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0. INTRODUCTION

An overring of a Priifer domain R can be represented as the intersection
of localizations of the form R, P a prime ideal. Recently there has been
interest in representing special types of overrings. We do this for overrings
of the form (/: I), where [ is an ideal of R. A second representation is given
for (I: 1), when restrictions are placed on R. An example is constructed to
show that the second representation cannot be extended to the class of all
Priifer domains.

This leads to the development of a general method for constructing
Priffer domains with specific characteristics. Its generality indicates that it
may be useful in many other settings. We also introduce and study
“absolute non-zero-divisors modulo an ideal.”

Moreover, we study the fractional ideal (R : I), where R is a seminormal
domain an 7 is and ideal of R. We show that for R seminormal, the largest
subring of (R: 1) is (\/7 : \/7) (Theorem 3.3).
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Let R denote an integral domain and KX its quotient field. Associated to
each nonzero ideal I of R are the following algebraic objects:

(I:N={xeK|xIc]I};
I"'=(R:I)={xeK|xIS R},
T(R,I)=.9-(1)=U {(R:I")In=21}.

The set (7: 1) is a ring, and is the largest subring of K in which 7 is still
an ideal. In addition, (/:17) is canonically isomorphic to Endg(/), the
endomorphism ring of . The fractional ideal /' is sometimes, but not
always, a subring of K (see [8] and [2]). It is well known that /~' is
R-isomorphic to Homg(Z, R), the dual of I. The ring 7 (I) is called the
Nagata transform (or the ideal transform) of L

An overring of R is a ring between R and its quotient field K. If R
is a Priifer domain, then each overring T of R is an intersection of
the type () {R,:PeC}, where Cc<Spec(R); moreover, we can take
C={PeSpec(R}| PT#T} [6, Them.26.1]. Apart from the general
description of such an intersection in [6], it is natural to look for more
“concrete” representations for specific overrings of R. This is done for
I7'=(R:I)in [8]. There it is proved that for a Priifer domain R,

(R:I);(ﬂ R,,)m(ﬂ RM), (0-1)

where P ranges over the minimal prime ideals of I, and M over the maxi-
mal ideals not containing [; and that equality holds in (0-1) if and only if
(R : 1) is a ring. It turns out that the intersection in (0-1) equals (\/7 : \/7)
(Corollary 4.15 below). See also Corollary 3.4(1).
As for 7 (I), in case R is a Priifer domain, see [6, Sect. 26, Exercise 11].
Representations of ({:[/) are investigated in Section 4. We prove there
that for an ideal I of a Priifer domain R,

(I:I)=<ﬂ RG(Q,>n<ﬂ RM>, (0-2)

where M is as in (0-1), Q varies over the set of maximal zero-divisors
modulo /, and G(Q) is the unique prime ideal of R such that G(Q) R, is
equal to the set of zero-divisors in R,/IR,,.

Can we replace G(Q) by Q in (0-2) for an arbitrary Priifer domain R?
Since () Ry = R ,-, where .4 is the set of non-zero-divisors modulo /, and
since R ,-n () Ry )< (I: 1) (Corollary 4.5(2)), this question is shown to be
equivalent to asking whether (/: /) is contained in R .. We show that the
answer is positive for the class of QR-domains (which is contained in the



PRUFER DOMAINS 491

class of Priifer domains). It turns out that in a Priifer domain, 4" is equal
to the set of “absolute non-zero-divisors modulo /” introduced in Section 2
for an arbitrary domain R.

On the other hand, in order to obtain (in Section 7) a counterexample
to the question raised above, we construct for a domain R, a Priifer
domain #*(R) that contains R and mimics many important properties of
R. The construction is carried out in Section 5 and 6. Some preliminary
results for this construction are given in Section 1.

Section 3 deals with the fractional ideal (R : ) for R seminormal. Thus,
while Priifer domains occupy the center stage of this paper, many results
are stated in a much more general setting,

The following notation is used throughout. All rings are commutative
with identity. We denote by R an integral domain, and by 2(R)=XK, its
quotient field; unless otherwise stated, an ideal 7 of R is assumed to be a
nonzero and proper ideal. Denote the set of prime ideals (resp., maximal
ideals) of R by Spec(R) (resp., by Max(R)).

For general background see [6].

1. A REFORMULATION OF THE PRUFER PROPERTY

A domain R is Priifer if and only if each ideal generated by two nonzero
elements is invertible [6, Thm. 22.1]. It is convenient to reformulate this
statement.

ProposITION 1.1. Let T be a domain containing R. The following condi-
tions are equivalent:

(1) Each finitely generated nonzero ideal of T extended from R is
invertible.

(2) Each ideal of T generated by two nonzero elements of R is invertible.

(3) For each qe K\{0}, there is an element te T such that tq and
(1—1t)/qg arein T.

(4) For each ge K\{0}, there is an element t € T\{0} such that tq and
(1—t)/qgareinT.

(5) For each ge K\{0}, we have (TqnT)+(Tq~'nT)=T.

Proof. (1)<>(2): This follows from [6, Prop.22.2(a)], since each
finitely generated ideal of T which is extended from R, is generated by
finitely many elements of R.

(2)=>(3): Let g=a/b be a nonzero element in K, g and b in R. Then
the ideal Ta+ Th is invertible, so there exist elements x and y in
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(Ta+ Th) ! such that 1=xa+ yb. Set t=yb. Then tg=yaeT, and
(1—1t)/g=xbeT.

(3)=(2): Let a, b be nonzero elements in R, and ¢ =a/b. Choose ¢
in T such that tg and (1 —t)/q are in T. Then 1 = a((1 — t)/a) + b(¢/b), and
the elements (1 —t)/a and t/b are in (Ta+ Th)~'. Therefore the ideal
Ta+ Tb is invertible.

For the rest of the proof assume that ge K\{0}.

(3)=1(4): If condition (3) is satisfied by ¢ =0, then it is satisfied also
by t=q 'eT\{0}.

(4)=>(5): Choose teT such that 7g and (1 —1t)/q are in 7. Thus
teTg 'nTand 1 —teTgn T. Consequently, 1 e(TgnT)+(Tg ' nT)

(5)=(3): By assumption there is an element te Tg '~ T such that
1—teTgnT;sotgand (1—t)/garein T. |}

COROLLARY 1.2. A domain R is Priifer if and only if for each ge K\{0}
there is an element r € R such that gr, and (1 —r )/q are in R (equivalently,
we may require r,€ R\{0} for all ge K\{0}).

Proof. Take T= R in the previous proposition. ||

Note that Corollary 1.2 immediately implies the well-known fact that an
overring of a Priifer domain is Priifer.

DermNITION. A domain 7 which contains R and satisfies the equivalent
conditions of Proposition 1.1 is said to be Priifer over R.

A Priifer domain is Priifer over each of its subrings. Moreover, a domain
is Priifer if and only if is Priifer over itself. More generally, if R T are
domains with the same quotient field, then T is Priifer over R if and only
if T is a Prifer domain. However, if T is Priifer over R, then T~ K is not
necessarily Priifer, even if T is a Bezout domain (indeed, if R is an arbitrary
normal domain, then there is a Bezout domain T such that R=TnK
[6, Thm. (3.27)(b) and (32.15)(1)]).

If T is Priifer over R, then a domain T, containing 7 is Priifer over each
subring of T, n K; in particular, for each multiplicatively closed subset S of
T, the domain T is Priifer of Rz, .

The next proposition “relatives” [6, Thm. 22.1].

ProrosITION 1.3. If R=T are domains, the following conditions are
equivalent:

(1) T is Priifer over R;
(2) If PeSpec(T), then Tpn K is a valuation domain;
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(3) If MeMax(T), then Ty, K is a valuation domain,
(4) If PeSpec(T), then Tp is Priifer over Ry p;
(5) If MeMax(T), then T,, is Priifer over Ry .

Proof. (1)=(2): Let ge K\{0}. There exists re T such that 7g and
(1—1t)/q are in T. If te P, then l/g=((1—-1)/q)/(1 —1)e TpnK; and if
t¢ P, then g=(tq)/te Tpn K. Thus T, is a valuation domain of K.

(2)=(4)=(5). Clear.

(5)=(1): Let ge K\{0}. By assumption and by Proposition 1.1(5),
the ideal (Tg ~ T)+ (Tg '~ T) is contained in no maximal ideal of T, and
so is equal to T. By Proposition 1.1(5), T is Priifer over R.

(2)= (3)=>(5): Clear. ||

For places and valuation domains, see [3, Chap. 6]. Following [3], if K
is a field, let K=Ku{ow}. If K and L are fields and ¢: K-> L is a
place, we denote by V, the valuation domain associated with ¢, that is
Vy={xeK|d(x)# o} (see [3, Ch. VI, Sect. 2, no. 3, Prop. 2]). If L, and
L, are field extensions of a field K, and ¢: L, — L, is a place, then ¢ is over
Kif ¢g(c)=c for all ce K.

PROPOSITION 1.4. Assume that T is Prifer over R, L is a field, and
f:T— L is a homomorphism. Then there exists a unique place ¢: K — L
extending | T~ K (the restriction of f to TN K).

Proof. To prove existence, let P=ker f. Thus P is a prime ideal of 7.
By Proposition 1.3, the ring 7, K is a valuation domain of K, and thus
it determines a place ¢: K — L extending f| T~ K (see [3, Ch. VI, Sect. 2,
no. 3]). The uniqueness is now obvious.

CoOROLLARY 1.5.  Each homomorphism of a Priifer domain R into a field
L can be uniquely extended to a place K— L.

2. ABSOLUTE NON-ZERO-DIVISORS MODULO AN IDEAL

DerFmiITioN. Let 1 be an ideal of R and ae R. Then a is called an
absolute non-zero-divisor modulo I if a is a non-zero-divisor mod IT for
every domain 7 containing R such that [T # T.

Denote the set of absolute non-zero-divisors (resp., non-zero-divisors;
zero-divisors; units) mod 7 by </(R, I) (resp.; A (R, I), Z(R, I), %(R, I)).
The set of units in a ring 7 is denoted by #xu(T). Thus Fxu(R)=
(R, (0)). If T is a ring, we denote by #(T) the Jacobson radical of 7. Let
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F(R, I) be the intersection of all maximal ideals containing /. (Here, we
allow 7 to possibly be (0).) Thus #(R/I)= #(R, I)/I, F(R)= F(R, (0)),
and #(R, I) is the largest ideal of R with the property that #(R, #(R, I)) =
YU(R, I).

THEOREM 2.1. Let a be a nonzero element of R and set U =%(R, I).
The following conditions are equivalent:

(1) aeA(R 1)

(2) a is invertible in the ring (IR, :IR,);

(3) IRy, =alR,;

(4) For iel, there exists some je I such that (1+ j)ieal,
(5) ae AN (R I)and IR, SaR,;

(6) If xeK and axel, then xeIR,;

(7) If xeK and axe IR, then xeIR,,.

Proof. (1)=(4): Let
S={se R\{0} | condition (4) is not satisfied with a replaced by s}.

We construct a domain 722 R such that /T T and with the property
that @/l elements in S are zero-divisors mod IT. Let {X |se S} be a set
of independent indeterminates over R. By assumption, for each se S,
we may choose an element i €/ such that (1+ j)i ¢s/, for all jel Set
T'=R[{X,, sX,/i;|seS}].

Let se S. Then sX, = (sX,/i,) i,e IT. Assume that X,eIT. Set X,=0 for
each se .S such that r#s and write X =X,. We obtain a relation of the
form

X=o+ X +y(sX/i,) + g(X),

where a, B, y are in 7 and g(X) is a linear combination with coefficients in
I of terms of the form X™(X/i,)", m+ n>= 2. Comparing the coefficients of
X yields ! =g+ ysfi,; or (1 —pB)i,=vs, contradicting the choice of i,.
Therefore, X=X, ¢ IT, and se Z(T, IT).

(4)<«>(3): This follows from the fact that an element u of R is in
#(R, I if and only if it divides in R an element of the form 1 4+ with ie [,

(3) <> (2) = (5): Straightforward.
(5)=(6): Let xe K such that axel Then axelR;<aR,, and

hence xe R,. Since a is not a zero-divisor mod IR,, we obtain that
x€elR,.
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(6)=(3): For iel, we have a(i/a)e I and hence i/ae IR, . Therefore
iealR,, which implies that IR, =alR,.

(3)=(1): Let T be a domain containing R such that IT#T.If teT
and atelT, then atelIT,=alT,; hence teIT,. Thus uteIT for some
ueY; since ueT is a unit mod /T, we obtain that re[T. Therefore
ae 4R, ).

(6)<>(7): Clear. |

We restate the equivalence (1)< (2) as follows:
COROLLARY 2.2. Set#U=U(R, I). Then (R, I)=(F»nv (IR, :IR,))NR.

CoROLLARY 2.3. For a domain R we have

(1) If IS #(R)), then 4(R,[)={reR|I=rl};
(2) If R is quasi-local, then of (R, I)={re R|I=rI}.

Proof. For part (1) use Theorem 2.1(3). Part (2) follows from part
(.1

PrOPOSITION 2.4, Set 4 =U(R,I), and of = (R, I). The set </ is the
largest multiplicative subset of R with the property IR, =1IR,,.

Proof. Since % < .o/, we have IR, <IR,. By Theorem 2.1(3), we have
o ={aeR|I<alR,}, and so the set .o is the largest multiplicative set
with the property /IR, < IR, . The proposition follows. ||

Note that for the domain T constructed in the proof of Theorem 2.1
[(1)=>(4)] and for each ideal L of R, we have LT =L (to obtain this, set
each X,=0). In particular, IT~ R=1, thus R/I< T/IT canonically. Hence
an absolute non-zero-divisor mod 7/ can be characterized as an element a
having the property that a+ I is a non-zero-divisor in each ring extension
of R/I of the form T/IT with IR~ R= 1. It turns out that the restriction to
this form of ring extensions is essential. Indeed, for a ring E, an element in
E is a non-zero-divisor in each ring extension of £ if and only if is a unit
in E. To show this, let X={X,|a is a nonzero nonunit in E} be a set of
independent indeterminates over E. Set F=E[X]/L, where L is the ideal
generated by {aX,|a is a nonzero nonunit in R}. Clearly £< F canoni-
cally, and each nonunit of E is a zero-divisor in F.

The domain 7T constructed above also satisfies the property
A(TIT)NR=oA(T,ITYn R=o/(R, I). However, for general domains
RcT, if Iis an ideal of R such that IT# T, we can state just that
AR, IYe (T, IT)~ R. This inclusion may be proper, even if ITn R=1,
2(R)=2(T) and [ is a principal ideal. For example, let R=k[X, Y] be



496 FONTANA ET AL.

the polynomial ring over a field k&, I=XR, and T=k[X, Y, 1/Y]. Then
RcT, IT#T, and Y is invertible in T {and hence is in &/(7, IT)Nn R).
Since #(R,I)=k\{0}, we have #,=R, and so IR,# YIR,. By
Theorem 2.1(3), Y¢ o/(R, I).

We have the obvious inclusions

U(R, )< (R, 1)< N (R, I). (2-1)

Generally, both inclusions may be strict, as shown in the following
example.

ExaMPLE 2.5. A domain R having a prime ideal [ such that
U(R,1)g (R, 1) N (R, ).

Let X, Y and Z be independent indeterminates over a field k. Set
R=k[Y,Z, {X/Y"|n=0}], and let I be the ideal generated by X/Y” for
nz=0. We have R/I=k[Z], so I is a prime ideal. Since I = YI, we obtain by
Theorem 2.1(3) that Ye «/(R, I). Clearly % (R, I) = k\{0}, and I # ZI. Using
Theorem 2.1(3) again, we obtain Z¢ o/(R, I). Thus Ye @(R, IN\#%(R, I},
and Ze A (R, IN(R, I); hence #(R, g (R, I)g A (R, I}.

Note that if 7 is a maximal ideal of R, then %(R, I)= A"(R, I), and so
both inclusions in (2-1) become equalities.

For certain classes of domains, one of the inclusions in (2-1) becomes an
equality (see Theorem 2.6 and Proposition 2.8 below).

THEOREM 2.6. For each ideal I of a Priifer domain R, we have
A (R, IY=A(R,]).

Proof. Let ae A (R,I), and iel There is an element je R such that
J(a/i) and (1 + j)(i/a) are in R (Corollary 1.2). Since ja = j(a/i)i€ I, we have
jel Also, (1+ j)i=arel for some re R, hence rel, and (1 + j)ieal By
Theorem 2.1(4), ae (R, I). |

Using Proposition 2.4 and Theorem 2.6 we obtain

COROLLARY 2.7. Let R be a Prifer domain. Set U=%(R,I),
o = (R, 1), and A" = N (R, I). Then IR, =IR,=IR,..

A domain R is archimedean if (\"_,a"R=(0) for every nonunit a€ R;
see [15].

PROPOSITION 2.8. Let R be a domain such that every quotient ring of R
is archimedean. Then o/ (R, I)=9%(R, I) for each ideal I of R.

Proof. Let I be an ideal of R, and let % =% (R, I). If ae «/(R, I), then
alR, =1IR,. Thus (0)# IR, (N _,a"R,. Since R, is archimedean, it
follows that a is invertible in R, ; that is, ae%. |}
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It is not clear if the converse of Proposition 2.8 is true. However, we have

PROPOSITION 2.9. If &/ (R, I)=%(R, I) for each ideal I of R, then R is
archimedean.

Proof. (cf. Example 2.5 above). Let a and b be nonzero elements of R
such that ae(\7_,b"R. Then a/b"e R for all n=1. Let I be the ideal
generated by {a/b"|n=0}. Since I=5I, we obtain that be.o/(R,I)=
#(R, I). Thus Rb= 1+ Rb=R. It follows that b is a unit in R, and so R
is archimedean. |

A domain is Mori in case it satisfies the ascending chain condition on
(integral) divisorial ideals; in particular, a noetherian domain is Mori.
Examples of domains which satisfy the assumption of Proposition 2.9
are one-dimensional domains [12, Coro.1.4], and Mori domains (see
[2, Sect. 3] and [13, Sect. 3, Coro. 1]).

For one-dimensional Priifer domains or one-dimensional quasi-local
domains we have

YR, I)=N(R,])

and so, in (2-1) we have equalities throughout. Thus Theorem 2.6 does not
characterize Priifer domains.

PROPOSITION 2.10. Let I be a finitely generated ideal of R. Then
A (R, ) =R, I).

Proof. Set % =% (R, I). Let ae o/ (R, I). By Theorem 2.1(3), alR, =
IR, . Since [ is finitely generated, by [11, Ch.I, (3.10)] a is a unit in R,
that is ae %. |

COROLLARY 2.11. Let a and b be nonzero nonunits in R. The following
conditions are equivalent:
(1) ae (R, bR);
(2) be (R, aR);
(3) aR+bHR=R

3. O~ (R: 1)

In this section we deal with the R-module (R :I) in the general context
of seminormal domains. We use the fact that a domain R is seminormal if
and only if for each xe K, if x"e R for n> 0, then xe R. See [14] and [16]
for seminormality in a general setting.
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THEOREM 3.1. If R is a seminormal domain, then the ring (\/7 : \/I ) is
seminormal and

(JT:/T)={xeK|x"e(R :Dforalln>1)}
={xeK|x"e(R:I)forn>»0}.

Proof. Let xe K such that x"e (R: 1) forn>0. If te\/i, then 1" e [ for
m > 0. Hence, for m> 0, we obtain that (xf)” e R, and by seminormality
that xte R. Also (xt)"*'=(x""1")te /1. Thus xte./I, and conse-
quently xe (\/7 : \/7 ). This implies both above equalities.

To show that (ﬁ : \/7) is seminormal, let x"e(\/; : \/7) for n» 0.
Thus x"e (R : 1) for n> 0, and so xe(\/;:ﬁ). |

CoORrROLLARY 3.2. If R is a seminormal domain, and 1 is a radical ideal,
then the ring (I:1) is seminormal.

We wonder to what extent the hypothesis on [ being radical in
Corollary 3.2 can be relaxed.
Another corollary of Theorem 3.1 is the following theorem.

THEOREM 3.3. If R is a seminormal domain, then (\/7 :\/7 ) is the
largest subring of (R : I).

In contrast to the seminormal case, in general the union of all subrings
of (R : I) may not be a ring, even if [ is a principal ideal. For example, con-
sider the ring k[{X"Z|n >0}, {Y"Z|n>0}], where & is a field , and X, Y,
Z are independent indeterminates over k. Set /=ZR. For every n20, X"
and Y” are in (R :[); hence the rings k[ X] and k[ Y] are contained in
(R : I). Nevertheless, XY ¢ (R : 1) since XYZ ¢ R. By Theorem 3.1, R is not
seminormal. Indeed, XYZ ¢ R, although (XYZ)"e R for all n=2.

Let /,=(I"')"'. If R is seminormal, then

(I:ne(,:1,)=(JT1:/Hs(R: ).
If in addition (R : [) is a ring, using [8, Prop. 1.2], we obtain

(DS, )= (JT:/T)=(R:/T)=(R:I).

It is not clear if (/,:1,)= (\/7 : \/;), assuming just that R is seminormal.
Concerning [8, Prop. 1.2], note that for arbitrary R and I, we have
(1YY=, :1,).
From Theorem 3.3 we obtain

COROLLARY 34. Let R be a seminormal domain. Then:
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(1) (R:1)is aring if and only if (R:1)=(/1:/1);
(2) If (R:1)is a ring, then (R : 1) is seminormal.

Corollary 3.4(1) is false for a general domain R. For example, let
R=k[[X? X°]], where X is an indeterminate over the field k%, and
I=(X* X°). Thus X"el for all n>4. It is easy to see that
(R:1)=k[[X]], /T=(X? X%) and (/T : /T)=k[[ X2 X*1]. Therefore
(\/7 : \/7);& (R:I), although (R : ) is a ring. Note that R is noetherian,
quasi-local, and one-dimensional, \/I_ is a maximal ideal, and (R:I)is a
discrete valuation domain.

Corollary 3.4(1) holds for an arbitrary domain R if the ideal 7 is radical
[1, Prop. 3.3(1)].

The next two lemmas lead to a characterization as to when, for seminor-
mal domains, (R :1)=7 (1) (Theorem 3.7).

LEmMMA 3.5. Let R be a seminormal domain and I, < I, ideals of R with
the same radical. If (R :1,) is a ring, then (R:1,)=(R:1,)= (\/71_ : \/I-l).

Proof. By Corollary 3.4(1),

(R:1)=(/T,: /1) =(JI: /D) S(R:L)S(R: 1),

Thus we have equality everywhere. ||

For the next lemma, recall that /°=R.

LEMMA 3.6. For a domain R, if (R:I")=(R:I"*") for some m >0,
then (R:I"y=(R:I") for all n=zm.

Proof. We proceed by induction on nz=m using the equality
(R:I""")Y=((R:I"):D). ]

THEOREM 3.7. For a seminormal domain R, the following conditions are
equivalent:
(1) (R:D=7);
(2) (R:I")is a ring for some n=2;
(3) (R:I"Yiraring forallnz1.

Proof. Obviously, (1)=>(3)=(2).

(2)=(1): Lemma3.5 implies that (R:I’")=(\/7:\/7) for
1 <m<n. In particular, (R:I)=(R:I%). By Lemma 3.6, (R:I")=(R: 1)
forall n>=1, thatis (R: N=7(I). |}

Theorem 3.7 generalizes [5, Thm. 3.1(e)].
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As shown by the next example, the implication (2)=>(3) in the
Theorem 3.8 fails if we allow n=1 in (2), even when R is a Priifer domain
and [ is a prime ideal of R (see also [5]).

ExampLE 3.8. A Priifer domain R having a prime ideal P such that
(R: P)is aring, but (R: P)# 7 (P).

Let R=Z+ XQ[X], and P=XQ[X]. By [4, Coro.4.15], R is Priifer.
We have (R:P)=Q[X] and (R:P})=(1/X)Q[X]. Hence, 1/Xe€
(R:P)\(R: P), and so (R: P)# 7 (P).

COROLLARY 3.9. Let R be a seminormal domain. Then (R:1)# 7 (I} if
and only if

RS(R:DNE(R:P)g -

Proof. Assume that (R:I)# Z (I). By Theorem 3.7, (R:1") is not a
ring for n>2. By Lemma 3.6, we obtain R (R: )G (R: I")g---
The converse is obvious. |}

4. ON(I:1])

Let 7 be an ideal of a domain R. This section is concerned with repre-
senting (/:7) as an intersection of localizations of R at prime ideals.
General results are given. However, the Priifer hypothesis on a domain
yields the best results.

Denote #%(R, I) by %, A (R, I) by .+, and &/(R, I) by .«¢. The sets %,
o, and A" are saturated multiplicative sets. The set of prime ideals, all of
whose elements are zero-divisors modulo /, is denoted by Z(R, I). The
elements of Z(R, {) are called prime divisors of 1. The set of maximal (resp.,
minimal) elements of Z(R, I) is denoted by MZ(R, I) (resp., by mZ(R, I)).
Similar notation is used for each set C < Spec(R); e.g., MC is the set of
ideals that are maximal in C. The set of maximal ideals containing [ is
denoted by M(R, 7), and the set of maximal ideals not containing 7, by
M'(R, I).

The prime ideals which are disjoint from .o/ are called weak prime
divisors of I. The set of these ideals is denoted by W(R, I). If R is Priifer,
then W(R, I)=Z(R, I) by Theorem 2.6. If R is Mori, then W(R, I) is the
set of prime ideals containing / by Proposition 2.8.

For a multiplicative subset S of R, we denote by M(S)=M(R, §) the
set of maximal elements in the family of ideals not intersecting S. Thus
M(%)=M(R, I), M(s/)=MW(R, I), and M(A")= MZ(R, ).
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We denote by ¥ =%€(R, I) the ring
ﬂ {IR,, | MeM'(R, I)}

(if M'(R, I=(J, that is, if IS #(R), then € =K.)
A basic result for this section is the following well-known theorem.

THEOREM 4.0 ([cf, e.g., [6, Coro. 4.6 and Thm. 4.10]). For a multi-
plicative subset S of R, the ideals in M(S) are prime, and for each fractional
ideal L we have

LRs=(){LRy|1QeM(S)}.

COROLLARY 4.1. I=R,n%.

Proof. The corollary follows from the previous theorem, since
IR, =R, for Me M'(R, I). |}

LEmMMA 4.2, Let R be a domain, F and L fractional ideals of R, and &
a family of multiplicative subsets of R such that F = \g., FRg. Then

(F:L)= () (F:L)Rs= () (FRs:LRy).

Sey Se s
Proof. We have (F:L)=(\FRg): L= (FRs:LY=\ (FRs:LRy).
The lemma follows. J

PROPOSITION 4.3. Let S be a multiplicative subset of R such that
U<eS<d. Then:
(1) IR, =IRg;
(2) (I:D=(Ry:IR,)NE=(N{(IRy : IRy) | MeM(S)}) N E;
3) Rsn€<({:1)
(4) (I:)=Rsn¥ if and only if ({:1)<S Ry;
(5) RinE=Rsn(R:N)=R;n{{:1)=Rgn T (I)

:Rsr\(\/l-:\/;).

Proof. (1) follows from Proposition 2.4.

(2) For MeM’'(R,I), we have (IR,,:IR,)=R,. Hence, by
Corollary 4.1, Theorem 4.0 and Lemma 4.2, we obtain

({:)=UR, IR, )NE=(IRs:IRG)NE

=<ﬂ {(IRy : IR ) | MeM(S)})m%,
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(3) foliows from (2) since R¢<(/Rg:IRg)=(IR, :IR,).
(4) follows from (3) since (/: 1)< %.
(5) follows from (3) since F([)c=¥, % (R, \/7)=“21(R, I) and
¢(R, I)=FR.I). |
COROLLARY 44. R, n€c<(I:1).
Note that R,-n (R :I)=({: 1) for an arbitrary domain R.
Since & = .4" for R Priifer (Theorem 2.6), we obtain
COROLLARY 4.5. Let I be an ideal of a Priifer domain R. Then:
(1) I=IR, NnE,
(2) Ryn€<(:1)
3) U:DH=RynCifandonly if [:)SR,.
LemMa 4.6. If S is a multiplicative subset of R containing U, then each
ideal in M(S) contains I.

Proof. We have #(Rg, IRs)S U(Ry), that is IRg < #(R). The lemma
follows. |

For a Priifer domain R and a prime ideal Q containing /, we denote by
G(Q)=G(R, Q,I) the unique prime ideal of R such that G(Q)R,=
Z(Ry, IR,). Thus G(Q)=Z(Ry, IR,) N R.

THEOREM 4.7. Let R be a Priifer domain and S a multiplicative subset of
R, such that % = S < A", Then:

(1) (I:D=N{Rsu| MeM(S)} N,

2) (I:D=(){Rep|QeMZ(R, )} "€
= {Roio)| Q€Z(R, D} "€
=V {Room | MeM(R, 1)} N %.

Proof. (1) By Lemmad4.6, G(M) is defined for MeM(S). Since
o =.4", we obtain by Proposition 4.3(2)

(I:D)={){(URy IRy) | MeM(S)} NE.
By {7, Lemma 1.3], (IR, : IR,;) = R, for all M.

(2) follows from (1) applied first to S=.4", and then, to S=%. |
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The intersection (| {Rgar| M e M(S)} in Theorem 4.7(1) has a natural
meaning: it equals (IR : IRy ). Indeed, IRy, =IRs=\ {IR,,| M e M(S)},
so the assertion follows from the proof of Theorem 4.7(1). In particular,

() {Re)| Qe MZ(R, )} = (IRy : IRy).

We now turn to the question under which assumptions on R or on 7, we
may replace G(Q) by Q in Theorem 4.7(2) (see Theorem 4.11 below). This
is equivalent to asking, when the inclusion R, n€<({:[) becomes an
equality, or, when (/: /) is contained in R, . We need some preliminary
lemmas.

LEMMA 4.8. Let a and b be nonzero elements in R and q = a/b. Then
Rg 'mR=R(1—a)+Rb; and if (1—a)geR,
then
Rg='nR=R(1—a)+ Rb.

Proof. Let xeRq™'nR. Then x=x(1—a)+(xq)be R(1 —a)+ Rb.
For the second part, assume that (1 —a)ge R; so 1 —ae Rq '~ R. Since
bge R, we obtain Rg"'nR=R(1 —a)+ Rb. |

LEMMA 4.9. If R is a Priifer domain and qe K\{0}, then there are
elements a and b in R\{0} such that g=a/b and Rg"'n R=R(1 —a) + Rb.

Proof. By Corollary 1.2, there is a nonzero element a € R such that a/g
and (1 —a)q are in R. Let b=a/q. Then be R, and g =a/b. By Lemma 4.8,
Rg'mnR=R(1—-a)+Rb. |

LEmMaA 4.10. If R is a Priifer domain, x is a nonzero element in (I:1),
and L=Rx "N R, then I=LI

Proof. By Lemma 4.9, there are nonzero elements @ and b in R such
that x=a/b and L=(1—a)R+bR. 1f i€l, then i=(1—a)i+ia=
i(1—a)+b(xiyeLl. 1

A domain R is a QR-domain if each overring of R is a quotient ring of
R. Each QR-domain is Priifer, and each Bezout domain is a QR-domain
(see [6, Sect. 27]).

We say that an ideal I has no embedded primes if each prime ideal
Pe Z(R, I) is minimal over /. Clearly, this property is equivalent to each of
the following conditions:

481/157/2-15
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(1) Z(R D=2Z(R JI)
(2) Z(R, D=Z(R, /1)
(3) N(R D)=HN(R, JT).

THEOREM 4.11. We have
(I:Hh=R,n¥

under each of the following assumptions:

(1) R is a QR-domain;
(2) R is Priufer and I has no embedded primes.

Moreover, under assumption (2), we have (I:1)= (\/7 : \/f ).

Proof. (1) We show that (/: )<= R,-. Let x be a nonzero element of
R, and set L=Rx 'nR. By Lemma 4.9, L is generated by two elements.
By [6, Thm. 27.5], there exists an element ¢ € R such that \/Z = \/ tR. Thus
L™ < tR for some m>=1. By Lemma4.10, /= L™I<I. This implies that
te (R, I)=A(R,I). For some nz1, we have t"e L. Therefore t"xe R,
80 XER, .

(2) follows from Theorem4.7(2), for then G(Q)=Q for all
QeMZ(R ). |

The next two propositions provide conditions which ensure that [ has no
embedded primes.

PROPOSITION 4.12. For a domain R, an ideal I has no embedded primes
under each of the following assumptions:
(1) R is one-dimensional,
(2) I is radical,
(3) I has just one prime divisor (for example if I is primary).

For the next proposition, note that the following conditions are
equivalent:

1) I< #(R);

2) U(R, I)=UR);

3) W(R, I)<U(R);

4) M(R, I)=Max(R).

[N

(
(
(
(

Also the following conditions are equivalent:
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(1) Each nonunit of R is a zero-divisor mod I;
(2) AR, I)=%(R);

(3) AV(R D=#R);

(4) Z(R, I)=Spec(R);

(5) MZ(R, I)=Max(R).

ProPoOSITION 4.13. If R is a Prifer domain, then I has no embedded
primes under each of the following assumptions:
(1) (Ry:IRy)=(IRy :IRy);
(2) IS F(R)and (R:)=(I:1);
(3) Each nonunit of R is in Z(R, I} and (R:Iy=(I:1).

Proof. (1) By Corollary 3.4(1),

(IRy : IRy) = (/IRy : J/IR,) = (/TRy: /IR,).

Clearly #(R, \/T)=%(R, I)=4. By Corollary 2.2, o/ (R, I)= (R, /1),
and by Theorem 2.6, A°(R, I)= A(R, \/; ). Therefore, I has no embedded
primes.

(2) follows from (1) since (R, I) =% (R).
(3) follows from (2) since 7< #(R). |

CoRrOLLARY 4.14. If R is a Priifer domain and I is a radical ideal, then
U:)=R,NE.

COROLLARY 4.15. If R is a Prifer domain, then (\/7 :\/7)=
N{Rp|PemZ(R, N} NE.

PROPOSITION 4.16. Let I be an ideal of a Priifer domain R such that each
nonunit of R is a zero-divisor mod I. The following conditions are equivalent:
(1) (R:1I)is aring;
(2) (R:1)
(3) (R:D=(I:1)
4) (R:D)=5);
(5) (R:I")is aring for some n= 1.
Moreover, if the above equivalent conditions hold, then (I: I)=R.

Proof. In view of Theorem 3.7, it is enough to prove the implication
(1)=(2):
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By Proposition 4.13(2), I has no embedded primes, so Z(R, \/7 )=Z(R, I),
and by assumption, Z(R, I)=Spec(R). Hence, Z(R, \/}) = Spec(R). By
Corollary 4.14, (\/1 : \/T)= R, and by Corollary 3.4(1), (R: I)= (/T : /1)
=R, and by Corollary 3.4(1), (R: )= (\/; : ﬁ)=R. 1

COROLLARY 4.17. Let I be an ideal of a Prifer domain R such that each
nonunit of R is a zero-divisor mod I. If (R: I)# R, then

(I:Dg(R:Ng(R:P)g--

Proof. By Proposition4.16, we have ([:I)E(R:I) and by
Corollary 39, (R: e (R:I))g--- |

Our next goal is to characterize the family {G(Q)| Q€ Z(R, )} occur-
ring in Theorem 4.7(2) (see Proposition 4.19 and Theorem 4.20 below ).

LEMMA 4.18. Let S be a multiplicative set of R such that InS= ).
Then:

(1) Z(Rs, IRsx)NREZ(R, I);

(2) If S,€8, are multiplicative subsets of R not intersecting I, then
Z(Rs,, IRg,) N Rs, = Z(Rs,, IR,));

(3) If P<Q are prime ideals containing I, then Z(Rp, IRp) N R, S
Z(Ry, IRy).

Proof. (1) is immediate and the implications (1)=(2)=(3) are
obvious. |

PROPOSITION 4.19. Let P be a prime ideal containing I. The following
conditions are equivalent:

(1) PRp=Z(Rp, IRp);
(2) For some prime ideal Q containing P, we have P < Z(R,, IR,);
(3) For each prime ideal Q containing P, we have P = Z (R, IR ).

Proof. (1)=(3) Let Q be a prime ideal containing /. By Lemma 4.18,
we have P Z(Rp, IRp) N Ry, S Z(Ry, IR,).
The implications (3)=>(2)= (1) are trivial. |

We denote by G(R, I) the set of prime ideals containing I which satisfy
the equivalent conditions of Proposition 4.19.

It follows from Proposition4.19 that if P=Q are in Spec(R), and
Qe G(R, I), then Pe G(R, I). Note that each ideal in G(R, I) is a Nagata
prime of I [11, Sect. 7], although the converse fails even if R is Priifer.
Indeed, by the remarks below, the converse would imply that G(Q)= Q for
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each Qe MZ(R, I), and so that (/: I)= R, n¥ for each ideal [ in a Priifer
domain R, contradicting Example 7.2.

Assume that R is a Priifer domain. If Q is a prime ideal containing /,
then Q € G(R, I) if and only if Q= G(Q). Hence, for every prime ideal Q
containing /, we have GG(Q)= G(Q); also, by Lemma 4.18(3), if @, <@,
are prime ideals containing J, then G(Q,)=G(Q,). The function
G(Q)=G(R, Q,I) is not necessarily one-to-one even if restricted to
M(R, I). Indeed, let R be a Priifer domain having a nonzero prime ideal /
contained in at least two distinct maximal ideals (explicitly, in Example 3.8,
the prime ideal P = XQ[X] of the Priifer domain R=7 + XQ[ X] is con-
tained in infinitely many maximal ideals; namely, M(R, P)= {nR | n=2}).
For each prime ideal Q containing 7, we have G(Q) =1, so the restriction
G | M(R,I) is not one-to-one. We leave open the question whether
G|MZ(R, I) is one-to-one.

THEOREM 4.20. Let R be a Prifer domain, and S a multiplicative subset
of R, such that ¥ = S< A . Then:
(1) G(R,I)={PeSpec(R)| P< G(M) for some MeM(S)};
(2) (I:D=(N{RpIPeEGR N})NE.
Proof. (1) If PeG(R,I), then P< Z(R, ). Since S< .4, we obtain
that P< M for some M e M(S). Hence P < G(M), and (1) follows.
(2) follows from (1) and from Theorem 4.7(1). |

PROPOSITION 4.21. Let R be a Priifer domain. Then:

(1) For each multiplicative set S containing U,
MG(R, )= {GIM)IMeM(S)};
(2) We have
MG(R, 1)< {G(Q)| Qe MZ(R, )} < {G(M)|MeM(R, I)}.

Proof. (1) follows from Theorem 4.20(1).

(2) The first inclusion follows from part (1) applied to §=.4".

As for the second inclusion, let Qe MZ(R, I), thus Q< M for some
MeM(R, I). Hence G(Q)< G(M). Since R is Priifer, and Q and G(M) are
contained in M, we obtain that either Q < G(M), or G(M) < Q. In the first
case, since Q e MZ(R, I) and G(M)e Z(R, I), we obtain Q = G(M), and so
G(Q)= Q= G(M). In the second case, we obtain G(M)< G(Q), and again
we have equality. This proves the second inclusion. ||
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It is not clear if either of the inclusions in Proposition 4.21(2) is actually
an equality. We do not even know whether each ideal in G(R,I) is
contained in an ideal belonging to MG(R, I).

5. THE DOMAIN Z(R)

This section and the next contains the details of the construction of
the ring 2°(R). Let R be a fixed integral domain with quotient field K.
Let X={X |geK\{0}} be a set of independent indeterminates over K.
Denote by &(K) the set of all elements X, ¢X, and (1— X )/q, for
ge K\{0}. Then &(K) is a subset of the polynomial ring K[ X]. Note that
F(K), as well as the set X, depends just on K rather than on R.

Define #(R) to be the domain R[ ¥ (K)]. If there is no danger of confu-
sion write 2 for #(R). Clearly #(R)< K[X] and the quotient field of
2(R) is K(X).

The first two propositions follow from the definitions.

ProrosiTiON 5.1. (1) Let R, < R, be domains with the same quotient
field. Then (R,)=2(R,)[R,].

(2) If R is a domain with quotient field K and S is a subset of K, then
PZ(R[S))=2(R)[S].

PROPOSITION 5.2. The domain P(R) is Priifer over R.

For an arbitrary domain D, let D’ be the integral closure of D in its
quotient field.

PropPosITION 5.3. ' nK=R'

Proof. If xe ?'n K, then x satisfies an equation
X+ fi X+ fo=0

with all f; in 2. For some g¢,..q, in K\{0}, all f; are in
RIX,,q9:X,,(1-X,)q,,..X,,q9,X,, (1-X,)/q,]. We prove by
induction on 7 that x e R’. It suffices to consider the case n=1. Set g, =¢q
and X;=X. Thus we assume that all f; are in R[X, ¢X, (1 —X)/q].
Setting X=0 yields xe R[1/g]), and setting X=1 yields xe R[q]’;
thus xe R[q]) nR[1/q]). To complete the proof, we show that
R[g) nR[1/q] =R. If V is a valvation ring of K containing R,
then V contains g or 1/g. Thus V2 R[q] n R[1/q]. It follows that
R'2R[q]) n R[1/q]’; so we have equality. ]
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ProOPOSITION 54. % (P'})=%(R').

Proof. Since #' < K[X], we have #(#')< K. By Proposition 5.3,
U(P' )= R. Hence %(?')<#(R'). |

COROLLARY 5.5. ¥ (P)~ R=%(R).
Note that Corollary 5.5 also follows from Corollary 5.7(1) below.

PROPOSITION 5.6. For an ideal I of R, we have \/I? " R = \/7 .

Proof. It is enough to show that \/IR[X, qX,(l—X)/q]ng\/i
for geK\{0} (compare the proof of Proposition5.3). Let
se\/IR[X, gX,(1—X)/g]n R. Hence IR[X,qX, (1—X)/q] is the unit
ideal. Set X=0 to obtain 1e€IR,[1/q], and set X =1 to get 1€/R,[q].
Then IR,# R, would contradict the fact that the ideal IR, survives in
one of the rings R,[q], R,[1/¢] [10, Thm. 55]. This IR,= R,, that is
se\/f. |

COROLLARY 5.7. Let I be an ideal of R.

(1) If I+R, then IP #+ P,
(2) If I is a radical ideal, then I "R= 1L

It is shown in Remark 7.3 that if I is a radical ideal of R, then /2 may
not be a radical ideal of #.
We will use repeatedly the following well-known theorem.

THEOREM 5.8. Let K be a field, X a set of independent indeterminates
over K, ¢: K— L a place, and 4: X - L a map. Then there exists a place
@ (K(X))~ — L extending ¢ and A.

Proof. Consider X also as a set of indeterminates over L. Let Y=
{X—A(X)| Xe X}, thus L(X)= L(Y). There exists a place ¥: (L(Y))~ —» L
over L which satisfies ¥(Y)=0 for all Y e Y. Indeed, by Zorn’s Lemma, we
reduce this assertion to the case that the set Y contains a single element Y.
In this case, the valuation domain L[ Y],y determines a place ¥ as
required.

There exists a place @: (K(X))~ — (L(X))~ which extends ¢ and satisfies
O(X)=X for all Xe X. Indeed, if (¥, P) is the valuation domain deter-
mined by the place ¢, then V[X]pyryy is a valuation domain which
determines a place @ as required [6, Prop. (18.7)].

Set d=¥-6. |

LEMMA 59. Let K and L be fields, ¢: K— L a place, X a set of
indeterminates over K and A: X — L a map. Then there exists a place
& (K(X))~ — L extending ¢ and i, which satisfies for X X and ce K:
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(1) ®(cX)=0, if A(X)=0;
(2) D(c(X~1))=0, if A(X)=1.

Proof. By Theorem 5.8, there is a place @: (K(X))™ — (K(X))~ over K,
which satisfies for X e X,

0 if A(X)=0;
OX)=<1 if AX)=1;
X otherwise.

By Theorem 5.8 again, there is a place ¥: (K(X))~ — L which extends ¢
and 4. Set #=¥-60. |

Return to the notation X'= {X,|ge K\{0}.

LEMMA 5.10. Let K and L be fields, and let ¢: K— L be a place.
Assume that R is a subring of V4, K is the quotient field of R, and T is a
subring of L which is Priifer over ¢(R). Then there exists a place
D: (2(P(R))™ = (2T))" extending ¢ and such that $(P(R)) < T.

Proof. Let g be a nonzero element of K. Since T is Priifer over ¢(R),
if ¢(q) #0 or oo, we can choose x, € T such that ¢(q) x, and (1 —x,)/é(q)
are in T. If ¢(q) =0, let x,=1; .'ind if ¢(g) = oo, let x,=0. By Lemma 5.9,
there is a place ¢: (K(X))™ — L extending ¢ and such that &(X )=x,
for all geK\{0}. Consequently, the elements &(X,), ®(¢X,) and
&((1 - X,)/q) are in T. Therefore ®(P(R))=T. |

COROLLARY 5.11. Let K and L be fields. Every place ¢:K—L is
extendable to a place (2(P(V,)))™ — L which is finite on P( V).

Proof. In the previous lemma take R=V, and T=¢(V,). |

PrOPOSITION 5.12. Let R and T be domains, and let f:R—> T be a
homomorphism such that T is Priifer over f(R). Then f is extendable to a
homomorphism P(R) — T < f is extendable to a place (2(R))~ — (2(T))".

Proof. (=) Since #(R) is Priifer over R (Proposition 5.2), this direc-
tion follows from Proposition 1.4.

(«=) Let ¢: K- (2(T))~ be a place extending f. By Lemma 5.10,
there is a place @:(K(X))™ - (2(T))~ extending ¢ and such that
@(P(R))= T. Hence P|P(R) is a homomorphism from #(R) into T
extending /. |

PROPOSITION 5.13. A homomorphism from R into a domain T is
extendable to a homomorphism P(R) — P(T) if and only if it is extendable
to a place (2(R))~ = (2(T))".
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Proof. Let f: R— T be a homomorphism. Since f(R)< T, and 2(T) is
Priifer over 7, it is Priifer also over f(R). By Proposition 5.12, f is
extendable to a homomorphism 2(R) — 2(T) if and only if it is extendable
to a place K— (2(2(T)))".

To complete the proof, consider a place @: K — (2(#(T)))"~ extending f.
Since 2(#(T)) is a transcendental extension of 2(T), by Theorem 5.8 there
exists a place WY (2(2(T)))~ - (2(T))~ over 2T). Clearly
Yo K— (2(T))"~ is a place extending f. ||

6. THE DoMaIN Z*(R)

Let R be a domain with quotient field K. Define 2" = 2"(R) inductively
as follows: 2°=2°(R)=R and for n>0, let 2" =P"(R)=P(P"~"). Set

P =P(R)= 6 P"(R).
n=0

Here is an alternative definition for 2 *(R). Define inductively
FUK)=L(K), and FL"(K)=L(¥" 1(K)) for n>0. Set ¥*(K)=

X0 L"(K). Note that ¥*(K) depends just on K. It is easy to show that
27 (R)=R[&*(K)].

THEOREM 6.1. The following properties holds for >

(1) 2= is a Priifer domain containing R,
(2) 2"nK=R/;

(3) JI?*nR=T,

(4) If Iis a radical ideal of R, then I?* nR=1,
(5) If I#R, then IP* # P>,

(6) U(ZT)=%R),

(7) U(P*)nR=%U(R).

Proof. (1) Clearly R=2°c®'< .-, so 2 is a domain containing
R. For each n>0, let X denote the set of indeterminates adjoined to
2", that is XY™ = {X("|ge 2(P" )\ <0} }.

Let g be a nonzero element in 2(2*)=K(U=_, X). Thus qe 2(2"),

for some n>0. Hence, XU*Y, gX"*Y and (1-XU"*V)/g are in
P"+1c P> By Corollary 1.2, = is a Priifer domain.

(2} Proposition 5.3 yields inductively that (") nK=R for all
integers n>0. Since 2> is normal, we have 2% =) (#"). Hence
P*nK=R
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(3) Note that \/19’°°=U\/I_':?7. Thus (3) follows from Proposi-
tion 5.6 using induction.

(3)=>(4)=(5). Clear.

(6) follows from Proposition 5.4 using induction, since 2 is
normal.

(7) follows from (5) or from (6). |

PROPOSITION 6.2. Let K and L be fields, ¢: K~ L a place, R a subring of
V, having K as its quotient field, and T a Priifer sybring of L containing
@(R). Then there exists a place ®: (2(P™(R)))™ — L extending ¢ and such
that #(?*(R))c T.

Proof. Using Lemma5.10, we  inductively define  places
@,: (2(2")~ - L such that &,=f and for n>0, @, is an extension of
®,_,, which @, (#")=T. Let @ be the least common extension of the
places @,. |

The next three results are the analogs for 2 of Corollary 5.11, Proposi-
tion 5.12 and Proposition 5.13, and can be obtained in a similar way or
using induction.

COROLLARY 6.3. Let K and L be fields. Every place ¢:K— L is
extendable to a place (2(P*(R)))~ — L which is finite on P(V,).

PROPOSITION 6.4. A homomorphism of R into a Prifer domain T is
extendable to a homomorphism P — T if and only if it is extendable to a
place (2(R))~ — (2(T))".

PROPOSITION 6.5. A homomorphism from R into a domain T is
extendable to a homomorphism P*(R)— P™(T) if and only it is extendable
to a place (2(R))™ = (XT))".

The analog of Proposition 5.1 for 2~ is:

PROPOSITION 6.6. (1) Let R, S R, be domains with the same quotient
field. Then

PE(Ry)=P”(R)[R,]

(2) If R is a domain with quotient field K and S is a subset of K, then
P2 (R[S} =2*(R)[S]

The previous proposition and Theorem 6.1(1) imply

COROLLARY 6.7. 2%(R)=P>*(R').
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Remarks 6.8. (1) Generally, a homomorphism of a domain R into a
field L is not extendable to a place from K into L, but just into the
algebraic closure of L. Thus by Proposition 6.2, generally a homomorphism
R —> T cannot be extended to a homomorphism #*(R)—2><(T). A
similar remark holds for Z(R). Hence, like 2(R), the domains #*(R) and
2(R) are not defined as functors acting in the category of domains having
as morphisms all the ring homomorphisms.

Even if we restrict the morphisms in the category of domains of
homomorphisms R — T extendable to places 2(R) — 2(T), it is not clear
how the make 2=(R) (or Z(R)) into a functor. Indeed, a place extending
a given homomorphism is not uniquely determined and it is not clear how
the choose such a place functorially.

On the other hand, if we restrict morphisms to monomorphisms, then
2™ (R) and 2(R) are functors, like 2(R).

(2) The domain 2(R) is Priifer if and only if R is the field of 2
elements. (If R contains more than 2 elements, then the set X contains at
least 2 indeterminates; and so the ring K[ X] is not Priifer. Since K[ X] is
an overring of #(R), we obtain that #(R) itself is not Priifer.) For each
domain R and for 2<n< oo, the domain #"(R) is not Priifer, since
2"~ (R) is infinite.

(3) One can be more “economical” in the definition of 2(R) (and so
of #*(R)). Define

F(R)=R[{X,, 9X,, (1 -X,)/q|q€ K\{0}

and there is no element x in R such thatgx and (1 —x)/q arein R} ].

Define #"(R) for 0 <n < oo analogously to the definition of #"(R). Thus
F(R) is Priifer over R and &# ~(R) is a Priifer domain containing R. Also
F'"(RY=P"(R) for all 0<n< . Moreover, R is Priifer if and only if
R =%"(R). In many respects the domains & "(R) behave like the domains
#"(R), but apparently, this is not so with respect to homomorphisms.

(4) We can obtain a Priifer overring of R using a similar definition
to that of Z(R) (or of #(R)). For each ge K\{0} pick an element x, € X.
Let T be the domain obtained by adjoining to R the elements x,, gx,,
(1 —x,)/q for ge K\{0}. By Corollary 1.2, T is a Priifer overring of R.
Moeover, an overring of R is Priifer if and only if it contains a domain T
constructed in this way.

(5) The reformulation of the Priifer property in Section 1 is not
essential for constructions of the type 2(R) (and so also of #*(R)),
although it seems to be very convenient. For example, let us start with the
definition of a Priifer domain as a domain in which every nonzero finitely
generated ideal is invertible. We construct a domain &(R) by “closing” the



514 FONTANA ET AL.

domain R with respect to the above mentioned property. More precisely,
let X! be independent indeterminates over R for each finite sequence
S=(ryy . Fy) in R\{0} and 1<i<m(s). For each such sequence,
adjoin to R the rational functions r X¢ (1<j, i<m(s)) and
1/(r X'+ - +r,,X5)) in order to obtain a domain &(R). Clearly
&(R) is Priifer over R. Define &”(R) for 0<rn< oo analogously to the
definition of #”(R). In this construction we may use just sequences of
length 2. This construction seems to be more cumbersome than 2(R)

because it uses rational functions over K and not just polynomials.

7. COUNTEREXAMPLE

This section contains an example of a Priiffer domain A for which
equality in Corollary 4.5(2) fails. The domain A4 is a quotient ring of
P*(R) for an appropriate domain R.

LEMMA 7.1. Let R be a normal domain containing a field k, and let K be
the quotient field of R. Let ce R\{0}, and ge K\ R. Assume:

(1) cq"eR forallnzl;

(2) #(R[q])=k\{0};

(3) There is a place ¢:K— K such that $(R)< R, $(q)=gq, and
¢(c)=0.

Set B=P"(R). Let L be the ideal of B generated by the elements cq, for
nz0. Let "= A (B,L). Set A=B ., and I=LA.

Then the domain A is Priifer, each nonunit of A is a zero-divisor mod I,
but (I:)# A. Moreover, Ac(I: )g(4:N)g(A:I*)g---

Proof. Note that L # B by condition (3) and by Proposition 6.1(5), and
that L=cB[q].

Since B is a Priffer domain, so is 4. Clearly ge(/:I), and by
construction each nonunit of 4 is a zero-divisor mod /. We now show
that g¢ A. Assume that ge 4. There is an element s€ .4 such that sge B.
But A" =/ (Theorem 2.6); thus se . «(B[q], cBlq])=%(B{q], ¢Blq])
(Corollary 2.11).

View ¢ as a place K — (2(B))~. By Proposition 6.2, there exists a place
@: (2(B))~ — (2(B))"~ extending ¢ and such that &#(B) < B. Since ¢(g)=g¢q,
we have ®B[q])< B[g]. Also &(c)=0, and se#%(B[q], cB[g]); so
@(s)e%(B[q]). By Proposition 6.4(2), B[g] =2>(R[q]). Theorem 6.1(6)
implies that %(B[q])=%(R[q])=k\{0}. Thus &(s)ek\{0}.

Since sge B and ®(B)c= B, we obtain P(s)qg = P(sq)e B. Therefore
g€ Bn K= R, a contradiction. This proves that g¢ A4, so (f:[1)# A.

By Corollary 4.17, we obtain A (I: g (A: N (4:1")g--- |
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In the setting of Lemma 7.1, (A4 : I} is not a ring by Proposition 4.16. It
is easy to show that 1/c" 'e(A: I"N\(4: 1" Dforall nx>1.

ExaMpLE 7.2., A Priifer domain 4 containing a proper ideal 7 such that
each nonunit in A4 is a zero-divisor modJ, but AG{/:)g(A4:])g
(A4:P)g---

Let & be a field, X and Y independent indeterminates over k. Set
R=k[{XY"|n>0}]. The domain R is normal (see [10, Sect. 3-3, Exer-
cise 8, p. 114] and [9, Ex. 3, p. 51]). Let K=2(R)=k(X, Y). Set c= X and
g=Y, thus ce R\{0} and ¢ ¢ K\ R. Condition (1) of Lemma 7.1 is clearly
satisfied. Condition (2) is satisfied, since #(R[Y]')=%(k[X, Y]=k\{0}.
Condition (3) is satisfied, since there is a (unique) place ¢: (K(X, Y))™ —
(K(X, Y))™ over k(Y) such that ¢(X)=0 (Theorem 5.8). By Lemma 7.1,
for B=2*(R), the domain A = B, yields the desired example.

Remark 7.3. If M is a maximal ideal of a domain R, then M2 (R) is
not necessarily radical, let alone prime (cf. Theorem 6.1(4)). Indeed, in the
setting of Lemma 7.1, let M be the ideal of R generated by {cq"|n=0},
thus M is maximal. Nevertheless, the ideal MB of B=2>(R) is not
radical; otherwise, the ideal /= MA of A= B, is radical, so (/: )= A4 by
Corollary 4.14, a contradiction. It follows that if P is a radical ideal of a
domain R, then P#(R) is not necessarily a radical ideal of 2(R) (cf.
Corollary 5.7(2)); otherwise, using induction, that would imply a similar
property for 2=, which is not the case. Similarly, if 7 is a prime ideal of
a domain R, then the ideal /#(R) is not necessarily prime. It is not clear
whether for each prime ideal P of R, the ideal PZ(R) is radical.
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