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Abstract The aim of these notes is to indicate, using very simple examples, that not all results in ring theory
can be derived from monoids and that there are results that deeply depend on the interplay between “+” and
“·”.

Mathematics Subject Classification 20M14 · 20M12 · 20M25 · 13A15 · 13G05

In a commutative unitary ring (R, +, ·), with 0 �= 1, there are two binary operations, denoted by “+”,
addition, and by “·”, multiplication, at work. So, in particular, we can consider R as an algebraic system closed
under one of the binary operations, that is (R, +) or (R, ·). In both cases, R is at least a monoid. This state
of affairs could lead one to think that perhaps it is sufficient to study monoids to get a handle on ring theory.
The aim of these notes is to indicate, using elementary and easily accessible results available in literature,
that not all results in ring theory can be derived separately from semigroups or monoids and that there are
results that deeply depend on the interplay between “+” and “·”. Following the custom, we choose to use the
simplest examples that can be developed with a minimum of jargon to establish our thesis. We shall restrict
our attention to integral domains and to results of multiplicative nature, as that is our area of interest. Indeed,
we plan to show that there are results on integral domains that cannot be established for monoids, one way or
another. Of course, to show that monoids cannot prove all the results on rings we have to have an idea of what
monoids can do. For this, we start the paper with a review of the monoids. Our coverage of this topic will be
tool specific, in that we shall concentrate more on what we need to establish our thesis. For this the best source
we find in the field is Franz Halter-Koch’s book [10] where, between the lines, further evidence to the aim of
the present paper can be found.

Before we start the review, we wish to point out that the material presented here is a sort of fact-presenting
mission and it is not our intention to belittle monoids which have their own uses and play active roles in various
contexts. Moreover, on the other side, it is known that monoid theory can produce results of ring-theoretical
relevance which cannot be derived from the ring structure alone. For example, in a Noetherian domain, the
monoid of elements coprime to the conductor forms a Krull monoid, whose arithmetic properties cannot be
detected by purely ring-theoretical methods [10, Chapter 22].
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Last, but not least, the authors would like to extend their thanks to the referees for useful comments and
suggestions that improved the paper.

1 A basic review of monoids

Recall that, following Halter-Koch’s terminology [10, page 5], a monoid is a multiplicative semigroup M with
(a uniquely determined) identity element, denoted by 1, and (a uniquely determined) zero element, denoted
by 0, with 1 �= 0, satisfying 0m = 0, for each m ∈ M . An element x ∈ M is called cancellative if xa = xb
implies a = b, for a, b ∈ M . A cancellative monoid M is a monoid such that every element in M• := M\{0} is
cancellative. As usual, let a, b ∈ M ; we say that a divides b in M (in symbols, a | b), if ax = b for some x ∈ M .
Set M× := {x ∈ M | x is invertible in M}. Clearly, M• is a group if and only if M• = M×; in this situation
the monoid M is called a groupoid. By quotient groupoid of a cancellative monoid M , we mean a uniquely
determined (up to isomorphisms) groupoid Q = Q(M) such that M ⊆ Q and Q = {y−1x | x ∈ M, y ∈ M•}
[10, page 38].

For each x ∈ M , we call x M := {xy | y ∈ M} the principal ideal generated by x in M . A nonempty
subset X of M is called an ideal of M , if X M := ⋃{{x M} | x ∈ X} is contained in (in fact, equal to) X .

If M is a cancellative monoid and Q is its quotient groupoid, then a nonempty subset X ⊂ Q is an M-
fractional ideal if cX ⊆ M is an ideal of M , for some c ∈ M•. For each M-fractional ideal X of M , we call
v-ideal associated with X , the M-fractional ideal:

X v :=
⋂

{zM | zM ⊇ X , z ∈ Q},
and the t-ideal associated with X , the M-fractional ideal:

X t :=
⋃

{(F M)v | F nonempty finite subset of X }.
A t-ideal (respectively, v-ideal) of a cancellative monoid M is an ideal X ⊆ M such that X = Xt (respectively,
X = Xv). A prime t-ideal (respectively, prime v-ideal) of M is a t-ideal (respectively, v-ideal) X � M such
that if a, b ∈ M , ab ∈ X , and a /∈ X, then b ∈ X . A maximal t-ideal (respectively, maximal v-ideal) of M is
a maximal element in the set of all proper t-ideals (respectively, v-ideals) of M , ordered by the set inclusion.
It is well-known that each t-ideal of M is always contained in a maximal t-ideal of M which is a prime ideal
of M [10, Theorem page 57 and Theorem page 58]. Denote by Maxt (M) the set of all maximal t-ideal of M .
It is clear that an ideal H in M is proper if and only if H ∩ M× = ∅. Since a principal proper ideal in M is a
t-ideal, clearly M× = M\(⋃{Q | Q ∈ Maxt (M)}).

Note that, as an integral domain is, in particular, a monoid under multiplication, the various notions of
v-ideals and t-ideals transfer to integral domains without much change.

Restricting to cancellative monoids, Halter-Koch in [10, Chapter 10, page 110] defines GCD monoids.
Given a (nonempty) finite subset B of M , an element d ∈ M is called greatest common divisor of B (in M)

if (1) d | b for all b ∈ B and (2) if c ∈ M, such that c | b for all b ∈ B then c | d . This is pretty much the
same as the definition of a GCD of a finite set in an integral domain.

We denote by GCD(B) the set of all greatest common divisors of B. Obviously, GCD(B) may be empty, but
if d ∈ GCD(B) then all the associates of d belong to GCD(B) and, more precisely, GCD(B) = d M×, where
M× denotes the set of all the invertible elements (or, units) of M .

Halter-Koch defines a GCD-monoid as a cancellative monoid M such that for every finite (nonempty) subset
B of M , GCD(B) �= ∅.

It is straightforward that M is a GCD-monoid if and only if GCD(a, b) �= ∅, for all a, b ∈ M .
On a monoid M the relation “	” defined by a 	 b if aM = bM is a congruence relation on M and

Mred := M/ 	 is called the reduced monoid associated with M . When M is cancellative, a 	 b if and only if
aM× = bM×. A monoid is called reduced if M is canonically isomorphic to Mred. When M is cancellative,
this happens if and only if M× = {1}. It is easy to see that M is a GCD-monoid if and only if Mred is a GCD-
monoid and, when M is reduced GCD-monoid, GCD(a, b) consists of just one element, for all a, b ∈ M . In this
situation, Halter-Koch denotes GCD(a, b) by a ∧ b and calls it inf of a and b. In [10, Proposition, page 110],
he shows that in a reduced GCD-monoid x GCD(a, b) = GCD(xa, xb) or, equivalently, x(a ∧ b) = xa ∧ xb for
all x, a, b ∈ M (that is, multiplication distributes over ∧).

Obviously, an integral domain D is a GCD-domain if D (under multiplication) is a GCD-monoid, and
conversely.
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Bosbach in 1991, introduced an important class of lattice ordered semigroups called by Áhn et al. in ‘[2]
Bézout monoids.

A Bézout monoid is a commutative monoid S with 0 such that under the natural partial order defined by:

a ≤ b ∈ S :⇔ bS ⊆ aS,

S is a distributive lattice, multiplication is distributive over both meets and joins, and for any x, y ∈ S, if
d = x ∧ y and dx1 = x , then there is an element y1 ∈ S with dy1 = y and x1 ∧ y1 = 1.

Lemma 1.1 (a) Let M be a reducedGCD-monoid and a, b ∈ M. IfGCD(a, b) = d, then there exist a1, b1 ∈ M
such that GCD(a1, b1) = 1, a = a1d and b = b1d.

(b) A reduced GCD-monoid is a Bézout monoid (after Áhn–Márki–Vámos).

Proof (a) Let M be a reducedGCD-monoid and let a, b ∈ M , thenGCD(a, b) = a∧b = d for a unique d ∈ M .
On the other hand, since d | a and d | b in M , we can write a = a1d and b = b1d , for some a1, b1 ∈ M .
Now as d = a1d ∧ b1d = (a1 ∧ b1)d and M is cancellative, we get 1 = a1 ∧ b1 = GCD(a1, b1).

(b) Let M be a reduced GCD-monoid and let a, b, d, a1, b1 ∈ M be as above. If for some x1 we have a = x1d ,
then by cancellation x1 = a1 and since b = b1d then necessarily a1 ∧ b1 = GCD(a1, b1) = 1. �

2 First exhibit: units and maximal t-ideals

Given a GCD-monoid M with group of units M×, the reduced associated (GCD-) monoid M1 := M/M× has
group of units M×

1 = {1}. This indicates that the multiplicative structure of a GCD-monoid does not have any
control over the size of its group of units.

With this introduction, we start by stating a simple result for GCD-domains, that apparently cannot be
deduced using the multiplicative structure only. In other words, the theory of GCD-monoids does not seem
sufficient to show the following:

Proposition 2.1 Every valuation domain that is not a field has infinitely many units.

Recall that, the following conditions for a ring R and an ideal I of R are equivalent to each other:

(i) for any x ∈ I the element 1 + x is invertible in R, that is, 1 + I ⊆ R×;
(ii) an element x ∈ I is invertible in R if and only if x mod I is invertible in R/I ;

(iii) I is contained in the Jacobson radical of R.

Therefore, Proposition 2.1 is a particular case of the fact that an integral domain D with nonzero Jacobson
ideal J has at least countably many units (let 0 �= x ∈ J , then 1 + xn is a unit of D, for all n ≥ 0). In other
words, we have:

Lemma 2.2 If an integral domain (not a field) has finitely many units then its Jacobson ideal is zero.

The next result generalizes Proposition 2.1.

Proposition 2.3 If an integral domain, which is not a field, has only a finite number of maximal t-ideals then
it has infinitely many units.

The proof depends upon the fact that each nonzero nonunit element of an integral domain D (which is not a
field) is contained in some (maximal) t-ideal and so if Maxt (D) := {Q1, Q2, . . . , Qr }, for some r ≥ 1, the
set of units of D coincides with D\(Q1 ∪ Q2 ∪ · · · ∪ Qr ) which implies that each maximal ideal M of D
is contained in Q1 ∪ Q2 ∪ · · · ∪ Qr and so Maxt (D) = Max(D). In this situation, the Jacobson radical is
obviously nonzero. (See also [14, Proposition 3.5]).

Remark 2.4 (a) Note that the Prime Avoidance Lemma is also a result of ring theory that cannot be derived
only from the monoidal structure. The standard proof of the Prime Avoidance Lemma for rings depends on
the interplay of both operations [9, Proposition 4.9]. We give now an example showing that an analogue of
this lemma does not hold for monoids. Let D be a PID with exactly two maximal ideals P and Q. Consider
D as a (multiplicative) monoid, then I := P ∪ Q is an ideal of the monoid D, since it coincides with D\D×,
i.e., with the set of the non invertible elements of the monoid D. Obviously, I ⊆ P ∪ Q, I �⊆ P and I �⊆ Q.
Finally, note that I is not an ideal of the ring D.

(b) We can point out that the previous observation can be used to establish that a Krull domain with a finite
number of height one primes is a PID while for a Krull monoid with finitely many prime divisors this is very
far for being true [10, Chapter 22].
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The point of interest in Proposition 2.3 too is that, if an integral domain D (which is not a field) has only a
finite number of units then D has an infinite number of maximal t-ideals.

The converse does not hold in general, i.e., an integral domain D having an infinite number of maximal
t-ideals does not mean that D has a finite number of units, nor that the Jacobson radical of D is zero. For
instance, in D := Z + XQ[[X ]] every maximal ideal is principal and hence is a t-ideal and so D has an infinite
number of maximal t-ideals and Maxt (D) = Max(D), yet this ring has infinitely many units and the Jacobson
radical of D is XQ[[X ]].

One may remark that in the proof of Proposition 2.1, as in the proof of Proposition 2.3, we had to use
the additive structure, in addition to the multiplicative structure. Now noting that most of the ideal theoretic
notions known for integral domains have been translated to the language of monoids, we leave the following
as a problem.

Problem 2.5 Prove or disprove: It can be shown using monoid theoretic techniques that if an integral domain
D, that is not a field, has finitely many units then D has infinitely many maximal t-ideals.

With reference to the previous problem, let p be a prime integer and let Z(p) be the localization of Z at
the prime ideal (p). Clearly, Z(p) is a GCD-domain and so M := Z(p), considered only with the multiplicative
structure is a GCD-monoid. If we consider the reduced monoid associated to M , i.e., Mred = Z(p)/Z

×
(p), by

the previous observations this is a reduced GCD-monoid, and so M×
red = {1}. Moreover, Mred has a unique

maximal (t-) ideal, i.e., the principal ideal pZ(p)/Z
×
(p). Therefore Mred is a GCD-monoid having a unique unit

and a unique maximal t-ideal.

3 Exhibit 2: units and cardinality of the set of mutually (v-)coprime elements

We investigate now the case of GCD-monoids to show similar results. We extend the setting to include some
more notions considered in recent years. Recall that an integral domain D is an almost-GCD-domain (for short,
AGCD-domain) if for all x, y ∈ D there is a positive integer n := n(x, y) such that xn D ∩ yn D is principal (or,
equivalently, (xn, yn)v is principal, since (D : (a, b)) = (ab)−1(aD ∩ bD) for a, b nonzero elements in D,
[13, Lemma 1.1]). These domains generalize GCD-domains, since an AGCD-domain is a GCD-domain if and
only if n(x, y) = 1 for all x, y ∈ D. However, F2[X2, X3] is a (non integrally closed) AGCD-domain that, in
particular, is not a GCD-domain [3, Theorem 3.3]. On the other hand, it is well-known that an integrally closed
domain D is an AGCD-domain if and only if D is a PvMD and Cl(D) is torsion (here Cl(D) represents a
sort of generalization of the divisor class group, see [12, Theorems 3.9 and 5.6]). In particular, Krull domains
with torsion divisor class groups are AGCD-domains; these domains were called almost factorial domains in
Fossum [7, page 33] and were previously introduced and studied by Storch in [11] as Fastfactorielle Ringe.

In [1] an integral domain D was called an almost Bézout domain if for all x, y ∈ D there is a positive
integer n := n(x, y) such that the ideal (xn, yn) is principal. An almost Bézout domain is an AGCD-domain
and obviously it generalizes a Bézout domain. It was shown in [1, Corollary 5.4] that an AGCD-domain D is
almost Bézout if and only if every maximal ideal of D is a t-ideal.

Generally two elements x, y of an integral domain D are called v-coprime if x D ∩ y D = xy D (or,
equivalently, if (x, y)v = D).

Theorem 3.1 Let D be an AGCD-domain in which there can at most be finite sets of mutually v-coprime
nonunits. Then D has infinitely many units.

Proof The property “there can at most be finite sets of mutually v-coprime nonunits” can be translated into
“there is no infinite sequence of mutually v-coprime nonunits”. So, by [5, Proposition 2.1] D is an almost
Bézout semilocal domain and this forces D to have finitely many maximal t-ideals and consequently a nonzero
Jacobson radical, which forces D to have an infinity of units (Proposition 2.3). �
Corollary 3.2 Let D be a GCD-domain in which there can at most be finite sets of mutually coprime nonunits.
Then D has infinitely many units.

Now note that both of Theorem 3.1 and Corollary 3.2 need both the addition and multiplication for their proofs
and so do their contrapositives namely: if D is an AGCD- (or a GCD-) domain with only a finite number of units
then D contains infinitely many mutually v-coprime (or, coprime) nonunits.
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This seems to be a sort of analogue of Euclid’s Theorem about infinitude of primes in the ring of integers. A
similar result can be proven in much more generality. However, we restrict it here to the case of GCD-domains.

On the other hand, a monoid can always be reduced to have a single unit without changing the cardinality
of sets of mutually (v-)coprime elements and the multiplicative structure of the monoid. Thus, we conclude
that in a monoid the relationship between units and sets of mutually (v-)coprime elements is arbitrary and so
the above material may be our exhibit 2.

4 Exhibit 3: it is hard to get from monoids to rings

At this stage, we can say that multiplicative monoids are a tool that can be used to settle questions about
divisibility, or questions related to divisibility, by disregarding units and often the zero. Most of multiplicative
ideal theory in ring theory does just that. But as the monoids are more general, proving results for monoids
does not mean proving results about rings, except in some limited cases. The “limited cases” are essentially
linked with the Krull–Jaffard–Ohm Theorem that says that given a lattice ordered abelian group G one can
construct a Bézout domain with a group of divisibility isomorphic with G [9, Theorem 18.6].

But, there are well-known examples of directed partially ordered groups (not lattice ordered) that are not
groups of divisibility (see e.g. [8, Example 4.7 on page 110, due to P. Jaffard]). Directed partially ordered
groups play a central role in the present theory because the group of divisibility of an integral domain is a
directed partially ordered group G [9, page 174] and the positive cone G+ := {x ∈ G | x ≥ 1} of a partially
ordered group determines a reduced monoid.

Now just to hammer home the point we present the part of this exhibit that has been in the literature for
some time, in the form of the following example. Just to keep the reader interested, we want to show in the
following example that the notion of product of ideals in a monoid is inadequate to describe the product of
ideals in an integral domain.

Example 4.1 A class of directed partially ordered abelian groups which lies very close to the lattice ordered
groups was systematically studied by L. Fuchs in 1965. A directed partially ordered abelian group G is a Riesz
group [6, Theorem 2.2] if for all x, y, z ∈ G+, x ≤ yz implies that x = rs where r ≤ y and s ≤ z.

P.M. Cohn [4] called Schreier domain an integrally closed integral domain D such that for all x, y, z ∈
D\{0}, x | yz implies that x = rs where r, s ∈ D are such that r | y and s | z.

We denote by G(D) the group of divisibility of an integral domain D with quotient field K , i.e., G(D) :=
{x D | x ∈ K\{0}}, having as identity element D, ordered by setting x D ≤ y D if x D ⊇ y D, hence
G(D)+ = {x D | x ∈ D\{0}}.

From this one can conclude that an integrally closed domain is a Schreier domain if and only if its group
of divisibility is a Riesz group.

Now, if we drop off the integrally closed condition, we get what was termed as a pre-Schreier domain in
[13]. So, a domain D is pre-Schreier if and only if G(D) is a Riesz group.

Let � be a partially ordered group, let ξ1, ξ2, . . . , ξn ∈ �, we set U (ξ1, ξ2, . . . , ξn) := {γ ∈ � | γ ≥
ξi , for 1 ≤ i ≤ n}. So, in particular, if x1 D, x2 D, . . . , xn D belong to G(D) (with x1, x2, . . . , xn ∈ K\{0}),
then U (x1 D, x2 D, . . . , xn D) = {t D | t D ≥ xi D, for 1 ≤ i ≤ n} = {t D | xi | t, for 1 ≤ i ≤ n} (with
t ∈ K\{0}). Thus U (x1 D, x2 D, . . . , xn D) ∪ {0} = ⋂

1≤i≤n xi D.
Now, by [6, Theorem 2.2 (3)] , G(D) is a Riesz group if and only if, for all a1 D, a2 D, . . . , am D; b1 D, b2 D,

. . . , bn D ∈ G(D), we have

U (a1 D, a2 D, . . . , am D)U (b1 D, b2 D, . . . , bn D) = U (a1b1 D, a1b2 D, . . . , ai b j D, . . . , ambn D).

This translates, in ring theoretic terms, to

(∗)

⎛

⎝
⋂

1≤i≤m

ai D

⎞

⎠

⎛

⎝
⋂

1≤ j≤n

b j D

⎞

⎠ =
⋂

1≤i≤m, 1≤ j≤n

ai b j D.

In [13, pages 1905-6], where the above observation was made, an integral domain D was said to have
the ∗-property if for for all a1, a2, . . . , am; b1, b2, . . . , bn ∈ K\{0} the equality (∗) holds. It is easy to see
that in the definition of the ∗-property we can restrict ai , b j ∈ D\{0}. Moreover, it is not hard to see that the
∗-property is a local property (i.e., an integral domain D verifies the ∗-property if and only if DP verifies the
∗-property for each P ∈ Spec(D)) [13, Theorem 2.1]. It was shown in [13, Corollary 1.7] that a pre-Schreier
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domain has the ∗-property, yet a domain with the ∗-property may not be a pre-Schreier domain. In fact, since
a valuation domain is a GCD-domain and a GCD-domain is a pre-Schreier domain and so it has the ∗-property,
then a Prüfer domain has the ∗-property. However, a Prüfer domain which is a Schreier domain is a Bézout
domain by [4, Theorem 2.8], so a Prüfer non-Bézout domain is an example of an integrally closed domain with
the ∗-property which is not a (pre-)Schreier domain. This discrepancy was blamed on involvement of addition
in the definition of products of ideals in an integral domain.

Example 4.1 provides an interesting exhibit in that we start with a pre-Schreier domain D, get to the
multiplicative monoid of D as G(D)+, the positive cone of the group of divisibility of D. Now, G(D)+ is
characterized by a property that involves product of ideals. On translation back the characterizing property of
the multiplicative monoid gives rise to another integral domain!

From the previous considerations, it appears that monoids are an efficient tool but they come in handy for
integral domains only when an interaction between addition and multiplication does not play a significant role.

Remark 4.2 Finally, we have restricted our attention to produce easy to see examples, otherwise there are more
general results available. For instance, let us mention that if D is a pre-Schreier domain that does not allow an
infinite sequence of mutually coprime nonunits (in a pre-Schreier domain v-coprime is the same as coprime)
then Max(D) is finite and so D must have an infinity of units. In fact, similar results can be proved for a lot
more general domains. But we do not include the proofs here as treating those domains would entail a lot more
jargon and in the end they will not contribute more to our arguments.
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