T .


(c) If [k : L] > 2 and if T � M−1 = (R :K M), then dR �= � �= vR for all the star
operations�T onT .


(d) Let [k : L] = 2. If T is (local but) not a valuation domain, thendR �= � for all the star
operations�T onT . If T = (R :K M) and if�T = vT , then� = vR .


(a) is obvious, becauseI is invertible, henceI is divisorial (in fact,I is principal, since
R is also local) and soI = I� = IvR (⊆ (IT )�T ).


(b) Note that for each nonzero idealI of R with the property thatII−1 � R, we have
necessarily thatII−1 ⊆ M. Moreover, for each nonzerox ∈ I−1, fromxI ⊆ M, we deduce
thatI ⊆ x−1M and so we have thatIvR = ⋂{x−1M | x ∈ I−1, x �= 0}. Therefore,


I� =
⋂{


x−1ϕ−1
((


xI + M
)�D


) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (IT )�T

M
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=
⋂{


x−1ϕ−1
((


M


M


)�D
) ∣∣∣∣ x ∈ I−1, x �= 0


}
∩ (IT )�T


=
⋂{


x−1M
∣∣ x ∈ I−1, x �= 0


} ∩ (IT )�T = IvR ∩ (IT )�T .


In order to prove the second part of (b), note that in this case, for each 0�= x ∈ I−1, we
have


I � x−1R ⇒ I ⊆ x−1M ⇒ IT ⊆ x−1MT = x−1M


⇒ (IT )�T ⊆ (
x−1M


)�T = x−1M�T ⊆ x−1T .


Therefore, if(IT )�T = x−1T for some nonzerox ∈ I−1, thenIvR ⊆ x−1R ⊆ x−1T =
(IT )�T . Thus, in this case,I� = IvR . Assume that(IT )�T � x−1T for all x ∈ I−1. Then
(IT )�T ⊆ x−1M and thus


(IT )�T ⊆
⋂{


x−1M
∣∣ x ∈ I−1, x �= 0


} = IvR ,


henceI� = (IT )�T .
(c) Let 0 �= a ∈ M, and letz ∈ T \R. SetI := (a, az)R. Then obviouslyIT = aT (since


z is invertible inT ), thus(IT )�T = aT = IT .
Note that, in this case,(IT )�T = aT � x−1T for all x ∈ I−1. As a matter of fact, if


aT = x−1T for somex ∈ I−1, thenax = u is a unit inT andax ∈ R (becausea ∈ I and
x ∈ I−1). Hence,ax is a unit inR. Now we reach a contradiction, since we deduce
I ⊆ x−1R = aR ⊆ I , i.e.,I = aR.


By (b), we have thatI� = (IT )�T = aT = IT � I , hence� �= dR .
Assume also thatT � M−1. SinceI� = (IT )�T = aT ,


IvR = (
I�)vR = (aT )vR = a


(
R :K (R :K T )


) = a(R :K M) � aT = (IT )�T = I�.


Therefore� �= vR .
(d) In the present situation, we can finda, b ∈ M such thataT �⊆ bT andbT �⊆ aT . Set


I := (a, b)R.
It is easy to see thatI is not a principal ideal ofR. (If I = (a, b)R = cR, then


a = cr1, b = cr2, c = as1 + bs2 and so 1= r1s1 + r2s2 for somer1, s1, r2, s2 ∈ R; hence
eitherr1s1 or r2s2 = 1− r1s1 is a unit in the local ringR. For instance, ifr1s1 is a unit in
R, thenr1 is also a unit inR and socR = aR. ThusbR ⊆ aR, contradicting the choice o
a andb.)


Note thatI is not a divisorial ideal ofR. As a matter of fact, ifI = IvR , then I


should be also an ideal ofT (i.e., I = IT ) by [24, Corollary 2.10]. On the other han
if z ∈ T \ R, thenaz ∈ IT = I = (a, b)R and soaz = ar1 + br2, i.e.,a(z − r1) = br2 for
somer1, r2 ∈ R. If z − r1 ∈ M, thenz ∈ r1 + M ⊆ R, which contradicts the choice ofz.
If z − r1 ∈ T \ M, thena = br2(z − r1)


−1 ∈ bT , which contradicts the choice ofa andb.
Hence,I �= IT and soI �= IvR .
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If (IT )�T = x−1T for some nonzerox ∈ I−1, then (by (b))I� = IvR �= I , and so
dR �= �. Assume that(IT )�T �= x−1T for all x ∈ I−1, then (by (b))I� = (IT )�T ⊇ IT � I ,
and sodR �= �.


Finally, suppose thatT = (R :K M) and that�T = vT . Let J be a nonzero fractiona
ideal ofR. If J is divisorial, then obviouslyJ � = J = J vR . Assume thatJ is not divisorial,
thenJJ−1 � R. If (JT )�T = x−1T for some nonzerox ∈ J−1, then (by (b))J � = J vR .
If (JT )vT �= x−1T for all x ∈ J−1, then (by (b))J � = (JT )vT . SinceT = (R :K M) =
(M :K M), every divisorial ideal ofT is divisorial as an ideal ofR by [24, Corollary 2.9].
Therefore,


J vR = (
J �)vR = (


(JT )vT
)vR = (JT )vT = J �,


hence we conclude that� = vR .


The previous construction of the star operation� on the integral domainR arising from
a pullback diagram gives the idea for “lifting a star operation” with respect to a surje
ring homomorphism between two integral domains.


Corollary 2.4. LetR be an integral domain with field of quotientsK, M a prime ideal ofR.
LetD be the factor ringR/M and letϕ :R → D be the canonical projection. Assume th
� is a star operation onD. For each nonzero fractional idealI of R, set


I�ϕ :=
⋂{


x−1ϕ−1
((


xI + M


M


)�) ∣∣∣∣ x ∈ I−1, x �= 0


}


=
⋂{


xϕ−1
((


x−1I + M


M


)�) ∣∣∣∣ x ∈ K, I ⊆ xR


}
,


where, as before, if(zI + M)/M is the zero ideal ofD, then we set


ϕ−1
((


zI + M


M


)�)
= M.


Then�ϕ is a star operation onR.


Proof. Mutatis mutandisthe arguments used in the proof of Proposition 2.1 show tha�ϕ


is a star operation onR. �
Using the notation introduced in Section 1, in particular, in Example 1.2,


immediately have the following corollary.


Corollary 2.5. With the notation and hypotheses introduced in(þ) and Proposition2.1, if
we use the definition given in Corollary2.4, we have


� = (�D)ϕ ∧ (�T )ι.
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We next examine the problem of “projecting a star operation” with respect to a surje
homomorphism of integral domains.


Proposition 2.6. Let R, K, M, D, ϕ be as in Corollary2.4 and let L be the field of
quotients ofD. Let∗ be a given star operation on the integral domainR. For each nonzero
fractional idealF of D, set


F ∗ϕ :=
⋂{


yϕ
((


ϕ−1(y−1F
))∗) ∣∣ y ∈ L, F ⊆ yD


}
.


Then∗ϕ is a star operation onD.


Proof. The following claim is a straightforward consequence of the definition.


Claim 1. For each nonzero fractional idealF of D, F ⊆ F ∗ϕ .


Claim 2. For each nonzeroz ∈ L, (zD)∗ϕ = zD (in particular, D∗ϕ = D).


Note that


(zD)∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1zD
))∗) ∣∣ y ∈ L, zD ⊆ yD


} ⊆ zϕ
((


ϕ−1(D)
)∗)


= zϕ(R∗) = zϕ(R) = zD.


The conclusion follows from Claim 1.


Claim 3. For each nonzero fractional idealF of D and for each nonzeroz ∈ L,
(zF )∗ϕ = zF ∗ϕ .


Given 0�= z ∈ L, for each nonzeroy ∈ L, setw := yz ∈ L. Then


F ∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1F
))∗) ∣∣ y ∈ L, F ⊆ yD


}
=


⋂{
w


z
ϕ


((
ϕ−1


(
z


w
F


))∗) ∣∣∣∣ w ∈ L, F ⊆ w


z
D


}


=
⋂{


z−1wϕ
((


ϕ−1(w−1zF
))∗) ∣∣ w ∈ L, zF ⊆ wD


}
= z−1


(⋂{
wϕ


((
ϕ−1(w−1zF


))∗) ∣∣ w ∈ L, zF ⊆ wD
})


= z−1(zF )∗ϕ .


Hence, we conclude that(zF )∗ϕ = zF ∗ϕ .


Claim 4. For each pair of nonzero fractional idealsF1 ⊆ F2 of D, (F1)
∗ϕ ⊆ (F2)


∗ϕ .
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Note that ify ∈ L andF2 ⊆ yD, then obviouslyF1 ⊆ yD, therefore


(F2)
∗ϕ =


⋂{
yϕ


((
ϕ−1(y−1F2


))∗) ∣∣ y ∈ L, F2 ⊆ yD
}


⊇
⋂{


yϕ
((


ϕ−1(y−1F1
))∗) ∣∣ y ∈ L, F1 ⊆ yD


} = (F1)
∗ϕ .


Claim 5. For each nonzero fractional idealF of D, (F ∗ϕ )∗ϕ = F ∗ϕ .


Note that from Claims 1, 2, and 4, ify is a nonzero element ofL, we have


F ⊆ yD ⇐⇒ F ∗ϕ ⊆ (yD)∗ϕ = yD,


therefore


(
F ∗ϕ


)∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1F ∗ϕ
))∗) ∣∣ y ∈ L, F ∗ϕ ⊆ yD


}
=


⋂{
yϕ


((
ϕ−1(y−1F ∗ϕ


))∗) ∣∣ y ∈ L, F ⊆ yD
}
.


On the other hand,


F ⊆ yD ⇒ F ∗ϕ ⊆ yϕ
((


ϕ−1(y−1F
))∗) ⇒ y−1F ∗ϕ ⊆ ϕ


((
ϕ−1(y−1F


))∗)
.


Therefore,


ϕ−1(y−1F ∗ϕ
) ⊆ ϕ−1(ϕ((


ϕ−1(y−1F
))∗)) = (


ϕ−1(y−1F
))∗


,


since


(
ϕ−1(y−1F


))∗ ⊇ ϕ−1(y−1F
) ⊇ M = Ker(ϕ).


Now, we can conclude:


(
F ∗ϕ


)∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1F ∗ϕ
))∗) ∣∣ y ∈ L, F ⊆ yD


}
⊆


⋂{
yϕ


(((
ϕ−1(y−1F


))∗)∗) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


yϕ
((


ϕ−1(y−1F
))∗) ∣∣ y ∈ L, F ⊆ yD


} = F ∗ϕ ,


and so, by Claim 1,(F ∗ϕ )∗ϕ = F ∗ϕ . �
In case of a pullback of type(þ+) the definition of the star operation∗ϕ given above is


simplified as follows.
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Proposition 2.7. Let T , K, M, k, D, ϕ, L, S, andR be as in(þ+). Let∗ be a given star
operation on the integral domainR. For each nonzero fractional idealF of D, we have


F ∗ϕ = ϕ
((


ϕ−1(F )
)∗) = (ϕ−1(F ))∗


M
.


Proof. For the extreme casesM = (0) or D = k, it trivially holds, so we may assume th
M �= (0) andD � k. We start by proving the following claim.


Claim. Let I be a fractional ideal ofR such thatM � I ⊆ S = ϕ−1(L) and lets ∈ S \ M.
Then(sI + M)∗ = sI∗ + M.


Chooset ∈ S such thatst − 1 ∈ M. Thent (sI + M)∗ = (tsI + tM)∗ ⊆ (tsI + M)∗ =
(I + M)∗ = I∗. Thereforest (sI + M)∗ ⊆ sI∗, so st (sI + M)∗ + M ⊆ sI∗ + M ⊆
(sI + M)∗. Put m := st − 1. Sincem(sI + M)∗ = (msI + mM)∗ ⊆ M∗ = M (where
the last equality follows from the fact thatM is a divisorial ideal ofR), we have
st (sI + M)∗ + M = (1 + m)(sI + M)∗ + M = (sI + M)∗. Thus we can conclude th
(sI + M)∗ = sI∗ + M.


Now, let F be a nonzero fractional ideal ofD and letI := ϕ−1(F ). For each elemen
y ∈ L such thatF ⊆ yD, we can findsy, ty ∈ S \ M such thatϕ(sy) = y andϕ(ty) = y−1.
Using the above claim, we have:


F ∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1F
))∗) ∣∣ y ∈ L, F ⊆ yD


}
=


⋂{
yϕ


(
(tyI + M)∗


) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


yϕ
(
tyI


∗ + M
) ∣∣ y ∈ L, F ⊆ yD


}
=


⋂{
ϕ
(
sy


(
tyI


∗ + M
)) ∣∣ y ∈ L, F ⊆ yD


}
=


⋂{
ϕ
(
sy tyI∗ + syM


) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


ϕ
(
sy tyI∗ + syM + M


) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


ϕ
(
sy tyI∗ + M


) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


ϕ
(
(sy tyI + M)∗


) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


ϕ
(
I∗) ∣∣ y ∈ L, F ⊆ yD


} = ϕ
(
I∗) = I∗


M
= (ϕ−1(F ))∗


M
. �


Remark 2.8. As a consequence of Proposition 2.7 (andin the situation described in tha
statement) we have the following:


If I is a nonzero fractional ideal ofR such thatI ⊆ S andsI ⊆ R for somes ∈ S \ M,
thenI∗ ⊆ S for any star operation∗ onR. As a matter of fact,


I∗ ⊆ I∗S = I∗(M + sS) = I∗M + sI∗S ⊆ (IM)∗ + (sI)∗S ⊆ M∗ + S = M + S = S.
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Proposition 2.9. Let T , K, M, k, D, ϕ, L, S, andR be as in(þ+). Let � be a given star
operation on the integral domainD, let ∗ := �ϕ be the star operation onR associated
to � (which is defined in Corollary2.4) and let∗ϕ (= (�ϕ)ϕ) be the star operation onD
associated to∗ (which is defined in Proposition2.6). Then� = ∗ϕ (= (�ϕ)ϕ).


Proof. For each nonzero fractional idealF of D and for eachy ∈ L such thatF ⊆ yD,
J := y−1F is a nonzero integral ideal ofD. SetIy := ϕ−1(J ) = ϕ−1(y−1F) (⊆ R). Note
thatIy is a nonzero ideal ofR such thatM ⊂ Iy ⊆ R, and soϕ(Iy) = Iy/M = J (⊆ D).
Moreover, we have


(Iy)
∗ =


⋂{
x−1ϕ−1


((
xIy + M


M


)� ) ∣∣∣∣ x ∈ I−1
y , x �= 0


}


=
⋂{


xϕ−1
((


x−1Iy + M


M


)� ) ∣∣∣∣ Iy ⊆ xR ⊆ K


}


=
(⋂{


xϕ−1
((


x−1Iy + M


M


)� ) ∣∣∣∣ Iy ⊆ xM, x ∈ K


})


∩
(⋂{


xϕ−1
((


x−1Iy + M


M


)� ) ∣∣∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


})


=
(⋂


{xM | Iy ⊆ xM, x ∈ K}
)


∩
(⋂{


xϕ−1
((


x−1Iy + M


M


)� ) ∣∣∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


})
.


• For the first component of the previous intersection, note that sinceM is maximal in
S andM ⊂ Iy ⊆ R, IyS = S. On the other hand,Iy ⊆ xM, thusϕ−1(D) = R ⊆ S =
IyS ⊆ xMS = xM. Therefore, we have


⋂
{xM | Iy ⊆ xM ⊆ K} ⊇ ϕ−1(D) ⊇ ϕ−1((y−1F


)�)
.


• For the second component of the previous intersection, note that


x−1Iy ⊆ R and M ⊂ Iy ⊆ R ⇒ x−1IyS ⊆ S and IyS = S


⇒ x−1 ∈ S.


On the other hand, ifIy �⊆ xM (Iy ⊆ xR) andx−1 ∈ S, thenx−1 ∈ S \ M, and so
ϕ(x−1) ∈ ϕ(S \ M) = L \ {0}. Note also that(x−1Iy + M)/M = ϕ(x−1)(Iy/M).


Set


I ′
y := ϕ−1((y−1F


)�) (⊇ ϕ−1(y−1F
) =: Iy


)
,


henceI ′
y/M = (y−1F)� = (Iy/M)�.
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Then we have


⋂{
xϕ−1


((
x−1Iy + M


M


)�) ∣∣∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


}


=
⋂{


xϕ−1
((


ϕ
(
x−1) Iy


M


)�) ∣∣∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


}


=
⋂{


xϕ−1
(


ϕ
(
x−1)( Iy


M


)�) ∣∣∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


}


=
⋂{


xϕ−1
(


ϕ
(
x−1) I ′


y


M


) ∣∣∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


}


=
⋂{


x
(
x−1I ′


y + M
) ∣∣ Iy ⊆ xR ⊆ K, but Iy � xM


}
=


⋂{
I ′
y + xM


∣∣ Iy ⊆ xR ⊆ K, but Iy � xM
} = I ′


y = ϕ−1((y−1F
)�)


,


since forx = 1 we haveIy ⊆ xR ⊆ K but Iy �⊆ xM.
Note that the first component of the intersection representing(Iy)∗ might not appear


but the second component necessarily appears, since at least forx := 1 we have tha
Iy ⊆ xR ⊆ K but Iy � xM. Putting together the previous information about the tw
components of the intersection, we have(


ϕ−1(y−1F
))∗ = (Iy)∗ = ϕ−1((y−1F


)�)
.


Therefore we conclude that


F ∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1F
))∗) ∣∣ y ∈ L, F ⊆ yD


}
=


⋂{
yϕ


(
(Iy)∗


) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


yϕ
(
ϕ−1((y−1F


)�)) ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


y
(
y−1F


)� ∣∣ y ∈ L, F ⊆ yD
}


=
⋂{


yy−1F�
∣∣ y ∈ L, F ⊆ yD


} = F�. �
Remark 2.10. With the notation and hypotheses of Proposition 2.9, for each non
fractional idealF of D, we have


F� = ϕ
(
ϕ−1(F )�


ϕ)
.


As a matter of fact, by the previous proof and Proposition 2.7, we have thatF� = F ∗ϕ =
ϕ−1(F )�


ϕ
/M.


Corollary 2.11. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+).
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(a) The map(−)ϕ : Star(R) → Star(D), ∗ �→ ∗ϕ , is order-preserving and surjective.
(b) The map(−)ϕ : Star(D) → Star(R), � �→ �ϕ , is order-preserving and injective.
(c) Let � be a star operation onD. Then for each nonzero idealI of R with M ⊂ I ⊆ R,


I�ϕ = ϕ−1((ϕ(I)
)�)


.


Proof. (a) and (b) are straightforward consequences of the definitions and Proposition 2
since(−)ϕ is a right inverse of(−)ϕ (i.e., (−)ϕ ◦ (−)ϕ = 1Star(D)).


(c) Let ∗ := �ϕ . Then by Proposition 2.9, we know that∗ϕ = �. Therefore, using
Proposition 2.7, we have


(
ϕ(I)


)� = (
ϕ(I)


)∗ϕ = (ϕ−1(ϕ(I)))∗


M
= I∗


M
= I�ϕ


M
,


and henceϕ−1((ϕ(I))�) = I�ϕ
. �


The next result shows how the composition map


(−)ϕ ◦ (−)ϕ : Star(R) → Star(R)


compares with the identity map.


Theorem 2.12. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+). Assume thatD � k. Then
for each star operation∗ onR,


∗ �
(
(∗)ϕ


)ϕ
.


Proof. Let I be a nonzero integral ideal ofR. For each nonzerox ∈ I−1, if xI �⊆ M, then
by Proposition 2.7, (


xI + M


M


)∗ϕ


= (xI + M)∗


M
⊇ (xI)∗ + M


M
.


Now using the factM∗ = M for M �= (0), we have


I (∗ϕ)ϕ =
⋂{


x−1ϕ−1
((


xI + M


M


)∗ϕ
) ∣∣∣∣ x ∈ I−1, x �= 0


}


=
(⋂{


x−1ϕ−1
((


xI + M


M


)∗ϕ
) ∣∣∣∣ x ∈ I−1, x �= 0, xI �⊆ M


})


∩
(⋂{


x−1M
∣∣ x ∈ I−1, x �= 0, xI ⊆ M


})
⊇


(⋂{
x−1ϕ−1


(
(xI)∗ + M


M


) ∣∣∣∣ x ∈ I−1, x �= 0, xI �⊆ M


})


∩
(⋂{


x−1M∗ ∣∣ x ∈ I−1, x �= 0, I ⊆ x−1M
})
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c),

⊇
(⋂{


x−1((xI)∗ + M
) ∣∣ x ∈ I−1, x �= 0, xI �⊆ M


}) ∩ I∗


⊇
(⋂{


x−1((xI)∗
) ∣∣ x ∈ I−1, x �= 0, xI �⊆ M


}) ∩ I∗ = I∗. �
In Section 3, we will show that in general∗ � ((∗)ϕ)ϕ . However, in some relevant case


the inequality is, in fact, an equality:


Corollary 2.13. LetT , K, M, k, D, ϕ, L, S, andR be as in Theorem2.12. Then


vR = (
(vR)ϕ


)ϕ; (vD)ϕ = vR; (vR)ϕ = vD.


Proof. Use Proposition 2.9, Corollary 2.11(b), Theorem 2.12, and [26, Theorem 34.1(4
More precisely, note that(vR)ϕ � vD , and sovR � ((vR)ϕ)ϕ � (vD)ϕ � vR . On the other
hand, if(vR)ϕ � vD , thenvR = ((vR)ϕ)ϕ � (vD)ϕ , which is a contradiction. �


Our next goal is to apply the previous results for giving a componentwise descript
the “pullback” star operation� considered in Proposition 2.1.


Proposition 2.14. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+). Assume thatM �= (0)


andD � k. Let


Φ : Star(D) × Star(T ) → Star(R), (�D, �T ) �→ � := (�D)ϕ ∧ (�T )ι,


be the map considered in Proposition2.1and Corollary2.5. The following properties hold:


(a) �ϕ = �D ;
(b) �ι = (vR)ι ∧ �T (∈ Star(T ));
(c) � = (�ϕ)ϕ ∧ (�ι)


ι.


Proof. (a) Without loss of generality, we only consider the case of integral ideals ofD. Let
J be a nonzero integral ideal ofD and letI := ϕ−1(J ). SinceM � I ⊆ R, we haveIS = S,
whereS := ϕ−1(L), and soIT = T . Therefore, by Proposition 2.7 and Corollary 2.11(


J �ϕ = ϕ
(
I�) = ϕ


(
I (�D)ϕ ∩ I (�T )ι


) = ϕ
(
I (�D)ϕ ∩ (IT )�T


) = ϕ
(
I (�D)ϕ ∩ T


) = ϕ
(
I (�D)ϕ


)
= ϕ


(
ϕ−1(J �D


)) = J �D .


(b) Without loss of generality, we only consider the case of integral ideals ofT . Let
I be a nonzero ideal ofT (in particular,I is a fractional ideal ofR). Then for each
x ∈ I−1 = (R :K I), we havexIT = xI ⊆ R, soxI ⊆ (R :K T ) = M. Therefore,


I (�D)ϕ =
⋂{


x−1ϕ−1((ϕ(xI)
)�D


) ∣∣ x ∈ I−1, x �= 0
}


=
⋂{


x−1M
∣∣ x ∈ I−1, x �= 0


} = IvR ,







M. Fontana, M.H. Park / Journal of Algebra 274 (2004) 387–421 407


h


,


l
t


of


c),

and so


I�ι = I� = I (�D)ϕ ∩ I�T = IvR ∩ I�T = I (vR)ι ∩ I�T = I (vR)ι∧�T .


Note thatI�ι (⊆ IvR ) is an ideal ofR. Moreover,I�ι is an ideal ofT , because for eac
nonzerox ∈ T ,


xI�ι = x
(
IvR ∩ I�T


) = (xI)vR ∩ (xI)�T ⊆ IvR ∩ I�T = I�ι .


Finally, since�T is a star operation onT , it is easy to check that�ι (restricted toF (T ))
belongs to Star(T ).


(c) Since� � vR � ((vR)ι)
ι, (using also Example 1.5) we have that


� = (�D)ϕ ∧ (�T )ι = (�D)ϕ ∧ (
(vR)ι


)ι ∧ (�T )ι = (�D)ϕ ∧ (
(vR)ι ∧ �T


)ι
= (�ϕ)ϕ ∧ (�ι)


ι. �
Example 2.15. With the same notation and hypotheses of Proposition2.14, we show that
in general,�ι �= �T .


(1) Let T := k[X,Y ](X,Y ) and letM := (X,Y )T . ThenT is a 2-dimensional loca
UFD. Choose a subfieldD := L of k such that[k : L] = 2. In this situation we have tha
T ⊆ (R :K M) ⊆ (T :K M), and(T :K M) = T becauseT is 2-dimensional local UFD
(hence, Krull) with maximal idealM. Therefore,T = (R :K M). By Example 2.3(d), if
�T := vT , then� = vR andMvT = T . But M�ι = M� = MvR = M �= T = MvT = M�T .


(2) Note that�ι �= �T , even ifL = k. It is sufficient to consider a slight modification
the previous example. LetD be any integral domain (not a field) with quotient fieldL. Let
T := L[X,Y ](X,Y ) and letM := (X,Y )T . Set� := (vD)ϕ ∧ (vT )ι. Then


M�ι = M� = M(vD)ϕ ∩ M(vT )ι = MvR ∩ M(vT )ι = M,


becauseMvR = M andM(vT )ι = (MT )vT = MvT = T .


Remark 2.16.


(a) Note that, with the same notation and hypotheses of Proposition 2.14,the mapΦ is
not one-to-one in general.
This fact follows immediately from Example 2.15 and Proposition 2.14(b) and (
since


(�D)ϕ ∧ (�T )ι = � = (�ϕ)ϕ ∧ (�ι)
ι.


(b) In the same setting as above,the mapΦ is not onto in general.
For instance, in the situation described in Example 2.3(d), we have thatdR /∈ Im(Φ).
Another example, even in caseL = k, is given next.
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Example 2.17. LetD be a1-dimensional discrete valuation domain with quotient fieldL.
SetT := L[X2,X3], M := X2L[X] = XL[X] ∩ T , andK := L(X). Letϕ andR be as in
(þ+). ThenvR /∈ Im(Φ).


Note that, for each� ∈ Im(Φ), � � (vD)ϕ ∧ (vT )ι � vR . In order to show thatvR /∈
Im(Φ), it suffices to prove that(vD)ϕ ∧ (vT )ι �= vR . The fractional overringT of R is not
a divisorial ideal ofR, since


T vR = (
R :K (R :K T )


) = (R :K M) ⊇ L[X] � T .


Therefore,


T (vD)ϕ∧(vT )ι = T vR∧(vT )ι = T vR ∩ T (vT )ι = T vR ∩ T vT = T vR ∩ T = T � T vR .


Theorem 2.18. With the notation and hypotheses of Proposition2.14, set


Star(T ; vR) := {
�T ∈ Star(T )


∣∣ �T � (vR)ι
}
.


Then


(a) Star(T ; vR) = {
�T ∈ Star(T )


∣∣ (
vR ∧ (�T )ι


)
ι
= �T


} = {∗ι


∣∣ ∗ ∈ Star(R)
} ∩ Star(T )


= {∗ι


∣∣ ∗ ∈ Star(R) andT ∗ = T
}
.


(b) The restrictionΦ ′ := Φ|Star(D)×Star(T ;vR) is one-to-one.


(c) Im(Φ ′) = Star
(
R; (þ+)


) := {∗ ∈ Star(R)
∣∣ T ∗ = T and∗ = (∗ϕ)ϕ ∧ (∗ι)


ι
}
.


Proof. (a) We start by proving the following claim.


Claim. Let �T ∈ Star(T ; vR) and let�D ∈ Star(D) be any star operation onD. Set, as
usual,� := (�D)ϕ ∧ (�T )ι. Then�ι = �T .


Note that, by Corollary 2.13,


� = Φ
(
(�D, �T )


)
� � := Φ


(
(vD, �T )


) = (vD)ϕ ∧ (�T )ι = vR ∧ (�T )ι ∈ Star(R).


Hence, by using Theorem 2.14(b), Examples 1.2(h) and 1.5(b), we have


(vR)ι ∧ �T = �ι � �ι = (
vR ∧ (�T )ι


)
ι
= (vR)ι ∧


(
(�T )ι


)
ι
= (vR)ι ∧ �T ,


thus�ι = �ι = �T , because�T ∈ Star(T ; vR).
From the previous argument we also deduce that


�T � (vR)ι ⇐⇒ (
vR ∧ (�T )ι


)
ι
= �T .


Now, let ∗ ∈ Star(R) be a star operation onR such that∗ι ∈ Star(T ). Then obviously
∗ι � (vR)ι, whence∗ι ∈ Star(T ; vR), andT ∗ = T ∗ι = T .
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If ∗ ∈ Star(R) is such thatT ∗ = T , then clearly we have∗ι ∈ Star(T ).
If �T ∈ Star(T ; vR), then by the claim,�T = �ι with � ∈ Star(R), hence�T ∈ {∗ι | ∗ ∈


Star(R)} ∩ Star(T ).
(b) is a straightforward consequence of the claim and of Proposition 2.14(a).
(c) follows from the claim and from Proposition 2.14(a) and (c).�
We next apply some of the theory developed above for answering a problem po


D.F. Anderson in 1992.


Example 2.19 (“ D + M”-constructions). Let T be an integral domain of the typek + M,
whereM is a maximal ideal ofT andk is a subring ofT canonically isomorphic to th
field T/M, and letD be a subring ofk with field of quotientsL (⊆ k). SetR := D + M.
Note thatR is a faithfully flatD-module.


Given a star operation∗ on R, D.F. Anderson [8, p. 835] defined a star operation onD


in the following way: for each nonzero fractional idealF of D, set


F ∗D := (FR)∗ ∩ L.


Note thatFR = F + M. From [8, Proposition 5.4(b)] itis known that for each nonzer
fractional idealF of D,


(1) F ∗D + M = (F + M)∗;
(2) F ∗D = (F + M)∗ ∩ L = (F + M)∗ ∩ k.


Claim. If ϕ :R → D is the canonical projection and if∗ϕ is the star operation defined i
Proposition2.6, then∗D = ∗ϕ .


In particular, by[9, Proposition 2(a), (c)], we deduce that


(a) (dR)ϕ = dD , (tR)ϕ = tD , (vR)ϕ = vD , and
(b) (∗f )ϕ = (∗ϕ)f .


Note that ify is a nonzero element of the quotient fieldL of D, theny belongs tok, and
thus,y is a unit inT and soy−1M = M. Therefore, for eachy ∈ L such thatF ⊆ yD, we
have


yϕ
((


ϕ−1(y−1F
))∗) = yϕ


((
y−1F + M


)∗) = yϕ
((


y−1F + y−1M
)∗)


= yϕ
(
y−1(F + M)∗


) = yϕ
(
y−1(F ∗D + M


))
= yϕ


(
y−1F ∗D + y−1M


) = yϕ
(
y−1F ∗D + M


)
= y


(
y−1F ∗D


) = F ∗D ,


hence (Proposition 2.6)F ∗ϕ = F ∗D .
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By applying Proposition 2.9 and Corollary 2.11(a) to the particular case ofR = D + M


(special case of(þ+)), we know that the map


(−)ϕ : Star(D + M) → Star(D), ∗ �→ ∗ϕ = ∗D,


is surjective and order-preserving and it has the injective order-preserving map


(−)ϕ : Star(D) → Star(D + M), � �→ �ϕ,


as a right inverse. This fact gives a complete positive answer to a problem pos
D.F. Anderson (cf. [9, p. 226]).


3. Transfer of star properties


In this section we want to investigate the general problem of the transfer—i
pullback setting—of some relevant properties concerning the star operations inv
In particular, we pursue the work initiated by D.F. Anderson in [9] for the case o
“D + M”-constructions. We start by studying which of the properties (a) and (b
Example 2.19 hold in a more general setting.


Proposition 3.1. LetT , K, M, k, D, L, ϕ, andR be as in(þ+).


(a) Let R := {Rλ | λ ∈ Λ} be a family of overrings ofR contained inT such that⋂{Rλ | λ ∈ Λ} = R, and letD := {Dλ := ϕ(Rλ) | λ ∈ Λ} be the corresponding famil
of subrings ofk (with


⋂{Dλ | λ ∈ Λ} = D), then


(�R)ϕ = �D.


(b) If D := {Dλ | λ ∈ Λ} is a family of overrings ofD such that
⋂{Dλ | λ ∈ Λ} = D and


if R := {Rλ := ϕ−1(Dλ) | λ ∈ Λ} is the corresponding family of subrings ofT (with⋂{Rλ | λ ∈ Λ} = R), then in general


�R � (�D)ϕ.


Proof. (a) Note that in the present situationϕ−1(Dλ) = Rλ for eachλ ∈ Λ , D =⋂{Dλ | λ ∈ Λ}, and for each nonzero fractional idealJ of D, J (�R)ϕ = ϕ((ϕ−1(J ))�R)


(Proposition 2.7). Moreover,


ϕ
((


ϕ−1(J )
)�R) = ϕ


(⋂{
ϕ−1(J )Rλ


∣∣ λ ∈ Λ
}) = ϕ


(⋂{
ϕ−1(J )ϕ−1(Dλ)


∣∣ λ ∈ Λ
})


= ϕ
(
ϕ−1


(⋂
{JDλ | λ ∈ Λ}


))
= ϕ


(
ϕ−1(J �D


)) = J �D .


(b) Note that ϕ(Rλ) = ϕ(ϕ−1(Dλ)) = Dλ for each λ ∈ Λ. Therefore, by (a)
(�R)ϕ = �D , thus((�R)ϕ)ϕ = (�D)ϕ . If D = k, thenD = L is a field, thusD = {D} and
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R = {R}. So, obviously,�R = dR � (�D)ϕ . If D � k, then the conclusion follows from
Theorem 2.12. �


Proposition 3.1(a) can be generalized to a statement concerning a surjective homomo
phism between two integral domains:


Proposition 3.2. LetR, K, M, D, ϕ be as in Corollary2.4. Let{∗λ | λ ∈ Λ} be a family of
star operations ofR. Then (∧


∗λ


)
ϕ


=
∧


(∗λ)ϕ.


Proof. Let J be a nonzero fractional ideal ofD and lety be in the quotient fieldL of D.
Then


J∧(∗λ)ϕ =
⋂{


J (∗λ)ϕ
∣∣ λ ∈ Λ


}
=


⋂{(⋂{
yϕ


((
ϕ−1(y−1J


))∗λ
) ∣∣ J ⊆ yD


}) ∣∣∣ λ ∈ Λ
}


=
⋂{


y
(⋂{


ϕ
((


ϕ−1(y−1J
))∗λ


) ∣∣ λ ∈ Λ
}) ∣∣∣ J ⊆ yD


}
=


⋂{
yϕ


(⋂{(
ϕ−1(y−1J


))∗λ
∣∣ λ ∈ Λ


}) ∣∣∣ J ⊆ yD
}


=
⋂{


yϕ
((


ϕ−1(y−1J
))∧∗λ


) ∣∣ J ⊆ yD
} = J (∧∗λ)ϕ . �


Proposition 3.3. LetR, K, M, D, ϕ be as in Corollary2.4. Then


(dR)ϕ = dD.


Proof. For each nonzero fractional idealJ of D, we have


J (dR)ϕ =
⋂{


y−1ϕ
((


ϕ−1(yJ )
)dR


) ∣∣ y ∈ J−1, y �= 0
}


=
⋂{


y−1ϕ
((


ϕ−1(yJ )
)) ∣∣ y ∈ J−1, y �= 0


}
=


⋂{
y−1(yJ )


∣∣ y ∈ J−1, y �= 0
} = J = J dD. �


The next couple of examples explicitly showthat the inequalities in Theorem 2.12 a
Proposition 3.1(b) can be strict inequalities (i.e.,∗ � ((∗)ϕ)ϕ and�R � (�D)ϕ).


Example 3.4. Let T , K, M, k, D, ϕ, L, S, and R be as in(þ+). Assume, moreove
that T is local with nonzero maximal idealM, D = L is a proper subfield ofk, and that
T � M−1 = (R : M). In this situation,


dR � (dD)ϕ = (
(dR)ϕ


)ϕ
.
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With the notation of Proposition 3.1(b), takeD := {D}, henceR = {R}, thus �D =
dD = vD and�R = dR. In this situation, by Corollary 2.13,(�D)ϕ = vR . Therefore, by
Proposition 3.3 and Example 2.3(c) and (d),


(�D)ϕ = (dD)ϕ = (
(dR)ϕ


)ϕ = vR � dR = �R.


Note that it is possible to give an example in which∗ � ((∗)ϕ)ϕ anddR � (dD)ϕ , even
in the case thatD � L = k:


Example 3.5. Let D be a1-dimensional discrete valuation domain with quotient fieldL.
SetT := L[X2,X3], M := (X2,X3)L[X] = XL[X] ∩ T , andK := L(X). Letϕ andR be
as in(þ+) with L = k. Then,dR � vR = ((dR)ϕ)ϕ .


Since(dR)ϕ = dD = vD and (vD)ϕ = vR (Corollary 2.13), we have((dR)ϕ)ϕ = vR .
Now consider, for instance, the fractional idealT of R. We know, from Example 2.17, tha
T is not a divisorial ideal ofR, i.e.,T dR = T � T vR . Thus we havedR � vR = ((dR)ϕ)ϕ .


The next goal is to show that(tR)ϕ = tD (but, in general,tR � (tD)ϕ = ((tR)ϕ)ϕ ). We
start with a more general result concerning the preservation of the “finite type” prope


Proposition 3.6. Let T , K, M, k, D, ϕ, L, S, andR be as in(þ+). Let∗ be a given star
operation on the integral domainR.


(a) If ∗ is a star operation of finite type onR, then∗ϕ is a star operation of finite typ
onD.


(b) If ∗ is any star operation onR, then(∗f )ϕ = (∗ϕ)f .


Proof. (a) To prove the statement we will use the following facts:


(1) For each integral idealI of R such thatM ⊂ I ,


(
I


M


)∗ϕ


= (
ϕ(I)


)∗ϕ = ϕ
(
I∗) = I∗


M
(Proposition 2.7).


(2) For each nonzero idealI of R, (I + M)∗ ⊇ I∗ + M.
(3) For each nonzero idealJ of D and for eachy ∈ L with J ⊆ yD, if Fy is a finitely


generated ideal ofR such thatFy ⊆ Iy := ϕ−1(y−1J ), then yϕ(Fy) is a finitely
generated ideal ofD with yϕ(Fy) ⊆ J .


For each nonzero idealJ of D, we have


J ∗ϕ =
⋂{


yϕ
((


ϕ−1(y−1J
))∗) ∣∣ y ∈ L, J ⊆ yD


}
=


⋂{
yϕ


(
I∗
y


) ∣∣ y ∈ L, J ⊆ yD
}


=
⋂{


yϕ
(⋃{


F ∗
y


∣∣ Fy ⊆ Iy, Fy ∈ f (R)
}) ∣∣∣ y ∈ L, J ⊆ yD


}
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=
⋂{⋃{


yϕ
(
F ∗


y


) ∣∣ Fy ⊆ Iy, Fy ∈ f (R)
} ∣∣ y ∈ L, J ⊆ yD


}


=
⋂{⋃{


y
F ∗


y + M


M


∣∣∣∣ Fy ⊆ Iy, Fy ∈ f (R)


} ∣∣∣∣ y ∈ L, J ⊆ yD


}


⊆
⋂{⋃{


y
(Fy + M)∗


M


∣∣∣∣ Fy ⊆ Iy, Fy ∈ f (R)


} ∣∣∣∣ y ∈ L, J ⊆ yD


}


=
⋂{⋃{


y


(
Fy + M


M


)∗ϕ
∣∣∣∣ Fy ⊆ Iy, Fy ∈ f (R)


} ∣∣∣∣ y ∈ L, J ⊆ yD


}


=
⋂{⋃{


y
(
ϕ(Fy)


)∗ϕ
∣∣ Fy ⊆ Iy, Fy ∈ f (R)


} ∣∣ y ∈ L, J ⊆ yD
}


=
⋂{⋃{(


yϕ(Fy)
)∗ϕ


∣∣ Fy ⊆ Iy, Fy ∈ f (R)
} ∣∣ y ∈ L, J ⊆ yD


}
⊆


⋂{⋃{
G∗ϕ


∣∣ G ⊆ J, G ∈ f (D)
} ∣∣ y ∈ L, J ⊆ yD


}
=


⋃{
G∗ϕ


∣∣ G ⊆ J, G ∈ f (D)
} ⊆ J ∗ϕ ,


where we may assume eachFy �⊆ M so that we can use Fact (1).
Thus,J ∗ϕ = ⋃{G∗ϕ | G ⊆ J,G ∈ f (D)}.
(b) Since both(∗f )ϕ and(∗ϕ)f are star operations of finite type onD by (a), it suffices


to show that for each nonzero finitely generated idealJ of D, J (∗f )ϕ = J (∗ϕ)f . Recall that
if J is a nonzero finitely generated ideal ofD, thenϕ−1(J ) is a finitely generated idea
of R [20, Corollary 1.7]. Therefore,


J (∗ϕ)f = J ∗ϕ = {
yϕ


((
ϕ−1(y−1J


))∗) ∣∣ y ∈ L, J ⊆ yD
}


= {
yϕ


((
ϕ−1(y−1J


))∗f
) ∣∣ y ∈ L, J ⊆ yD


}
= J (∗f )ϕ . �


Proposition 3.7. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+). Then


(tR)ϕ = tD.


Proof. Easy consequence of Corollary 2.13 and Proposition 3.6(b).�
Remark 3.8. In the same situation of Example3.5, choosingD to be a Dedekind domai
with infinitely many prime ideals, we have


tR � (tD)ϕ = (
(tR)ϕ


)ϕ
.


Using Proposition 3.7, we have(tD)ϕ = ((tR)ϕ)ϕ . We claim that, in the present situatio
the set of the maximaltR-ideals ofR coincides with Max(R).


Note first that since dim(T ) = 1, the contraction toR of each nonzero prime idea
of T has height 1 [19, Theorem 1.4], so it is atR-prime of R [32, Corollaire 3, p. 31].
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Let Q ∈ Max(R). If Q �⊇ M, thenQ is the contraction of a prime ideal ofT , so Q is
a tR-prime. If Q ⊇ M, thenQ/M = (Q/M)vD = QvR /M by Proposition 2.7, and henc
we haveQvR = Q. Therefore, in this case also,Q is a tR-prime.


Note thatM is a divisorial prime ideal inR, hence in particularM is a primetR-ideal
and it is contained in infinitely many maximal (tR-)ideals, thereforeR is not a TV-domain,
i.e., tR �= vR [31, Theorem 1.3, Remark 2.5]. Since((dR)ϕ)ϕ = (dD)ϕ = (vD)ϕ = vR ,
automatically we have((tR)ϕ)ϕ = (tD)ϕ = vR . Thus, in this example, we havetR � (tD)ϕ .


Note also that this example shows that if� is a star operation of finite type onD, then�ϕ


is a star operation onR, which is not necessarily of finite type(e.g., take� := tD = (tR)ϕ).


In the pullback setting that we are considering,it is also natural to ask about the trans
of the property of being a “stable” star operation.


Proposition 3.9. Let T , K, M, k, D, ϕ, L, S, andR be as in(þ+) and let∗ be a star
operation onR. Then


∗̃ϕ = (̃∗ϕ).


Proof. If D = k, then sinceD = L is a field, obviously we havẽ∗ϕ = (̃∗ϕ). Assume tha
D � k.


Let J be a nonzero integral ideal ofD and let I := ϕ−1(J ). We first show tha
J ∗̃ϕ ⊆ J (̃∗ϕ). By Proposition 2.7,J ∗̃ϕ = I ∗̃/M. Moreover, recall that


J (̃∗ϕ) = {
y ∈ D


∣∣ yJ1 ⊆ J for some finitely generated idealJ1 of D such thatJ
∗ϕ


1 = D
}


(respectively,I ∗̃ = {x ∈ R | xI1 ⊆ I for some finitely generated idealI1 of R such that
I∗
1 = R}). Let y ∈ J ∗̃ϕ . Theny = ϕ(x) for somex ∈ I ∗̃. So xI1 ⊆ I for some finitely


generated idealI1 of R such thatI∗
1 = R. SetJ1 := ϕ(I1) = (I1 + M)/M. ThenJ1 is


nonzero finitely generated, and by Proposition 2.7,J
∗ϕ


1 = (I1 + M)∗/M = R/M = D.


SincexI1 ⊆ I , yJ1 = ϕ(xI1) ⊆ ϕ(I) = J , and hencey ∈ J (̃∗ϕ).


Conversely, letJ be a nonzero integral ideal ofD. If y ∈ J (̃∗ϕ) = J (̃∗ϕ)f = J (̃∗f )ϕ (Pro-


position 3.6(b)), thenyJ1 ⊆ J for some finitely generated idealJ1 such thatJ
(∗f )ϕ
1 = D.


Set I1 := ϕ−1(J1). SinceJ
(∗f )ϕ
1 = I


∗
f


1 /M = D (Proposition 2.7),I
∗f


1 = R. Therefore,
there exists a finitely generated subidealI0 of I1 such thatI∗


0 = R. Write y := ϕ(x) for
somex ∈ R. SincexI0 ⊆ xI1 ⊆ I := ϕ−1(J ), x ∈ I ∗̃, and hence (using Proposition 2
again)y ∈ I ∗̃/M = J (∗̃)ϕ . �
Corollary 3.10. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+). Then


(wR)ϕ = wD.


Proof. Recall thatwR = ṽR and wD = ṽD . The conclusion follows from Propos
tion 3.9. �
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Remark 3.11. The example considered in Remark3.8 shows that we can havewR �
((wR)ϕ)ϕ = (wD)ϕ .


Since Max(R) = M(tR) (= the set of the maximaltR-ideals, according to the notatio
in Example 1.3(e)),wR = �M(tR) = dR . In particular,T wR = T . On the other hand, w
know that ((dR)ϕ)ϕ = (dD)ϕ = (vD)ϕ = vR . Thus we have((wR)ϕ)ϕ = (wD)ϕ = vR .
As we have already noticed (Example 3.5),T is not a divisorial ideal ofR, i.e., T vR �
T = T wR . Thus, in this case, we havewR � (wD)ϕ .


Since the stable star operation∗̃ is a particular type of spectral star operation, the n
goal is a possible extension of Proposition 3.9 tothe case of spectral star operations.
start with the following lemma.


Lemma 3.12. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+). Assume thatD � k.


(a) Let P be a prime ideal ofR containingM. SetQ := ϕ(P ) andR(P,ϕ) := ϕ−1(DQ).
ThenR(P,ϕ) = RP ∩ T .


(b) Let ∆( �= ∅) ⊆ Spec(R) and assume that∗ := �∆ ∈ Star(R). Set∆1 := {P ∈ ∆ |
P ⊇ M}. For each nonzero integral idealI of R containingM, we have


I∗ =
⋂


{IR(P,ϕ) | P ∈ ∆1}.


(Note that∆1 �= ∅.)


Proof. (a) is straightforward.
(b) If M = (0), then ∆ = ∆1 and R(P,ϕ) = RP , so it trivially holds. Assume tha


M �= (0). Let I be an integral ideal ofR containingM. Recall that for eachP ∈ ∆ \ ∆1,
there exists a uniqueP ′ ∈ Spec(T ) such thatP ′ ∩R = P andRP = TP ′ [19, Theorem 1.4]
hence in particular∆1 �= ∅ (otherwise�∆ would not be a star operation onR). We have


I∗ =
⋂


{IRP | P ∈ ∆} =
(⋂


{IRP | P ∈ ∆1}
)


∩
(⋂


{IRP | P ∈ ∆ \ ∆1}
)


=
(⋂


{IRP | P ∈ ∆1}
)


∩
(⋂


{RP | P ∈ ∆ \ ∆1}
)


⊇
(⋂


{IRP | P ∈ ∆1}
)


∩ T ⊇
⋂


{IR(P,ϕ) | P ∈ ∆1}.


Conversely, letx ∈ I∗ and letP ∈ ∆1 (which is nonempty). Then there existss ∈ R \P


such thatsx ∈ I . Sinceϕ(s) ∈ D \ ϕ(P ), ϕ(s) is a unit element ofDϕ(P), and hence ther
existst ∈ R(P,ϕ) such thatϕ(t)ϕ(s) = 1, or equivalently,ts −1∈ M. Putts −1 =: m ∈ M,
thentsx = (1 + m)x = x + mx. Sincetsx ∈ IR(P,ϕ) andmx ∈ MI∗ ⊆ MR = M ⊆ I ⊆
IR(P,ϕ), we havex = tsx − mx ∈ IR(P,ϕ). �
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Proposition 3.13. LetT , K, M, k, D, ϕ, L, S, andR be as in(þ+). Let∆ be a nonempty
set of prime ideals ofR and assume that∗ := �∆ ∈ Star(R). Set∆ϕ := {ϕ(P ) | P ∈
∆,P ⊇ M} (⊆ Spec(D)). Then


(�∆)ϕ = �∆ϕ .


Proof. If D = k, then sinceD = L is a field, we obviously have(�∆)ϕ = �∆ϕ . Assume
that D � k, then∆ϕ �= ∅. Let J be a nonzero integral ideal ofD and letI := ϕ−1(J ).
Set ∆1 = {P ∈ ∆ | P ⊇ M}, hence∆ϕ = {ϕ(P ) | P ∈ ∆1}. Since I is an integral
ideal of R containing M, I∗ = ⋂{IR(P,ϕ) | P ∈ ∆1} by Lemma 3.12(b), and so
using Proposition 2.7, we haveJ ∗ϕ = ϕ(I∗) = ⋂{ϕ(I)Dϕ(P ) | P ∈ ∆1} = ⋂{JDϕ(P ) |
P ∈ ∆1} = ⋂{JDQ | Q ∈ ∆ϕ} = J �∆ϕ . �
Remark 3.14.


(1) Note that from Proposition 3.13 we can deduce another proof of Proposition
As a matter of fact, for each star operation∗ on R, ∗̃ = �∆, where∆ := M(∗f )


(Example 1.3(e)). In the present situation,∆1 := {P ∈ M(∗f ) | P ⊇ M}. By using
Propositions 2.7 and 3.6(b), it is easy to see that


P ∈ ∆1 ⇐⇒ Q := ϕ(P ) ∈ M
(
(∗ϕ)f


)
.


(2) Note that if� := �∆ is a spectral star operation onD, then �ϕ is not necessarily
a spectral star operation onR (in particular, (�∆)ϕ �= �∆ϕ , where ∆ϕ := {P ∈
Spec(R) | ϕ(P ) ∈ ∆}).
To show this fact, letD be a 1-dimensional discrete valuation domain with quot
field L and maximal idealN . Let T := L[[X2,X3]] and let M := X2L[[X]] =
XL[[X]] ∩ T . Under these hypotheses, letR be the integral domain defined (as
pullback of type(þ+)) from D, T and the canonical projectionϕ :T → L. Then,R is
a 2-dimensional non-Noetherian local domain. Let∆ := Max(D) = {N}. Then� :=
�∆ = dD = vD and�ϕ = (vD)ϕ = vR (Corollary 2.13). Since∆ϕ = Max(R), �∆ϕ =
dR. Suppose that�ϕ is spectral, then by Propositions 3.13 and 2.9, we have neces
that�ϕ coincides with�∆ϕ , i.e.,vR = �ϕ = �∆ϕ = dR. This is a contradiction, since


T vR = (
R :K (R :K T )


) = (R :K M) ⊇ L[[X]] � T = T dR .


Proposition 3.15. Let T , K, M, k, D, ϕ, L, S, and R be as in(þ+). If ∗ is an a.b.
(respectively e.a.b.) star operation onR, then ∗ϕ is an a.b. (respectively e.a.b.) star
operation onD.


Proof. Let J be a nonzero finitely generated ideal ofD and letJ1, J2 be two arbitrary
nonzero ideals ofD such that(JJ1)


∗ϕ ⊆ (JJ2)
∗ϕ . Set I := ϕ−1(J ), Ii := ϕ−1(Ji) for


i = 1,2. SinceJ is finitely generated andIS = S (becauseI ⊃ M andM is a maximal
ideal of S), there exists a finitely generated subidealI0 of I such thatϕ(I0) = J and
I0S = S. Then, by Proposition 2.7, we have(I0I1 + M)∗ ⊆ (I0I2 + M)∗. Note that
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I0Ii ⊇ I0M = I0MS = I0SM = SM = M for i = 1,2, thus we have(I0I1)
∗ ⊆ (I0I2)


∗.
SinceI0 is finitely generated and∗ is an a.b. star operation,I1


∗ ⊆ I2
∗ and soJ1


∗ϕ ⊆ J2
∗ϕ .


The statement for the e.a.b. case followsfrom Proposition 3.6(b) and from the fact that∗
is e.a.b. if and only if∗f is a.b.. �
Remark 3.16.


(1) Under the assumption of Proposition3.15, if vR is e.a.b., then(vR)ϕ = vD is e.a.b.. In
other words, ifR is a vR-domain, thenD is a vD-domain[26, p. 418].


(2) Let � be an a.b.(respectively e.a.b.) star operation onD. Then, in general,�ϕ is not
an a.b.(respectively e.a.b.) star operation onR.
To show this fact, takeD, T , andR as in Remark 3.14(2). SinceD is a 1-dimensiona
discrete valuation domain, its unique star operationdD (= bD = vD) is an a.b. sta
operation (and hence an e.a.b. star operation). SinceR is not integrally closed (becaus
X ∈ K \ R is integral overR), R has no e.a.b. star operations (and hence no a.b
operations).
Note that it is possible to give an example of this phenomenon also withR integrally
closed.


Example 3.17. LetD be a1-dimensional discrete valuation domain with quotient fieldL,
let T := L[X,Y ] and M := (X,Y )L[X,Y ]. Under these hypotheses, letR := D +
(X,Y )L[X,Y ] be the integral domain defined(as a pullback of type(þ+)) from D, T and
the canonical projectionϕ :T → L. Then(bD)ϕ is not e.a.b.(and hence not a.b.) onR.


Note that M is a divisorial ideal ofR of finite type, in fact,M = IvR , where
I := (X,Y )R. Now, choosea1, a2 ∈ D \ (0) such thata1D �⊆ a2D (e.g., puta1 := a,
a2 := a2, wherea is a nonzero nonunit element inD). Set I1 := a1R and I2 := a2R.
Then(IIi )


vR = (aiI )vR = aiI
vR = aiM = M (where the last equality holds becauseai is


a unit inT ) for eachi = 1,2. Thus we have(II1)
vR = (II2)


vR . On the other hand, sinc
(Ii )


vR = Ii = aiR = ai(D + M) = aiD + M for eachi = 1,2, anda1D �⊆ a2D, we have
that (I1)


vR �⊆ (I2)
vR . Therefore,vR is not an e.a.b. operation. SinceD is a 1-dimensiona


discrete valuation domain, the unique star operationdD = bD = vD on D is an a.b. sta
operation (and hence an e.a.b. star operation), butvR = (vD)ϕ (Corollary 2.13) is not e.a.b
(and hence not a.b.).


Recall that given an integral domainT , the paravaluation subrings ofT , in Bourbaki’s
sense [14, Chapter 6, §1, Exercise 8], are the subrings ofT obtained as an intersection
T with a valuation domain having the same quotient field asT . It is easy to see that ifR is
a subring ofT then the integral closure ofR in T coincides with the intersection of all th
paravaluation subrings ofT containingR [14, Chapter 6, §1, Exercise 9].


Lemma 3.18. Let T , K, M, k, D, ϕ, L, S, andR be as in(þ+). Assume thatD � L = k.
Assume, moreover, thatD is integrally closed(or equivalently, thatR is integrally closed
in T ). Let P := P(R,T ) (respectivelyV , V1, W) be the set of all the paravaluatio
subrings ofT containingR (respectively the set of all valuation overrings ofR; the set
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of all valuation overrings(V1,N1) of R such thatN1 ∩ R ⊇ M; the set of all the valuation
overrings ofD). SetbR,T := �P (respectivelybR := �V , �1 := �V1, bD := �W ). Then


(a) bR,T (respectivelybD) is a star operation onR (respectively onD); bR and �1 are
semistar operations onR. Moreover,


bR,T � �1 ∧ �{T } � bR.


(b) (bR,T )ϕ = bD.
(c) If R is integrally closed(which happens ifT is integrally closed), then�1 ∧ �{T } and


bR are star operations onR. Moreover,(bR)ϕ = bD andbR � (bD)ϕ .
(d) If T := V is a valuation domain, thenbR,T = �1 = �1 ∧ �{T } = bR.


Proof. Note that if (V2,N2) ∈ V \ V1, thenN2 ∩ R �⊇ M, and so there exists a uniqu
prime idealQ2 in T such thatRN2∩R = TQ2 [19, Theorem 1.4]. Therefore,V2 ⊇ RN2∩R =
TQ2 ⊇ T .


(a) The first part of this statement is an obvious consequence of the definitions a
assumption thatR is integrally closed inT (and equivalently,D is integrally closed [19
Corollary 1.5]). For eachI ∈ F (R), we have


IbR =
⋂


{IV | V ∈ V} =
(⋂


{IV1 | V1 ∈ V1}
)


∩
(⋂


{IV2 | V2 ∈ V \ V1}
)


⊇
(⋂


{IV1 | V1 ∈ V1}
)


∩ IT = I�1 ∩ I�{T } ⊇
(⋂{


I (V1 ∩ T )
∣∣ V1 ∈ V1


})
⊇


(⋂{
I (V ∩ T )


∣∣ V ∈ V
}) = IbR,T .


(b) Note that sinceL is a field, the paravaluation subrings ofL containingD coincide
with the valuation rings inL containingD [14, Chapter 6, §1, Exercise 8(d)]. Moreover
W is a valuation overring ofD, thenϕ−1(W) is a paravaluation subring ofT containingR
[14, Chapter 6, §1, Exercise 8(c)]. On the other hand, ifV ′ ∩ T is a paravaluation
subring ofT (whereV ′ is a valuation domain in the fieldK, quotient field ofR), then
necessarilyϕ(V ′ ∩T ) is a paravaluation subring ofϕ(T ) = L, i.e., it is a valuation domain
in L containingD [14, Chapter 6, §1, Exercise 8(d)]. Therefore, for eachJ ∈ F (D),
ϕ−1(J bD) = (ϕ−1(J ))bR,T . Now, we can conclude, since we know that for eachJ ∈ F (D),
J (bR,T )ϕ = ((ϕ−1(J ))bR,T )/M (Proposition 2.7).


(c) If R is integrally closed, thenbR is a star operation onR [26, Corollary 32.8], and
so by (a) it follows that�1 ∧ �{T } is also a star operation onR.


Let W = {Wλ | λ ∈ Λ}. For eachλ ∈ Λ, let Rλ := ϕ−1(Wλ). Then, by the argumen
used in the proof of (b), we haveP = {Rλ | λ ∈ Λ}. Denote byA′ the integral closure o
an integral domainA. SinceRλ is integrally closed inT , Rλ = Rλ


′ ∩ T . Let ι′λ :Rλ ↪→ Rλ
′


and ιλ :Rλ ↪→ T be the canonical embeddings, and set∗λ := (bRλ
′)ι


′
λ ∧ (dT )ιλ for each


λ ∈ Λ (note that(dT )ιλ coincides with the semistar operation�{T } on Rλ ). Then∗λ is a
star operation onRλ (see also [2, Theorem 2]).


Claim 1. Let I be an integral ideal ofR properly containingM. Then(IRλ)
∗λ = IRλ.
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Let Qλ be the maximal ideal of the valuation domainWλ. If ϕ(IRλ) = (IRλ)/M �=
yQλ for all y ∈ L\ (0), then sinceϕ(IRλ) is a divisorial ideal of the valuation domainWλ,
ϕ(IRλ) = ϕ((IRλ)


∗λ) (and hence,(IRλ)
∗λ = IRλ) by Proposition 2.7. Assume th


ϕ(IRλ) = (IRλ)/M = yQλ for somey ∈ L \ (0). Chooses ∈ S \ M such thatϕ(s) = y


and let Pλ := ϕ−1(Qλ) � Rλ. Then IRλ = sPλ + M, and by the claim in the proo
of Proposition 2.7, we have(IRλ)


∗λ = sPλ
∗λ + M. By (b), Rλ = Vλ ∩ T for some


valuation overringVλ of R, which has centerPλ onRλ, thusPλ
∗λ = (PλRλ


′)bRλ
′ ∩ PλT ⊆


PλVλ ∩ T = Pλ. Therefore, in either case, we have(IRλ)
∗λ = IRλ.


Claim 2. (bR)ϕ � (bR,T )ϕ (= bD by (b)).


It suffices to show that for each nonzero integral idealJ of D, J (bR)ϕ ⊆ J (bR,T )ϕ , i.e.,
for each integral idealI of R properly containingM, IbR ⊆ IbR,T . Let I be such an idea
Then


IbR,T =
⋂


{IRλ | λ ∈ Λ} =
⋂{


(IRλ)
∗λ


∣∣ λ ∈ Λ
} =


⋂{(
IR′


λ


)bR′
λ ∩ IT


∣∣ λ ∈ Λ
}


=
⋂{(


IR′
λ


)bR′
λ ∩ T


∣∣ λ ∈ Λ
} =


⋂{(
IR′


λ


)bR′
λ


∣∣ λ ∈ Λ
} ∩ T


=
⋂{⋂{


IV
∣∣ V ∈ Vλ := {


valuation overrings ofR′
λ


}} ∣∣ λ ∈ Λ
}


∩ T


⊇
⋂


{IV | V ∈ V} = IbR .


Therefore, by Claim 2, (a), and the first part of (c), we conclude that(bR)ϕ = bD .
Finally, by Theorem 2.12, we havebR � ((bR)ϕ)ϕ = (bD)ϕ .


(d) If T := V is a valuation domain, then each valuation overring ofR is comparable
with V . As a matter of fact, ifV ′ is a valuation overring ofR andV ′ �⊆ V , then there exist
y ∈ V ′ \ V , hencey−1 ∈ M, thus for eachv ∈ V , we havev = v(y−1y) = (vy−1)y ∈
MV ′ ⊆ V ′. Therefore,V ⊆ V ′. From this observation, we immediately deduce that w
T is a valuation domain,bR,T = �1 = �1 ∧ �{T } = bR. �
Remark 3.19. In a pullback situation of type(þ+), whenD is integrally closed, we hav
already noticed that ifR is not integrally closed, then there is no hope that(bD)ϕ = bR


(Remark 3.16(2)). More explicitly, Example 3.17 shows that we can havebR � (bD)ϕ ,
even whenR is integrally closed. The next example shows thatbR � (bD)ϕ is possible
even under the hypotheses of Lemma 3.18(d).


Example 3.20. Let T := V be a valuation domain with maximal idealM and letϕ :V →
V/M =: k be the canonical projection. LetD be a Dedekind domain with infinitely man
prime ideals and with quotient fieldL = k. SetR := ϕ−1(D). ThenbR � (bD)ϕ .


By the same argument as in Remark 3.8, we can see thatR is not a TV-domain,
i.e., tR �= vR . Meanwhile, sinceR is a Prüfer domain,bR = dR = tR , and sinceD is a
Dedekind domain,bD = vD and so(bD)ϕ = (vD)ϕ = vR (Corollary 2.13). Therefore, w
havebR = tR � vR = (bD)ϕ .
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