
Journal of Pure and Applied Algebra 220 (2016) 2897–2913
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Spectral spaces of semistar operations ✩

Carmelo A. Finocchiaro, Marco Fontana ∗, Dario Spirito
Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2015
Received in revised form 22 
December 2015
Available online 5 February 2016
Communicated by S. Iyengar

MSC:
13A15; 13G05; 13B10; 13E99; 
13C11; 14A05

We investigate, from a topological point of view, the classes of spectral semistar 
operations and of eab semistar operations, following methods recently introduced 
in [11,13]. We show that, in both cases, the subspaces of finite type operations are 
spectral spaces in the sense of Hochster and, moreover, that there is a distinguished 
class of overrings strictly connected to each of the two types of collections of 
semistar operations. We also prove that the space of stable semistar operations 
is homeomorphic to the space of Gabriel–Popescu localizing systems, endowed with 
a Zariski-like topology, extending to the topological level a result established in [14]. 
As a side effect, we obtain that the space of localizing systems of finite type is also 
a spectral space. Finally, we show that the Zariski topology on the set of semistar 
operations is the same as the b-topology defined recently by B. Olberding [37,38].

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1936, W. Krull introduced, in his first Beiträge paper [32] (see also [33]), the concept of a “special” 
closure operation on the nonzero fractional ideals, called star operation. If D is an integral domain with 
quotient field K, in 1994, Okabe and Matsuda [35] suggested the terminology of semistar operation for a 
more “flexible” and general notion of a closure operation �, defined on the set of nonzero D-submodules 
of K, allowing D �= D�. However, it is worth noting that this kind of operation was previously considered by 
J. Huckaba, in the very general setting of rings with zero divisors [25, Section 20] (cf. also [23, Section 32], 
[1–3,9,10,16,26–29]).

The set of semistar operations on a domain D can be endowed with a topology (called the Zariski 
topology), as in [13], in such a way that both the prime spectrum of D and the set of overrings of D are 
naturally topologically embedded in it. This topology was used to study the problem of when the semistar 
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operation defined by a family of overrings is of finite type [5, Problem 44]. Subsequently, it was proved that 
the set of semistar operations of finite type is a spectral space.

The purpose of this paper is to deepen and specialize the study of the Zariski topology on SStar(D) to the 
case of the distinguished subspaces SStar(D) (Sections 3 and 4) and SStareab (D) (Section 5) comprising, 
respectively, the stable and the eab semistar operations. We will show that, in both cases, there is a 
topological retraction to the set of finite type operations and that there is a distinguished class of overrings 
connected to each of the two types of collections of semistar operations. We will also show that both the set 
of finite type spectral operations and the set of finite type eab operations are spectral spaces, reducing the 
latter case to the former. However, the proofs given here are not constructive, and provide only vague hints on 
how such a ring might look like. We also prove that the space of stable semistar operations is homeomorphic 
to the space of Gabriel–Popescu localizing systems, endowed with a natural topology (described later), 
extending to the topological level a result established in [14]. As a side effect, we obtain that the space of 
localizing systems of finite type is also a spectral space. Finally, we show that the Zariski topology on the 
set of semistar operations is the same as the b-topology defined by Olberding [37,38].

2. Preliminaries

Throughout this paper, let D be an integral domain with quotient field K. Let F (D) [respectively, F (D); 
f(D)] be the set of all nonzero D-submodules of K [respectively, nonzero fractional ideals; nonzero finitely 
generated fractional ideals] of D (thus, f(D) ⊆ F (D) ⊆ F (D)).

A mapping � : F (D) −→ F (D), E �→ E�, is called a semistar operation of D if, for all z ∈ K, z �= 0
and for all E, F ∈ F (D), the following properties hold: (�1) (zE)� = zE�; (�2) E ⊆ F ⇒ E� ⊆ F �; 
(�3) E ⊆ E�; and (�4) E�� := (E�)� = E�.

When D� = D, the restriction of � to F (D) is called a star operation (see [23, Section 32] for more 
details).

As in the classical star-operation setting, we associate to a semistar operation � of D a new semistar 
operation �f of D defining, for every E ∈ F (D),

E�f :=
⋃

{F � | F ⊆ E,F ∈ f(D)}.

We call �f the semistar operation of finite type of D associated to �. If � = �f , we say that � is a semistar 
operation of finite type on D. Note that (�f )f = �f , so �f is a semistar operation of finite type on D.

We denote by SStar(D) [respectively, SStarf (D)] the set of all semistar operations [respectively, semistar 
operations of finite type] on D. Given two semistar operations �′ and �′′ of D, we say that �′ � �′′ if 
E�′ ⊆ E�′′ , for all E ∈ F (D). The relation “�” introduces a partial ordering in SStar(D). From the 
definition of �f , we deduce that �f � � and that �f is the largest semistar operation of finite type smaller 
or equal to �.

Let S be a nonempty set of semistar operations on D. For each E ∈ F (D), define ∧S as follows:

E∧S :=
⋂

{E� | � ∈ S }.

It is easy to see that ∧S is a semistar operation on D and it is the infimum of S in the partially ordered set 
(SStar(D), �). The semistar operation ∨S :=

∧
{σ ∈ SStar(D) | � � σ for all � ∈ S } is the supremum 

of S in (SStar(D), �).
A nonzero ideal I of D is called a quasi-�-ideal if I = I�∩D. A quasi-�-prime is a quasi-�-ideal which is also 

a prime ideal. The set of all quasi-�-prime ideals of D is denoted by QSpec�(D). The set of maximal elements 
in the set of proper quasi-�-ideals of D (ordered by set-theoretic inclusion) is denoted by QMax�(D) and it 
is a subset of QSpec�(D). It is well known that if � is a semistar operation of finite type then QMax�(D)
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is nonempty [16, Lemma 2.3(1)]. A semistar operation � is called quasi-spectral (or semifinite) if each 
quasi-�-ideal is contained in a quasi-�-prime.

In [13], the set SStar(D) of all semistar operation was endowed with a topology (called the Zariski 
topology) having, as a subbasis of open sets, the sets of the type VE := {� ∈ SStar(D) | 1 ∈ E�}, where E
is a nonzero D-submodule of K. This topology makes SStar(D) into a quasi-compact T0 space.

For each overring T of D, we can define a semistar operation of finite type ∧{T} : F (D) → F (D) by 
setting E∧{T} := ET , for each E ∈ F (D). If we have a whole family T of overrings of D, we can consider 
the semistar operation ∧T :=

∧
{∧{T} | T ∈ T }.

For future reference, we state an embedding property that will be used later several times.

Proposition 2.1. Let Overr(D) be the set of all overrings of D, endowed with the topology whose basic open 
sets are of the form Overr(D[x1, x2, . . . , xn]), for x1, x2, . . . , xn varying in K.

(1) The map ι : Overr(D) → SStarf(D), defined by ι(T ) := ∧{T}, for each T ∈ Overr(D), is a topological 
embedding.

(2) The map π : SStarf(D) → Overr(D), defined by π(�) := D�, for any � ∈ SStarf(D), is a continuous 
surjection.

(3) π ◦ ι is the identity map of Overr(D), that is, π is a topological retraction.

Proof. Part (1) is [13, Proposition 2.5], while parts (2) and (3) follow from the fact that

π−1(Overr(D[x])) = SStarf (D) ∩ Vx−1D. �
Remark 2.2. Note that, by [13, Proposition 2.4(2)], a statement completely analogous to Proposition 2.1
holds when SStar(D) replaces everywhere SStarf (D).

Recall that two different points x, y of a topological space are topologically distinguishable if there is an 
open set which contains one of these points and not the other. Obviously, the previous property holds for any 
pair of distinct points if and only if the space is T0. On the other hand, “topological indistinguishability” of 
points is an equivalence relation. No matter what topological space X might be to begin with, the quotient 
space under this equivalence relation is always T0. This quotient space is called the Kolmogoroff quotient 
space of X.

Let X be a spectral space (i.e., a topological space that is homeomorphic to the prime spectrum of a ring, 
endowed with the Zariski topology). It is possible to consider on X another topology (see [24, Proposition 8]) 
defined by taking the collection of all the open and quasi-compact subspaces of X as a basis of closed sets. 
This topology is called the inverse topology on X. Note that, by definition, the closure of a subset Y of X, 
with respect to the inverse topology, is given by

⋂
{U | U ⊆ X open and quasi-compact, Y ⊆ U} .

3. Stable semistar operations and localizing systems

A semistar operation � defined on an integral domain D is called stable provided that, for any E, H ∈
F (D), we have (E ∩H)� = E� ∩H�. We denote by SStar(D) the set of stable semistar operations on D.

Proposition 3.1. Let D be an integral domain and let ι : Overr(D) −→ SStarf(D) be the topological embed-
ding defined in Proposition 2.1. If T ∈ Overr(D), then ι(T ) ∈ SStar(D) if and only if T is flat over D.
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Proof. It is enough to note that the equality (I ∩ J)T = IT ∩ JT holds for every ideal I, J of D if and only 
if T is flat (see [40, Proposition 1.7] and [34, Theorem 7.4(i)]). �

Given a semistar operation � on D, we can always associate to � a stable semistar operation � by defining, 
for every E ∈ F (D),

E� :=
⋃

{(E : I) | I nonzero ideal of D such that I� = D�}.

It is easy to see that � � � and, moreover, that � is the largest stable semistar operation that precedes �. 
Therefore, � is stable if and only if � = � [14, Proposition 3.7, Corollary 3.9].

Proposition 3.2. Let D be an integral domain, and denote by I the set of nonzero ideals of D. Let also 
Φ : SStar(D) → SStar(D) be the map defined by Φ(�) := �, for each � ∈ SStar(D).

(1) The set {VI ∩ SStar(D) | I ∈ I} is a subbasis for SStar(D).
(2) If SStar(D) is endowed with the Zariski topology, Φ is a topological retraction.
(3) If SStar(D) is endowed with the topology generated by the family {VI | I ∈ I}, then Φ is the canonical 

map onto the Kolmogoroff quotient space of SStar(D).

Proof. (1) For any nonzero D-submodule E of K, and any stable semistar operation �, we have 1 ∈ E� if 
and only if 1 ∈ E� ∩D� = (E ∩D)�. Therefore, � ∈ VE if and only if � ∈ VE∩D. The claim follows.

(2) We claim that, if I is an ideal of D, Φ−1(VI ∩ SStar(D)) = VI . Indeed, if � ∈ VI then 1 ∈ I�, so 
1 ∈ (I : I) ⊆ I� and Φ(�) ∈ VI ∩ SStar(D). Conversely, if � ∈ Φ−1(VI ∩ SStar(D)), then Φ(�) ∈ VI , and 
thus 1 ∈ (I : E) for some E ∈ I such that E� = D�. But this means that E ⊆ I, and so 1 ∈ I�, i.e., � ∈ VI . 
Hence, Φ is continuous.

Since � is stable if and only if � = � [14, Proposition 3.7, Corollary 3.9], it follows that Φ is a topological 
retraction.

(3) Since, by the previous point, Φ−1(VI∩SStar(D)) = VI , the map Φ is continuous even when SStar(D)
is endowed with the weaker topology. To show that Φ is the canonical map onto the Kolmogoroff quotient 
space of SStar(D), it is enough to show that �1 = �2 if and only if �1 ∈ VI is equivalent to �2 ∈ VI .

Suppose �1 = �2, and let I be an ideal of D such that �1 ∈ VI , that is, 1 ∈ I�1 . By definition, 1 ∈ (I : I) ⊆
I�1 = I�2 ⊆ I�2 . It follows that �2 ∈ VI . By symmetry, we deduce that if �2 ∈ VI then �1 ∈ VI .

Conversely, suppose that �1 ∈ VI if and only if �2 ∈ VI . Then, I�1 = D�1 if and only if I�2 = D�2 ; a direct 
application of the definition of the stable semistar operations canonically associated shows that �1 = �2

(cf. [14, p. 182]). �
Remark 3.3. Recall that for any star operation ∗ on an integral domain D with quotient field K and for 
any E ∈ F (D), we can consider the map ∗e defined by

E∗e :=
{
E∗ if E ∈ F (D),
K if E ∈ F (D) \ F (D).

The map E �→ E∗e defines a semistar operation on D such that D∗e = D, called the trivial semistar 
extension of ∗. Note that, even if ∗ is a stable star operation, ∗e is not always stable: for example, let D
be a Dedekind domain with exactly two maximal ideals, P and Q, and let ∗ be the identity star operation. 
Then, DP and DQ are not fractional ideals of D [13, Example 5.7], and thus D∗e

P = K = D∗e

Q . On the other 
hand, (DP ∩DQ)∗e = D∗e = D.
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Proposition 3.4. Let ∗ be a stable star operation on an integral domain D. There is exactly one stable 
semistar operation � on D such that �|F (D) = ∗.

Proof. Suppose there exist two stable semistar extensions �1 and �2 of the star operation ∗, i.e., �1|F (D) =
�2|F (D) = ∗. Since SStar(D) is T0, there is a subbasic open set UI := VI ∩ SStar(D), with I a proper ideal 
of D, such that �1 ∈ UI but �2 /∈ UI (or conversely). But this would imply I∗ = I�1 �= I�2 = I∗, which is 
absurd.

For the existence, consider the semistar operation � := ∗e, where ∗e is the trivial semistar extension of 
∗ defined in Remark 3.3; by definition, � is a stable semistar operation. On the other hand, since D� = D, 
if I is a nonzero D-submodule of K such that I� = D�, then I is an ideal in D. It follows that �|F (D) is the 
stable closure of ∗ as a star operation, as defined in [2, Definition 2.2]. However, since ∗ is already stable, 
we have �|F (D) = ∗, i.e., � is an extension of ∗. �

Our next goal is to establish a topological connection between stable operations and localizing systems.
A localizing system on D is a subset F of ideals of D such that:

• if I ∈ F and J is an ideal of D such that I ⊆ J , then J ∈ F ;
• if I ∈ F and J is an ideal of D such that, for each i ∈ I, (J :D iD) ∈ F , then J ∈ F .

A localizing system F is of finite type if for each I ∈ F there exists a nonzero finitely generated ideal 
J ∈ F with J ⊆ I. For instance, if T is an overring of R, F(T ) := {I | I ideal of D, IT = T} is a localizing 
system of finite type. On the other hand, if V is a valuation domain and P is a nonzero idempotent prime 
ideal of V , then F̂(P ) := {I | I ideal of V and I ⊇ P} is a localizing system of V which is not of finite type. 
Given a localizing system F of an integral domain D, then

Ff := {I ∈ F | I ⊇ J, for some nonzero finitely generated ideal J ∈ F}

is a localizing system of finite type of D, and F = Ff if and only if F is a localizing system of finite type.
We denote by LS(D) [respectively, LSf (D)] the set of all localizing systems [respectively, localizing systems 

of finite type] on D. For further details on localizing systems, see [4, Chapter II, §2, Exercises 17–25] or [14, 
Sections 2 and 3].

It is well known that, to each localizing system F , we can associate a semistar operation �F defined, for 
each E ∈ F (D), as follows:

E�F :=
⋃

{(E : H) | H ∈ F}.

The assignment F �→ �F defines a map λ : LS(D) → SStar(D). By [14, Theorem 2.10, Corollary 2.11, and 
Proposition 3.2], λ is an injective map whose image is exactly SStar(D).

On the set LS(D) of localizing systems on D we can introduce a natural topology, that we still call the 
Zariski topology, whose subbasic open sets are the WI := {F ∈ LS(D) | I ∈ F}, as I varies among the ideals 
of D.

Proposition 3.5. Let D be an integral domain. The map λ : LS(D) → SStar(D), F �→ �F , establishes a 
homeomorphism between spaces endowed with the Zariski topologies.

Proof. By the previous remarks, we only need to show that λ is continuous and open. Let UI be a subbasic 
open set of SStar(D). Then,
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λ−1(UI) = {F ∈ LS(D) | �F ∈ UI} =
= {F ∈ LS(D) | 1 ∈ (I : H) for some H ∈ F} =
= {F ∈ LS(D) | H ⊆ I for some H ∈ F} =

⋃
H⊆I WH ,

and thus λ is continuous. Moreover, 
⋃

H⊆I WH = WI : indeed, if F ∈ WH then H ∈ F , and so I ∈ F , while 
the left hand union trivially contains WI . Therefore, λ−1(UI) = WI , and, since λ is bijective, λ(WI) = UI . 
Therefore, λ is both continuous and open, and thus a homeomorphism. �
4. Spectral semistar operations

If Y is a subset of the prime spectrum Spec(D) of an integral domain D, then we define the semistar 
operation sY induced by Y as the semistar operation associated to the set T (Y ) := {DP | P ∈ Y }, i.e.,

EsY :=
⋂

{EDP | P ∈ Y }, for every E ∈ F (D).

If Y = ∅, we have an empty intersection, and we set as usual Es∅ := K for every E ∈ F (D) (or, equivalently, 
s∅ := ∧{K}).

A semistar operation of the type sY , for some Y ⊆ Spec(D), is called a spectral semistar operation.
Note that, if we take Y = {(0)}, we also have that sY = ∧{K}. Therefore, without loss of generality, in 

the definition of spectral semistar operation we can assume ∅ �= Y ⊆ Spec(D).
Denote by SStarsp (D) the set of spectral semistar operations, and by SStarf,sp (D) the set of spectral 

semistar operations of finite type.
Since each localization of D is D-flat, and the infimum of a family of stable semistar operation is again 

stable, using Proposition 3.1 we see that every spectral semistar operation is stable. On the other hand, 
not every stable operation is spectral; however, a stable semistar operation is spectral if and only if it is 
quasi-spectral [14, Proposition 4.23(2)]. In particular, every finite type stable operation is spectral (cf. [1, 
Corollary 4.2] and [14, p. 185 and Theorem 4.12(3)]), so that SStarf,sp (D) coincides with the set of stable 
operations of finite type (sometimes denoted by S̃Star(D)).

Like for �, we can associate to each semistar operation � a stable semistar operation of finite type �̃ by 
defining, for every E ∈ F (D),

E�̃ :=
⋃
{(E : J) | J nonzero finitely generated ideal of D

such that J� = D�}.

The stable semistar operation of finite type ̃� is smaller than �, and it is the biggest stable semistar operation 
of finite type smaller than �. It follows that � is stable of finite type if and only if � = �̃.

In the following proposition, we collect some of the properties concerning the relation between Y and 
s Y . As usual, for each subset Y of Spec(D), we set Y gen := {z ∈ Spec(D) | y ∈ Cl({z}) for some y ∈ Y }
and we denote Clinv(Y ) the closure of Y in the inverse topology of Spec(D).

Proposition 4.1. (Cf. [13, Corollaries 4.4 and 5.2, Proposition 5.1] and [14, Lemma 4.2 and Remark 4.5].) Let 
D be an integral domain and let Y and Z be two nonempty subsets of Spec(D). The following statements 
hold.

(1) sY = sZ if and only if Y gen = Zgen.
(2) sY is of finite type if and only if Y is quasi-compact.
(3) s̃Y = s̃Z if and only if Clinv(Y ) = Clinv(Z).
(4) s̃Y = sClinv(Y ).
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Remark 4.2. Note that the equivalence (1) of Proposition 4.1 can also be viewed in a topological way, since 
the sets of the type Y gen, for Y varying among the subsets of Spec(D), are the closed sets of a topology, called 
the R(ight)-topology on Spec(D), which is the finest topology on Spec(D) compatible with the opposite order 
of the given order on Spec(D) [7, Lemma 2.1, Proposition 2.3(b)].

The following is a “finite type version” of Propositions 3.2, 3.4 and 3.5.

Proposition 4.3. Let D be an integral domain, and denote by If the set of nonzero finitely generated ideals 
of D. Let also Φ̃ : SStar(D) → SStarf,sp(D) be the map defined by Φ̃(�) := �̃, for each � ∈ SStar(D).

(1) The set {ŨJ := VJ ∩ SStarf,sp(D) | J ∈ If} is a subbasis of open and quasi-compact subspaces for 
SStarf,sp(D).

(2) If SStar(D) is endowed with the Zariski topology, Φ̃ is a topological retraction.
(3) If SStar(D) is endowed with the topology generated by the family {VJ | J ∈ If}, then Φ̃ is the canonical 

map onto the Kolmogoroff quotient space of SStar(D).
(4) If ∗ is a stable star operation of finite type on D, there is exactly one stable semistar operation of finite 

type � on D such that �|F (D) = ∗.
(5) The restriction λf : LSf(D) → SStarf,sp(D) of λ establishes a homeomorphism between spaces endowed 

with the Zariski topologies.

Proof. The proofs follow essentially from the general case, with some additional care. For (1), we note 
that, for each I ∈ I, VI ∩ SStarf,sp (D) =

⋃
{VJ ∩ SStarf,sp (D) | J ⊆ I, J ∈ f(D)} (compare [13, 

Remark 2.2(d)]). To show that ŨJ is quasi-compact when J ∈ If , consider the semistar operation sY , 
where Y := {P ∈ Spec(D) | P � J}. Since Y is quasi-compact, sY is of finite type (see [13, Corollary 4.4]
or Proposition 4.1(2)). Moreover, 1 ∈ JDP if and only if P ∈ Y ; therefore, sY is the minimum of ŨJ , and 
every open set containing sY contains the whole ŨJ . It follows that ŨJ is quasi-compact.

For (4), it is enough to note that if ∗ is of finite type then ∗e = ∗̃e, so that � is of finite type if ∗ is. 
For (5), note that the image of λf is exactly SStarf,sp (D) [14, Theorem 2.10, Corollary 2.11, and Proposi-
tion 3.2]. �

The remaining part of the present section is devoted to the proof that SStarf,sp (D) is a spectral space, in 
the sense of M. Hochster [24]. We start by studying the supremum and the infimum of a family of spectral 
operations.

Lemma 4.4. Let D be a nonempty set of spectral semistar operations. For each spectral semistar operation �, 
set Δ(�) := QSpec�(D).

(1) ∧D is spectral with Δ(∧D) =
⋃
{Δ(�) | � ∈ D}.

(2) If ∨D is quasi-spectral, then is spectral with Δ(∨D) =
⋂
{Δ(�) | � ∈ D}.

Proof. (1) Set Δ :=
⋃
{Δ(�) | � ∈ D}. For each E ∈ F (D)

E∧D =
⋂

{EDP | P ∈ Δ(�), � ∈ D} =
⋂

{EDP | P ∈ Δ}.

In particular, ∧D is spectral and Δ ⊆ QSpec∧D (D). On the other hand, if Q ∈ QSpec∧D (D), then Q� �= D�

for some � ∈ D , and this implies that Q ∈ QSpec�(D). Therefore, Δ = QSpec∧D (D).
(2) Let P ∈ QSpec∨D (D). Then, P belongs to QSpec�(D) for each � ∈ D , i.e., QSpec∨D (D) ⊆

⋂
{Δ(�) |

� ∈ D}. Since each � ∈ D is spectral, then, for each E ∈ F (D), E� ⊆ EDP for all P ∈ Δ(�), and in 
particular for all P ∈

⋂
{Δ(�) | � ∈ D}. Hence,
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E∨D ⊆
⋂{

EDP | P ∈
⋂

{Δ(�) | � ∈ D}
}
⊆

⋂
{EDP | P ∈ QSpec∨D (D)}.

However, if ∨D is quasi-spectral, then it is known that the right hand side is contained in E∨D [14, Propo-
sition 4.8]. Therefore they are equal, and hence ∨D is spectral, with Δ(∨D) =

⋂
{Δ(�) | � ∈ D}. �

Example 4.5. In relation with Lemma 4.4(2), we note that the supremum of a family of spectral semistar 
operations may not be quasi-spectral. Indeed, let A be the ring of algebraic integers, i.e., the integral closure 
of Z in the algebraic closure Q of Q. Recall that A is a one-dimensional Bézout domain [31, p. 72].

Claim 1. For each maximal ideal P of A, Max(A) \{P} is not a quasi-compact subspace of Max(A) (endowed 
with the Zariski topology).

By contradiction, since Max(A) \ {P} is open in Max(A) it would be equal to D(J) ∩ Max(A) for some 
finitely generated ideal J of A. Being A a Bézout domain, this would imply that Max(A) \ {P} = D(α) ∩
Max(A) for some α ∈ A; in particular, the ideal αA would be P -primary. Let K be the Galois closure of 
Q(α) over Q and consider the prime ideal PK := P ∩ OK , where OK the ring of integers of the field K. 
Let P ∩Z = pZ for some prime integer p and let F be a Galois extension of Q where p splits and such that 
F ∩K = Q (there are infinitely many such fields F , since p splits in infinitely many quadratic extensions of 
Q and K contains only a finite number of them). We claim that PK splits in the compositum FK : if this is 
true, then α would be contained in more than a single prime ideal of A, against the hypothesis.

Set PFK := P ∩OFK and PF := P ∩OF = PFK ∩OF . Suppose PK does not split in OFK : then PKOFK
would be primary to PFK . On the other hand, PF ∩ Z = pZ; since p splits in OF , and the Galois group of 
F over Q acts transitively on the primes of OF lying over p, there is an automorphism σ of F such that 
σ(PF ) �= PF . Since K∩F = Q, there is an automorphism τ of FK such that τ |F = σ and τ |K is the identity. 
Therefore, τ(PK) = PK and τ(PFK ) must contain PK , i.e., τ(PFK ) = PFK . However, PFK contains PF , and 
τ(PFK ) contains σ(PF ); therefore, PFK must contain both PF and σ(PF ), which is impossible. Therefore, 
PK splits in OFK .

Claim 2. For every P ∈ Max(A), 
⋂
{AQ | Q ∈ Max(A) \ {P}} = A.

Let B :=
⋂
{AQ | Q ∈ Max(A) \ {P}}. By the previous claim, Max(A) \ {P} is not quasi-compact, and 

then it follows immediately that P belongs to the closure of Max(A) \ {P}, with respect to the inverse 
topology. In other words, every maximal ideal of A is a limit point in the inverse topology and so Max(A)
with the inverse topology is a perfect space. Finally, by [36, Proposition 5.6(4)], we have B = A.

We are ready now to show that the supremum of a family of spectral semistar operations on A may not 
be quasi-spectral. For every P ∈ Max(A), let �P := sMax(A)\{P}, and define � :=

∨
{�P | P ∈ Max(A)}. 

By Claim 2, A�P = A for every P ∈ Max(A), and thus A� = A. However, P is not a �P -ideal since 
P �P = A and therefore P � = A for every P ∈ Max(A). Since each nonzero principal (or, equivalently, 
finitely generated) integral ideal of A is a �-ideal and the set of nonzero prime �-ideals of A is empty, it 
follows that � is not quasi-spectral.

Theorem 4.6. Let D be an integral domain. The space SStarf,sp(D) of the stable semistar operations of finite 
type on D, endowed with the Zariski topology induced by SStar(D), is a spectral space.

Proof. In order to prove that a topological space X is a spectral space, we use the characterization given 
in [11, Corollary 3.3]. We recall that if B is a nonempty family of subsets of X, for a given subset Y of X
and an ultrafilter U on Y , we set

YB(U ) := {x ∈ X | for each B ∈ B, it happens that x ∈ B ⇔ B ∩ Y ∈ U }.



C.A. Finocchiaro et al. / Journal of Pure and Applied Algebra 220 (2016) 2897–2913 2905
The subset Y of X is called B-ultrafilter closed if YB(U ) ⊆ Y ; the B-ultrafilter closed subsets of X are 
the closed subspaces of a topology on X, called the B-ultrafilter topology on X.

By [11, Corollary 3.3], for a topological space X being a spectral space is equivalent to X being a T0-space 
having a subbasis for the open sets S such that XS (U ) �= ∅, for each ultrafilter U on X.

We already know that X := SStarf,sp (D) is a T0-space. By Proposition 4.3(1), the collection of sets

T̃ := {ŨJ | J ⊆ D, J finitely generated ideal of D}

is a subbasis of the Zariski topology of X . Let U be any ultrafilter on X ; the conclusion will follow if we 
prove that the set

X T̃ (U ) := {� ∈ X | [ for each ŨJ ∈ T̃ , it happens that � ∈ ŨJ ⇔ ŨJ ∈ U ]}

is nonempty.
Consider the semistar operation

� :=
∨

{∧ŨJ | ŨJ ∈ U },

on D. By Lemma 4.4(1), each ∧ŨJ is spectral and, since ŨJ is quasi-compact (Proposition 4.3(1)), is also of 
finite type [13, Proposition 2.7]. By applying [3, p. 1628], it can be easily shown that � is of finite type, and 
thus it is quasi-spectral [14, Corollary 4.21]. By Lemma 4.4(2), it follows that � is spectral, i.e., � ∈ X .

To prove that � ∈ X T̃ (U ), we apply the same argument used in proving [13, Theorem 2.13]: let ŨJ ∈ U . 
If � ∈ ŨJ , then by the definition of � and [3, p. 1628] (see also [13, Lemma 2.12]) there are finitely generated 
ideals F1, F2, . . . , Fn of D such that

1 ∈ J
∧ŨF1

◦∧ŨF2
◦···◦∧ŨFn ,

with ŨFi
∈ U . Each semistar operation σ ∈ ŨF1 ∩ ŨF2 ∩ · · · ∩ ŨFn

is bigger than each semistar operation of 
type ∧ŨFi

; it follows that ŨF1 ∩ ŨF2 ∩ · · · ∩ ŨFn
⊆ ŨJ , and thus the latter set is in U . Conversely, if ŨJ ∈ U , 

then � ≥ ∧ŨJ , and thus 1 ∈ J�. The proof is now complete. �
Remark 4.7. The proof of Theorem 4.6 actually shows more than just the fact that SStarf,sp (D) is a spectral 
space. Given a spectral space X, the constructible topology on X is the coarsest topology such that every 
open and quasi-compact subset of X (in the original topology) is both open and closed. By [18], the closed 
sets of the constructible topology in X are the subsets Y of X such that, for every ultrafilter U of Y ,

YB(U ) := {x ∈ X | for each B ∈ B, it happens that x ∈ B ⇔ B ∩ Y ∈ U } ⊆ Y,

where B is the set of open and quasi-compact subspaces of X. Therefore, in view of the proof of [13, 
Theorem 2.13], what we have actually proved in Theorem 4.6 is that, when SStarf (D) is endowed with the 
constructible topology, SStarf,sp (D) is a closed subspace.

From the previous theorem and Proposition 4.3(5), we deduce immediately the following:

Corollary 4.8. Let D be an integral domain. The space LSf(D) of the localizing systems of finite type on D, 
endowed with the Zariski topology induced by LS(D), is a spectral space.
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5. The space of eab semistar operations of finite type

A semistar operation � on an integral domain D is said to be an eab semistar operation [respectively, 
an ab semistar operation] if, for every F, G, H ∈ f(D) [respectively, for every F ∈ f(D), G, H ∈ F (D)] 
the inclusion (FG)� ⊆ (FH)� implies G� ⊆ H�. Note that, if � is eab, then �f is also eab, since � and �f
agree on finitely generated fractional ideals. The concepts of eab and ab operations coincide on finite type 
operations, but not in general [19,20].

Remark 5.1. W. Krull only considered the concept of “arithmetisch brauchbar” operation (for short
ab-operation, as above) [32]. He did not consider the concept of “endlich arithmetisch brauchbar” oper-
ation (or, more simply, eab-operation as above), that instead stems from the original version of Gilmer’s 
book [22].

Let Zar(D) := {V | V is a valuation overring of D} be equipped with the Zariski topology, i.e., the 
topology having, as subbasic open subspaces, the subsets Zar(D[x]) for x varying in K. The set Zar(D), 
endowed with the Zariski topology, is often called the Riemann–Zariski space of D [42, Chapter VI, §17, 
p. 110]. Recently, the use of Riemann–Zariski spaces had a strong impact on the study of algebraic properties 
of integrally closed domains. For a deeper insight on this topic see, for example, [37,39,36,38].

A valuative semistar operation is a semistar operation of the type ∧Y , where Y ⊆ Zar(D); it is easy 
to see that it is an eab semistar operation. In particular, the b -operation, where b := ∧Zar(D), is an eab
semistar operation of finite type on D, since Zar(D) is quasi-compact [13, Proposition 4.5]. More generally, 
for the same reason, for each overring T of D, the valuative semistar operation b (T ) := ∧Zar(T ) is an eab
semistar operation of finite type on D.

Just like in the case of the relation between stable and spectral operations, not every eab semistar 
operation is valutative, but the two definitions agree on finite type operations (see, for instance, [15, Corol-
lary 5.2]). However, unlike the spectral case, there are example of quasi-spectral eab operations that are 
not valutative [19, Example 15].

Denote by SStarval (D) [respectively, SStareab (D); SStarf,eab (D)] the set of valutative [respectively, eab;
eab of finite type] semistar operations on D, endowed with the Zariski topology induced from SStar(D). 
By the previous remarks, we have:

SStarf,eab (D) := SStareab (D) ∩ SStarf (D) = SStarval (D) ∩ SStarf (D) .

To every semistar operation � ∈ SStar(D) we can associate a map �a : F (D) → F (D) defined by

F �a :=
⋃

{((FG)� : G�) | G ∈ f(D)}

for every F ∈ f(D), and then extended to arbitrary modules E ∈ F (D) by setting E�a :=
⋃
{F �a | F ⊆ E,

F ∈ f(D)}. The map �a is always an eab semistar operation of finite type on D [15, Proposition 4.5(1, 2)], 
called the eab semistar operation of finite type associated to �. Moreover, � = �a if and only if � is an eab
semistar operation of finite type and, if � is an eab semistar operation, then �a = �f [15, Proposition 4.5(4)]. 
The following proposition is an analogue of Propositions 3.2(2) and 4.3(2).

Proposition 5.2. Let D be an integral domain and let Φa : SStar(D) → SStarf,eab(D) be the map defined by 
Φa(�) := �a, for each � ∈ SStar(D). Then, Φa is topological retraction of SStar(D) onto SStarf,eab(D).

Proof. We start by showing that Φa is continuous. Indeed, if H is a nonzero finitely generated fractional 
ideal of D,
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Φ−1
a (VH ∩ SStarf,eab (D)) = {� ∈ SStar(D) | 1 ∈ H�a }

= {� ∈ SStar(D) | F � ⊆ (HF )� for some F ∈ f(D)}

=
⋃

{{� ∈ SStar(D) | F � ⊆ (HF )�} | F ∈ f(D)} .

Let F := x1D + x2D + · · ·+ xnD. Then, F � ⊆ (HF )� is and only if xi ∈ (HF )� for i = 1, . . . , n, hence,

Φ−1
a (VH ∩ SStarf,eab (D)) =

⋃{
n⋂

i=1
Vx−1

i HF | F ∈ f(D)
}
,

which is an open set of SStar(D). Hence, Φa is continuous. Moreover, if � is an eab operation of finite type, 
then �a = (�a )a . Henceforth, Φa is a topological retraction. �

We are now interested to what happens to the topological embedding ι, defined in Proposition 2.1, when 
restricted to subsets of integrally closed overrings. We start with a remark.

Remark 5.3. Let T be an overring of D, and let �T be a semistar operation on T . Then, we can define a 
semistar operation � on D by � := �T ◦ ∧{T}, i.e., E� := (ET )�T for every E ∈ F (D). If now F ∈ f(T ), 
then

F �a =
⋃

{((FG)� : G�) | G ∈ f(D)} =
⋃

{((FGT )�T : (GT )�T ) | G ∈ f(D)} =

=
⋃

{((FTH)�T : H�T ) | H ∈ f(T )} = (FT )(�T )a = F (�T )a .

Hence, for every E ∈ F (D), E�a = (ET )(�T )a , that is, �a = (�T )a ◦ ∧{T} (where (�T )a is the eab semistar 
operation of finite type on T associated to �T ).

Olberding in [37,38], considered a new topology (called the b-topology) on the set Overric (D) of integrally 
closed overrings of D by taking, as a subbasis of open sets, the sets of the form

Uic (F,G) := {T ∈ Overric (D) | F ⊆ Gb (T )},

where F and G range among the nonzero finitely generated D-submodules of K. He showed that the 
b -topology on Overric (D) is finer than (or equal to) the Zariski topology (since it is straightforward that 
BF = Uic (F, D), where BF := Overric (D[F ]) = Overric (D[x1, x2, . . . , xn]), for each F = x1D + x2D +
· · · + xnD ∈ f(D), is subbasic open set of Overric (D) with the topology induced by the Zariski topology 
of Overr(D)) and the two topologies coincide when restricted to the Riemann–Zariski space Zar(D) [37, 
Corollary 2.8]. Using semistar operations, we can show more, i.e, the b -topology and the Zariski topology 
coincide on Overric (D) (Corollary 5.5).

Proposition 5.4. Let D be an integral domain, and consider the injective map ιic,a : Overric(D) → SStarf(D)
defined by ιic,a(T ) := b(T ), for each T ∈ Overric(D). Assume that SStarf(D) is endowed with the Zariski 
topology. Then:

(1) If Overric(D) is endowed with the Zariski topology, then ιic,a is continuous and injective.
(2) If Overric(D) is endowed with the b-topology, then ιic,a is topological embedding, i.e., it establishes a 

homeomorphism between Overric(D) and its image.

Proof. (1) Let Ψa := Φa |SStarf (D) : SStarf (D) → SStarf,eab (D), defined by Ψa (�) = �a , for each � ∈
SStarf (D) (Lemma 5.2). Note that ιic,a behaves like Ψa ◦ ι on Overric (D), since by Remark 5.3 we 
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have 
(
∧{T}

)
a = b (T ) for each overring T of D (see also the proof of Proposition 5.6). Therefore, ιic,a

is continuous as a composition of continuous maps. Moreover, if T ′, T ′′ ∈ Overric (D) and T ′ �= T ′′, then 
Zar(T ′) �= Zar(T ′′) and so b (T ′) �= b (T ′′), i.e., ιic,a is injective.

(2) Since the b -topology is finer than the Zariski topology, ιic,a is continuous by the previous part of 
the proof. We set

SStarb (D) := {b (T ) | T ∈ Overric (D)} = ιic,a (Overric (D)).

Let Uic (F, G) be a subbasic open set of Overric (D) in the b -topology. If F := x1D + x2D + · · · + xnD, 
then U ic (F, G) = Uic (x1, G) ∩ Uic (x2, G) ∩ · · · ∩ U ic (xn, G), so we can suppose that F = xD for some 
0 �= x ∈ K. In this situation we have:

ιic,a (Uic (xD,G)) = {� ∈ SStarb (D) | x ∈ G�} = Vx−1G ∩ SStarb (D).

Therefore, ιic,a is open onto SStarb (D) and hence it establishes a homeomorphism between Overric (D)
(with the b -topology) and SStarb (D) (with the Zariski topology). �
Corollary 5.5. The b-topology and the Zariski topology coincide on Overric(D).

Proof. With the notation of the proof of Proposition 5.4(2), it is enough to observe that Uic (xD, G) is also 
open in the Zariski topology of Overric (D), since ι−1

ic,a (Vx−1G) = Uic (xD, G). �
The following can be seen as a companion of Proposition 3.1.

Proposition 5.6. Let D be an integral domain and let T ∈ Overr(D). The following properties are equivalent:

(i) ∧{T} ∈ SStarf,eab(D);
(ii) ι(T ) = ιic,a(T );
(iii) T is a Prüfer domain.

Proof. By definition of the eab semistar operation of finite type associated to ∧{T}, we have that ∧{T} ∈
SStarf,eab (D) if and only if ∧{T} = (∧{T})a . However, by Remark 5.3 and Proposition 5.4, and noting 

that ∧{T} (when restricted to F (T )) coincides with the identity semistar d T on F (T ), we have

(∧{T})a = (d T )a ◦ ∧{T} = b T ◦ ∧{T} = b (T ) = ιic,a (T ),

where b T is the b -operation on T and b (T ) = ∧Zar(T ). Therefore, (i) and (ii) are equivalent. It is obvious 
that (iii) ⇒ (ii). For the reverse implication, it is enough to note that d T = b T is equivalent to T being 
Prüfer [21, Lemma 2]. �

Note that we can define the b -topology also on the whole Overr(D). The properties that we obtain are 
somewhat similar to Propositions 3.2(3) and 4.3(3).

Proposition 5.7. Let D be an integral domain, and define the map β : Overr(D) → Overric(D) by setting 
β(T ) := T b = T , where T is the integral closure of T .

(1) If Overric(D) and Overr(D) are endowed with the Zariski topology, then β is continuous and, hence, 
it is a topological retraction of Overr(D) onto Overric(D).

(2) If Overric(D) is endowed with the Zariski topology and Overr(D) is endowed with the b-topology, then 
β is the canonical map onto the Kolmogoroff quotient space of Overr(D).
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Proof. (1) Let x be a nonzero element of K and let Bx be a subbasic open set of the Zariski topology on 
Overric (T ). Then,

β−1(Bx) = {T ∈ Overr(D) | x ∈ T} = {T ∈ Overr(D) | x is integral over T} =

=
⋃{

B{αk−1,αk−2,...,α0} | xk + αk−1x
k−1 + · · · + α1x + α0 = 0

}
which is open since it is a union of open sets. Hence, β is continuous. It is a retraction since, for T ∈
Overric (D), T b = T .

(2) Since the Zariski topology on Overric (D) coincides with the b -topology, we can consider on 
Overric (D) the subbasic open sets Uic (F, G), for F, G ∈ f(D). However, since b(T ) = b(T ), we have 
β−1(Uic (F, G)) = U (F, G) := {T ∈ Overr(D) | F ⊆ Gb (T )}, and thus β is continuous. In the same way, 
β(U (F, G)) = Uic (F, G), so β is open. Finally, it is easy to see that two overrings T ′ and T ′′ are topolog-
ically distinguishable by the b -topology if and only if they have the same integral closure; hence, β is the 
canonical map onto the Kolmogoroff quotient space of Overr(D) with the b -topology. �

The relation between valutative operations and subsets of Zar(D) exhibits a similar behaviour to the 
relation between spectral operations and subsets of Spec(D). Similarly to the prime spectrum case (see 
the paragraph preceding Proposition 4.1), for each subset Y of the Riemann–Zariski space Zar(D), we set 
Y gen := {z ∈ Zar(D) | y ∈ Cl({z}) for some y ∈ Y } and we denote Clinv(Y ) the closure of Y in the inverse 
topology of the spectral space Zar(D) (see [6], [24, Proposition 8] and [12,13]). Compare the next lemma 
with Proposition 4.1.

Lemma 5.8. Let D be an integral domain and let Y and Z be two nonempty subsets of Zar(D). Then, the 
following statements hold.

(1) ∧Y = ∧Z if and only if Y gen = Zgen.
(2) ∧Y is of finite type if and only if Y is quasi-compact.
(3) (∧Y )f = (∧Z)f if and only if Clinv(Y ) = Clinv(Z).
(4) (∧Y )f = ∧Clinv(Y ).

Proof. (1) Note that, in the present situation, Y gen = {V ∈ Zar(D) | V ⊇ V0, for some V0 ∈ Y }. Assume 
first that ∧Y = ∧Z . Let V be a valuation domain such that V ∈ Y gen \ Zgen. Then, for any W ∈ Z, we can 
pick an element xW ∈ W \ V . It follows that I := (x−1

W | W ∈ Z) ⊆ MV , where MV is the maximal ideal 
of V . Thus, if V0 ∈ Y is such that V0 ⊆ V (such a V0 exists since V ∈ Y gen), we have IV0 ⊆ MV0 and, in 
particular, 1 /∈ I∧Y . On the other hand, clearly 1 ∈ I∧Z , a contradiction. The converse it is straightforward 
since, for each Y ⊆ Zar(D), ∧Y = ∧Y gen .

For (2), (3) and (4), see respectively [13, Proposition 4.5], [12, Theorem 4.9] and, [12, Corollary 4.17]. �

Remark 5.9. (a) Since b = ∧Zar(D) is a semistar operation of finite type on D (and this can be proved com-
pletely independently from the topological point of view, see [30, Proposition 6.8.2] and [13, Remark 4.6]), 
from Lemma 5.8 we get a new proof of the fact that Zar(D) is a quasi-compact space (this is a special case 
of Zariski’s theorem [42, Theorem 40, p. 113]).

(b) Note that the equivalence (1) of Lemma 5.8 can also be viewed in a topological way, as indicated in 
Remark 4.2, after replacing Zar(D) to Spec(D).

Using the b -operation, Krull introduced a general version of the classical Kronecker function ring, coin-
ciding in case of Dedekind domains with the classical one (considered by L. Kronecker [41,8,23]). In fact, 
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a Kronecker function ring can be defined starting by any eab semistar operation. In the next lemma, we 
summarize some properties of the Kronecker function ring, relevant to the remaining part of the paper.

Lemma 5.10. Let D be an integral domain, � an eab semistar operation on D, X an indeterminate over D
and let c(h) be the content of a polynomial h ∈ D[X] (i.e., the ideal of D generated by the coefficients of h). 
Set V (�) := {V ∈ Zar(D) | F � ⊆ FV, for each F ∈ f(D)} and

Kr(D, �) := {f/g | f, g ∈ D[X], g �= 0, with c(f) ⊆ c(g)�}.

Denote by V (X) the Gaussian (or trivial) extension of V to K(X) (i.e., V (X) = V [X]M [X], where M is the 
maximal ideal of V ).

(1) Kr(D, �) is a Bézout domain with quotient field K(X), called the �-Kronecker function ring of D, and, 
for each polynomial f ∈ D[X], c(f)Kr(D, �) = fKr(D, �).

(2) Kr(D, �) =
⋂
{V (X) | V ∈ V (�)} and, for each E ∈ F (D), E�a = EKr(D, �) ∩K =

⋂
{EV | V ∈ V (�)}.

(3) If T is an overring of D, then V
(
(∧{T})a

)
= Zar(T ); in particular, we reobtain that (∧{T})a = b(T ).

Proof. For (1), see [15, Definition 3.2, Propositions 3.3 and 3.11(2), Corollary 3.4(2) and Theorem 5.1], [23, 
Theorem 32.11] and [17, Theorems 11 and 14]. For the proof of (2) see [15, Proposition 4.1(5)] and [17, 
Theorem 14]. (3) is a direct consequence of (2) and of the definitions. �

When considering Kronecker function rings, particularly important is the case � = b and, in this case, 
we simply set Kr(D) := Kr(D, b ). In this situation, it follows easily from the fact that Kr(D) is a Bézout 
domain that the localization map Spec(Kr(D)) → Zar(Kr(D)) (defined by P �→ Kr(D)P ) is actually a 
homeomorphism. Moreover, the map Ψ : Zar(D) → Zar(Kr(D)) (defined by V �→ V (X)) is a homeomor-
phism too [12, Propositions 3.1 and 3.3], so that, by appropriate compositions, we deduce that there is a 
canonical homeomorphism between Spec(Kr(D)) and Zar(D).

We are now in condition to prove the main result of this section.

Theorem 5.11. Let D be an integral domain with quotient field K. Let Kr(D) := Kr(D, b) be the b-Kronecker 
function ring of D and let θ : Spec(Kr(D)) → Zar(D) be the homeomorphism defined by θ(Q) := Kr(D)Q∩K, 
for each Q ∈ Spec(Kr(D)) [6, Theorem 2]. Then,

(1) The homeomorphism θ induces a continuous bijection Θ : SStarsp(Kr(D)) → SStarval(D) defined by 
setting Θ(sY ) := ∧Z(Y ), for each Y ⊆ Spec(Kr(D)), where Z(Y ) := {V ∈ Zar(D) | MV (X) ∩Kr(D) ∈
Y } and MV is the maximal ideal of V .

(2) The map Θ, restricted to the semistar operations of finite type, gives rise to a homeomorphism Θf :
SStarf,sp(Kr(D)) → SStarf,eab(D) of topological spaces (endowed with the Zariski topology).

(3) SStarf,eab(D) is a spectral space.

Proof. (1) It is straightforward that the homeomorphism θ from Spec(Kr(D)) to Zar(D) (which is, in partic-
ular, a isomorphism of partially ordered sets with the ordering induced by their topologies) induces a 1–1 cor-
respondence Θ0 between the set {Y ⊆ Spec(Kr(D)) | Y = Y ↓} (where Y ↓ := {Q ∈ Spec(Kr(D)) | Q ⊆ Q′, 
for some Q′ ∈ Y } = Y gen) and the set {Y ⊆ Zar(D) | Y = Y ↑} (where Y ↑ := {W ∈ Zar(D) | W ⊇ W ′, 
for some W ′ ∈ Y } = Y gen). Therefore Θ0 induces a bijection Θ : SStarsp (Kr(D)) → SStarval (D) defined 
by Θ(sY ) := ∧Θ0(Y ), where Θ0(Y ) = {V ∈ Zar(D) | MV (X) ∩ Kr(D) ∈ Y } =: Z(Y ) (cf. Lemma 5.8, [13, 
Corollaries 4.4 and 5.2, Proposition 5.1] and [14, Lemma 4.2 and Remark 4.5]).

Moreover, the map Θ is continuous by [13, Proposition 3.1(1)], since (EKr(D))sY ∩K = E∧Z(Y ) for each 
E ∈ F (D) and for each Y ⊆ Spec(Kr(D)). In fact,
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E∧Z(Y ) =
⋂

{EV | V ∈ Z(Y )} =
⋂

{EV (X) ∩K | V ∈ Z(Y )}

= E
(⋂

{V (X) | V ∈ Z(Y )}
)
∩K = E(Kr(D))sY ∩K

= (EKr(D))sY ∩K.

(2) Since quasi-compact sets correspond biunivocally to finite type semistar operations, in both spectral 
and the valutative case, then Θ restricts to a continuous bijection Θf : SStarf,sp (Kr(D)) → SStarf,eab (D)
(see also [13, Proposition 3.1(2)]).

Let J be a nonzero finitely generated ideal of Kr(D), thus it is principal (since Kr(D) is a Bézout domain). 
Therefore J = zKr(D), for some nonzero element z := α/β ∈ K(X), where α, β ∈ D[X] and α, β are nonzero. 
We can consider the basic open set V�α/β := {� ∈ SStar(Kr(D)) | 1 ∈ ((α/β)Kr(D))�} of SStar(Kr(D)) (the 
superscript 
 is used here to emphasize the fact that we are considering subspaces of SStar(Kr(D)) and not 
of SStar(D)).

Claim. Θf

(
V�α/β ∩ SStarf,sp (Kr(D))

)
=

(
n⋂

i=1
Vb−1

i c(α)

)
∩ SStarf,eab (D)

(where β := b0+b1X+· · ·+bnXn and c(α) is the ideal of D generated by the coefficients of the polynomial α).
Indeed, let Ũ�α/β := V�α/β ∩SStarf,sp (Kr(D)), suppose that � ∈ Ũ�α/β and let ∗ := Θf (�). Then, 1 ∈ (α/β ·

Kr(D))�, i.e., (βKr(D))� ⊆ (αKr(D))�. However, βKr(D) = c(β)Kr(D) (Lemma 5.10(1)), and analogously 
for α; thus,

c(β) ⊆ (c(β)Kr(D))� ∩K ⊆ (c(α)Kr(D))� ∩K = c(α)∗.

Hence, bi ∈ c(α)∗ for each i, and 1 ∈ (b−1
i c(α))∗, that is, ∗ ∈ Vb−1

i c(α) for every i. On the other hand, it is a 
straightforward consequence of the definition that ∗ ∈ SStarf,eab (D).

Conversely, let ∗ ∈ (
⋂n

i=1 Vb−1
i c(α)) ∩ SStarf,eab (D). Since Θf is bijective, then ∗ = Θf (�) for a unique 

� ∈ SStarf,sp (Kr(D)). Then, bi ∈ c(α)∗ for every i, and c(β) ⊆ c(α)∗; it follows that β/α ∈ Kr(D, ∗), i.e., 
1 ∈ α/β · Kr(D, ∗). On the other hand, ∗ = Θf (�) implies E∗ = (EKr(D))� ∩K and, moreover, since ∗ is
eab, E∗ = EKr(D, ∗) ∩K, for each E ∈ F (D) (Lemma 5.10(2)). Therefore, 1 ∈ α/β ·Kr(D, ∗) implies that 
1 ∈ (α/β · Kr(D))�, i.e., � ∈ Ũ�α/β , so that ∗ ∈ Θf (Ũ�α/β).

The claim ensures that Θf is open, and hence we conclude that it is a homeomorphism.
(3) is an easy consequence of (2) and Theorem 4.6. �

Remark 5.12. As we did in Remark 4.7, we can ask if SStarf,eab (D) is closed when SStarf (D) is endowed 
with the constructible topology. The answer is positive; indeed, consider the map Λ : SStarf,sp (Kr(D)) →
SStarf (D) obtained by composing Θf with the inclusion of SStarf,eab (D) into SStarf (D). Let I ∈ f(D)
and let VI be a subbasic open set of SStar(D) then, by the proof of Theorem 5.11, there exist α, β ∈ D[X], 
with α, β nonzero, such that

Λ−1(VI ∩ SStarf (D)) = V�α/β ∩ SStarf,sp (Kr(D)) = Ũ�((α/β)Kr(D))∩Kr(D).

Since ((α/β)Kr(D)) ∩ Kr(D) is finitely generated (Kr(D) being a Prüfer domain [23, (25.4), part (1)]), 
Λ−1(VI ∩ SStarf (D)) is quasi-compact (Proposition 4.3(1)). This means that Λ is a spectral map. In 
particular, it is continuous when SStarf,sp (Kr(D)) and SStarf (D) are endowed with the constructible 
topology. Since a spectral space, endowed with the constructible topology, is both compact and Hauss-
dorff, Λ is a closed map, when both spaces are endowed with the constructible topology. In particular, 
Λ(SStarf,sp (Kr(D))) = SStarf,eab (D) is closed subspace of SStarf (D), endowed with the constructible 
topology.
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