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INTRODUCTION

In 1994 A. Okabe and R. Matsuda [22] introduced the notion of semistar
operation; see also, [21] and [20]. This concept extends the classical concept
of star operation, as developed in Gilmer’s book [12], and hence the related
classical theory of ideal systems based on the works of W. Krull, E. N oether,
H. Priifer, and P. Lorenzen from the 1930’s. For a systematic treatment of
these ideas, see the books by P. Jaffard [17] and F. Halter-Koch [14], where
a complete and updated bibliography is available.

The purpose of the present work is to establish a natural bridge between lo-
calizing systems and semistar operations that are stable under finite intersec-
tions. Localizing systems are also called topologizing systems or Gabriel’s fil-
ters; Bourbaki [4, Ch.2, §2, Ex. 17-25] and [9, §5.1]; see also, Stenstrom [25].
Some of the main results here extend those obtained by Garcia, Jara, and
Santos in [11], where the case of star operations stable under finite inter-
sections were first investigated. (They called these operations half-centered
star operations, emphasizing the relation with the half-centered hereditary
torsion theories.)
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170 NON-NOETHERIAN COMMUTATIVE RING THEORY

The semistar operations stable under finite intersections have an impor-
taut role in the theory of semistar operations. As a matter of fact, to cach
semistar operation * we can associate in a natural way a semistar operation
%, stable under finite intersections. It turns out that % is the largest semistar
opera ion with the finite intersection property that precedes x. Furthermore,
the semistar operations that arise naturally by taking the intersections of lo-
calizations over a fixed ring R satisfy this stability property.

We extend several results obtained for star operations by D.D. Ander-
son (1], D.D. Anderson and D.F. Anderson [2], and D.D. Anderson and S.J.
Cook [3] to semistar operations.

This paper is the first step in developing a systematic foundation for the
theory of semistar operations linked to that of localizing systems. In this
setting, more work needs to be done along the lines of the papers by R.
Matsiida [19], and, A. Okabe and R. Matsuda [23] before a general theory
of Kronecker function rings can be developed. This approach would per-
mit a relaxation of the classical restrictions on R (not necessarily integrally
closed) and on % (not necessarily endlich arithmetisch brauchbar) and would
fit nicely with the characterization of Kronecker function rings recently de-
veloped by Halter-Koch [13].

1. SEMISTAR OPERATIONS

Let R be an integral domain with quotient field K. Let F(R) denote the
set of all nonzero R-submodules of K and let F(R) be the set of all nonzero
fractional ideals of R, i.e., all E € F(R) such that there exists a nonzero
d € R with d € R. Let f(R) be the set of nonzero finitely generated
R-submodules of K. Then f(R) C F(R) C F(R).

A mapping

F(R) - F(R), E— E*
is called a semistar operation on Rifforallz € K,z # 0, and E, F € F(R):

(*1)  (zBE)* = zE*;
(x2) ECE* and ECF = E*CF*
(*3) B = E*.
If E € F(R), then E* € F(R*) C F(R). The R-submodules of K belonging

to
—

F(R)={E*: E € F(R)}
are called semistar R-modules of K. Similarly, we can consider

F*(R) = {I*: 1 ¢ F(R)} and f£*(R)={J*:J¢f(R)}.
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It is easy to sec that F*(R) C F(R*), but in gencral F(R*) ¢ F(R), since
(R : R*) could be the zero ideal. A (fractionary) ideal I of R is called a
(fractionary) semistar ideal of R, if I € F*(R).

Remark 1.0. (a) Let F € F(R) and J € F(R). Then F (respectively, J) is
a semistar R-module (respectively, ideal) of K (respectively, R) if and only
if F' = F* (respectively, J = J*).

(b) Note that in general F*(R) € F(R*) and F*(R) G F(R*). Let (V, M)
be a 1-dimensional nondiscrete valuation domain with quotient field K. Let
* be the canonical v operation as defined in [12]. Note that any valuation
domain is a conducive domain; i.e., for each V-submodule F of K, (V :
E) # 0, [6, Theorem 4.5] or {5, Theorem 1]. Therefore F(V) — F(V) = K.
Also, the nondivisorial ideals of V are of the form M, where 0 # 1 € K,

[9, Proposition 4.2.5]. Thus M # M, =V and V = V. Cleatly Fy(V) &

F(V,) = F(V) and Fy(V) G F(V,) = (V).

Remark 1.1. Let x be a semistar operation on R. Assume that R = R*.
Then for each E € F(R), E* € F(R). In fact, if 0 # d € R such that
dE C R, then dE* = (dE)* C R* = R. In this case the semistar operation
*, restricted to F(R), defines a star operation [12, §32].

A semistar operation x on R is proper if R g R*.

In order to give some examples of proper semistar operations, we need
to establish some basic properties of these operations. It is apparent from
the definition that semistar operations may have many of the properties of
“classical” star c¢; erations. On the other hand, since we do not assume that
R* = R, we will see that they have other interesting properties.

The proof of the next theorem is similar to the proof given in [12, Propo-
sition 32.2 and Theorem 32.5].

Theorem 1.2. (A) Let x be a semistar operation on R. Then for all
E,F € F(R) and for every family {E; :i € I} of elements in F(R):
(1) Cier B = (Cier BT
(2) Cicr B = (Micr E5)*, if Nier £ # (0);
(3) (EF)* = (B*F*)* = (BF*)* = (E*F)".
(B) If S is an overring of R, then S* is an overring of R*. In particular,
R* is an overring of R.
(C) LetR = {Ry: a € A} be a family of overrings of R. Then E — E*,

where E* = NgcaF Ry is a semistar operation on R. Moreover, E*R, =
ER, for each o € A. 0
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The semistar operation given by Theorem 1.2(C) is called the semistar
operation defined by R and will be denoted by %z. It is obvious that g is
a proper semistar operation if and only if NecaRa 2 R. In particular, if S
is a proper overring of R and R = {S} we write *{g} Instead of 5.

We list some other cxamples of semistar operations.

Example 1.3. (a) Sct E° = K, for each £ € F(R), then the map E — E¢
defines a trivial semistar operation that is proper when R # K, called the
e-operation. It is obvious that e = *f.

(b) The map E +— E¢ = E, for each E € F(R) defines a trivial semistar
operation called the d-operation. Clearly d = %(py.

(c) Foreach E € F(R),set E'! =(R:E)={r € K:xE CR}. The
map E — E, = (E71)~! is a semistar operation, called the v-operation on
R, such that R, = R. By Remark 1.1, this operation when restricted to
F(R) is the classical (star) v-operation on R.

(d) HR ={Ry: o € A} is a family of overrings of R and if for each
a € A, *, Is a semistar operation on R,, then F — E*A where F*4 =
Naca(ERL)*™, defines a semistar operation on R. It is easy to see that
(E*ARy)*e = (ERy)*, for each E € F(R) and for each o € A. Note that
this example generalizes the construction of Theorem 1.2(C) (take %, = d,
for each & € A). This construction, in the case of star operations, was
considered by D.D. Anderson [1, Theorem 2].

A semistar operation x on R is said to be of finite typeif, for each E € F(R),
E* =U{F*: F ¢ f(R),F C E}. The e-operation and the d-operation are
semistar operations of finite type.

PROBLEM: Find conditions for x4 to be of finite type.

For each semistar operation » on R, a semistar operation of finite type can
be defined in the following way: E — E*f, where E*f = U{F*: F € f(R)
with F C E}, for each E € F(R). The operation xf is called the finite
semistar operation associated to x. Obviously,  is a semistar operation of
finite type < % = %j.

Example 1.4. If we consider the (semistar) v-operation, then the finite

semistar operation assoclated to v is called the {(semistar) t-operation, where
for each F € F(R) Ey = W{F, : F € f(R) with F C E}.

Note that if £ ¢ F(R) — F(R), E~' = (0) then, since E € F(R) —
F(R) if and only if, E~! = 0, we have E, = K. Hence the (semistar)
v-operation is an example of a semistar operation extended “trivially” by
the star operation v. More precisely:
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Remark 1.5. (a) Let « be a star operation on an integral domain R. For
each I/ € F(R), let

E* = E* if E€F(R),

E* = K, if F€F(R)-F(R).
Then the map £ — E** defines a semistar operation on R such that R* = R.
This is called the trivial semistar extension of . The mapping x r %,
determines a canonical embedding of the set of all star operations on R to
the set of all semistar operations on R.

(b) Note that R # K if and only if K € F(R) — F(R). It is obvious
that for each semistar operation x on R, K* = K. An example of a semistar
operation that is not trivally extended by a star operation is given by *(5}
where S is an overring of R such that (R: S) = 0 with S # K.

Define a partial ordering on the set of semistar operations that are defined
on I in the following way:

x1 < %9 & E*' C E** for each E € F(R).

We say that %1 is equivalent to o and write 1 ~ g, if (*1)5 = (*2)f; Le.,
™ = F* for each F € f(R).

The proof of the following is straightforward (cf. with [2, p. 1623] and
[22, Propositions 13 and 15]).

Proposition 1.6. Let x, %1, and *; be semistar operations on R.
(1) If S C T are overrings of R, then d = xRy < x5y SRy <Xy = e
(2) xf < x and x5~ *.
(3) %1 < *2 = (k1)5 < (2)s-
(4) The following are equivalent:

(i) %1 < xo;

(i) (E*1)*2 = E* for each E € F(R);
(i) (E*2)** = E*, for each E € F(R);
(iv) F*(R) CF(R).

(5) When R* = R, then (E*)™! = E~! for each E € F(R), hence » < v
and x; < t. O

The previous proposition shows that for each overring S of R, *(s} 18 the
smallest semistar operation on R such that R* = S; and v (respectively, t)
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is the largest semistar operation (respectively, semistar operation of finite
*
type) on R such that R = R*. ‘ "
Mutatis mutandis, the statements (2), (3), (4), and (5) of Propomtl(r)n 1.6
hold for star operations (cf. [12, p. 395 and Theorem 34.1}, [2, p. 1623]).
If x is a semistar operation on R, then it is easy to see that

(*4) (ENF)* C E*NF*, for each E, F € F(R); B
(xs) (E:F)*C(E*:F*)=(E":F), for cach E, F € F(R).

We say that the semistar operation % is stable if
(*xy) (ENEF)*=FE"NnF* forcach E, F € F(R).
Remark 1.7. Let x be a semistar operation on R.
(a) If (E :p F) = {z € R:xF C EY}, then (E :p F)* C (E* :p- F*).
(b) If x is stable, then
(*st) (E :gp F)* = (E* :g- F*), for each E € F(R)
and for each F € f(R).

Proof. The proof of (a) is straightforward, and (b) follows easily by showiné
that (B : F)* = (E* : F*).

We will show in the next section that the converse also holfls; i..e.7 (*5) &
(*..") (Theorem 2.10(B)). Therefore we will have a characterization of stable
semistar operations analogous to that proved by D.D. Anderson and S.J.
Cook [3] for star operations.

Example 1.8. Let R = {Ry : @ € A} be a family of flat ov‘errings of an
integral domain. Then %z is a stable semistar operation; since for each
E,F € F(R) and for each a € A, (ENF)Ry = ER,NFR, [4, Ch.1,§2,N.6].

Note that the v-operation is not stable. As a matter of fact, even if
R is Noetherian and I,J are two integral ideals of R, it can ha%peal tl;at
(INJ)y G I, N Jy. For instance, if k is a field and R = k[[m ot 20,
then R is a 1-dimensional Noetherian local domain with maximal ideal M =
(2%, 2%, 2°). Let I = (23,7%) and J = (173,:105) Then I, = J, = M, = M,
but INJ = (z*) and (INJ), = (INJ)=(z*) S (L,NJ,) =M.

2. LOCALIZING SYSTEMS AND SEMISTAR
OPERATIONS

An hereditary torsion theory for a commutative ring R is characterized
by the family F of the ideals I of I for which R/I is a torsion module (for
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more details cf. [25, Ch. VI]). It turns out that such a family F of ideals
1s the family of the neighborhoods of 0 for a certain linear topology of R;
the notion of localizing system (or topologizing system) was introduced (in a
more general context) by P. Gabriel in order to characterize such topologies
from an ideal-theoretic point of view (cf. for instance with [4, Ch. II, §2,
Exercises 17-25]).

A localizing system F of an integral domain R is a family of integral idcals
of R such that

(LS1) If I € F and J is an ideal of R such that [ C J, then J € F;

(LS2) If I € F and J is an ideal of R such that (J :r iR) € F for each
1 €I, then J € F.

Note that axioms (LS1) and (LS2) ensure, in particular, that F is a
filter. Moreover, axiom (LS2) is linked to the fact that the linear topol-
ogy corresponding to a hereditary torsion theory has the property that the
class of discrete modules is closed under extensions [25, Ch. VI, §5]. More
precisely, from an ideal-theoretic point of view, when considering the exact
sequence

0 I R R
Y AR A sy
(LS2) ensures that if R/(I +.J) and I/(JN1I) belong to the torsion class T
associated to F then also R/.J belongs to 7.
'To avoid uninteresting cases, assume that a localizing system F is non-
trivial, i.e., (0) ¢ F and F is nonempty. It is casy to see that if I,.J € F,
then IJ € F (and, thus, INJ € F). If K is the quotient field of R, then

— 0,

Rr={zx€K:(R:pzR) e F} =U{(R:I):I € F},

and Ryr is an overring of R called the ring of fractions with respect to F.
If £ € F(R), then Er = {z € K : (E g 2R) € F} = U{(E : I) :
I € F} belongs to F(Rx). For instance, if S is a multiplicative subset of
R, then 7 = {Iideal of R: INS = @} is a localizing system of R and
Ry = S™'R. In particular, let P be a prime ideal of R and F(P) = {I :
I'ideal of R,I ¢ P}. Then F(P) is a localizing system and Rxpy = Rp.

Since the intersection of a family {F, : a € A} of localizing systems of R
is still a localizing system, F = N{F, : a € A} is a localizing system and
it follows that Rr = N{Rx, : a € A}. Specializing this idea, we see that if
A C Spec(R), then F(A) = N{F(P): P ¢ A} is a localizing system and
Rray="{Rp: P € A}, [9, Lemma 5.1.2 and Proposition 5.1.4].

If 7' € F" are two localizing systems of R, then Ry C Rzv [9, Lemma
5.1.3]; but it may happen that F’ G F" and Ry = Ryn.
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Example 2.1. If V is a valuation domain and P is a nonzero idempotent
prime ideal of V, then F(P) = {I : I ideal of V and I D P} is a localizing
system of V and

F(P) 2 {I:Tideal of V and I 2 P} = F(P).
Moreover, Vﬁ(‘p) = Vp = Vg(p), [9, Proposition 5.1.12}.

Remark 2.2. Prifer domains R for which 7' # F” implies Rz # Ry» co-
incide with generalized Dedekind domians, which were introduced by Popescu
[24]; see also [9, §85.2 and 5.4].

Lemma 2.3. If F is a localizing system of an integral domain R, then
(1) (ENF)r = Er N Fg, for cach E,F € F(R);
(2) (E:F)r : (Ex : Fx), for each E € F(R) and for each F € £(R);
(3) (Ex: F)=(Ex:Fx), for cach E,F € F(R).

Proof. (1) This follows from the fact that (F N F) : I) =
(E:-I)yn(F:I).

(2) By the proof of Remark 1.7(b), (1)=>(2).

(3) This is straightforward. O

Proposition 2.4. Let F be a localizing system of an integral domain R.
For each E € F(R), the map E — Fr = Ujexr(E : J) is a stable semistar
operation on R.

Proof. Tt is obvious that the map E — Er satisfies properties (x1) and
(*2). Let x € (Ex)r, then zJ C FEr for some J € F. Therefore, for each
J € J, there exists K; € F such that zj € (E : Kj), hence ((E :g zR) :r
JR) 2 K; € F. From (LS2), (E:gr zR) € F; that is ¢ € Er. (|

Remark 2.5. (a) Ingeneral Ex 2 ERy evenif E is a proper integral ideal
of R. For instance, let V' be a valuation domain with idempotent maximal
ideal M, of the type V = K + M, where K is a field. Let k& be a proper
subfield of K and define R = k+ M. Since M is idempotent it is easy to
see that F = {M, R} is a localizing system of -R. Then My = Ry = (M :
M)y=Vand MRr =MV = M.

(b) Recall that if I is a nonzero ideal contained in R, then Ir = Rr if
and only if I € F [10, Lemma 1.1(a)].

Denote the semistar operation E — Ex by xx. By Remark 2.5(a), 7 is
in general different from *(p_y; more precisely *(g,} < *7. The following
result characterizes when the equality holds.
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Proposition 2.6. Let F be a localizing system of an integral domain R.
The following are equivalent:

(i) *(ryy = *F;
(i) IRx = I for each integral ideal I of R;
(1) Ry is R-flat and F = {I : T ideal of R and IRr = Rr}.

Proof. (i)=>(ii) is obvious.

(ii)=(iii). IfI € F, then Ir = Ry and hence IR = Ryr. This implies
that Ry is R-flat, [9, Remark 5.1.11(b)].

(111):*’(1) Since ERr C Er, for each E € F(R), we nced to show the op-
posite inclusion. Because Ry is R-flat, we know that Fo =
{{ ideal of R : IRy = Rz} is a localizing system of R, Rr, = Ry and
}]—"0 C F, [9, Proposition 5.1.10 and Remark 5.1.11(a)]. By flatness, we also
1ave:

T e E}‘O =4 (E ‘R .TR) ISIVR=S (E ‘R .TER)R]:O = R}‘O
< (ER]:O :Rfo .’IIR]:O) = R}‘O & T e ER}‘O,

for each £ € F(R). Since we are also assuming that F = Fy, we conclude
that B** = Ex = ERy = E*Rs), 0

l?emark 2.7. The condition that Rz is R-flat is not equivalent to (i) and
(ii) in the previous result. Let V, P, and F(P) be as in Example 2.1, then
fo(P) = Vlf and PV]»_.(P) = PVp = P. Moreover, Pﬁ(P) =(P:P)=1Vp,
since P € F(P) (Remark 2.5(b)).

Proposition 2.8. If  is a semistar operation on R, then F* = {I : I ideal
of R with I* N R = R} is a localizing system of R.

Proof. The property (LS1) is obviously true for F*. Let I be an ideal of R
and J € F* such that (I :r zR)* N R = R for each z € J. Then

R = (I:pzR)*NR=(I:2R*NRC(I:2R*NR*NR
C (I*:zRNR=(I* 5. sR*) N R

Thus z € I*, for each z € J. Therefore J C I* N R and hence I* NReF~
This implies that I* N R = R; i.e., I € F*. O

JF* is called the localizing system associated to «.

Remark 2.9. If £ = I is a nonzero integral ideal of R, then the following
statements are equivalent:

(i) 'NRG R
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(ii) I* & R*.
In particular, we have:
F* = {I:Iideal of Rwith "N R =R}
{I : I ideal of R with I" = R*}.

Theorem 2.10. (A) Let F be a localizing system of an integral domain R
and let xx be the semistar operation on R associated with F. Then

F=F% ={I ideal of R: Iy N R = R}.

(B) Let % be a semistar operation on R and let F* be the localizing system
associated with x. Then
i *ope < k.

Moreover, the following are equivalent:
(i) *Fe =%

(ii) = is a stable semistar operation;

(uir) (E g F)*
Fef(R);

(’L"U) (E ‘R iL‘R>*
K.

= (E* :g« F*), for each E € F(R) and for each
= (E* :p+ oR*) for each E € F(R) and for each 0 # & €

Proof. (A) Note that for each nonzero ideal I of R, Ir "R =R & Ir =
Ry < I € F, see Remark 2.5(b).

(B) Let E ¢ F(R) and z € E*** = Ex.. Then (E :gr tR) € F*, hence:

R = RN(E:pzR)*=RN((F:zR)NR)*
C RN(E:zR*NR*C RN (E” :p- zR").
Thus, 1 € (E* :g« R*) which implies that = € E*. .
For the second part of (B), (i)=>(ii) by Proposition 2.4, (ii)=(iii) by Re-

mark 1.7(b), and (iii)=(iv) is trivial. To show that (i ):>( ), we need only
prove that E* C K%, for cach E € F(R). Let z € E*, then

R=RN{(E" g zR*) = RN (F :g zR)*.
Therefore, (F :g zR) € F*; ie., z € Exs. O

Let SStar(R) (respectively, Star(R)) be the set of all the semistar (re-
spectively, star) operations defined on R and let LS(R) (respectively, LSq(R)),

Localizing Systems and Semistar Operations 179

denote the set of localizing systems of R (respectively, localizing systems F
of R such that Ry = R).

Corollary 2.11. The canonical map x : LS(R) — SStar(R) (respectively,
* : LSo(RR) — Star(R)), F = %5 is injective and order preserving. The

image of this map is the set of all stable semistar (respectively, stable star)
operations.

Proof. Consider the following diagram

/\

SStar(R

/“\

LSO Star(R)

where * : LS(R) — SStar(R) is defined by F — %z, £ : SStar(R) —
LS(R) is defined by x ~ F*, id denotes the identity map and the sec-
ond vertical embedding is defined in Remark 1.5(a). It is easy to see that
if 7 € LSo(R), then xr € Star(R) (when restricted to F(R)); and if
* € Star(R), then F* € LSo(R) (because € Rrx = (R :p zR) € F*
= (R:pzR)* =R = (R:g zR) = R = z € R). By Theorem 2.10(A) the
diagram commutes and by Theorem 2.10(B) the map x defines a bijection
with the set SStar(R) of all stable semistar operations defined on R. It is
straightforward to see that ) C F, implies *r < %7, and x| < %y implies
that F*1 C F*2, O

The relation between hereditary torsion theories (or, equivalently, localiz-
ing systems) and star operations was first noted by J.M. Garcia Hernandez
in [16]. The previous corollary generalizes [11, Theorem 2].

3. FINITENESS CONDITIONS

A localizing system of finite type F, defined on an integral domain R, is
a localizing system such that for each I € F there exists a nonzero finitely
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generated ideal J € F with J C I. For instance, if T is an overring of R,
F(T) = {I : I ideal of R,IT = T} is a localizing system of finite type; in
particular, if T'is R-flat, then Ry =T [9, Proposition 5.1.10]. Example 2.1
18 not of finite type.

Lemma 3.1. Given a localizing system F of an integral domain R, then
Fr={Ie€F:12J, for some nonzero finitely generated ideal J € F}

is a localizing system of finite type of R.

Proof. Since Fy obviously satisfies (LS1), we concentrate on (LS2). Let I
be an ideal of R such that for some nounzero finitely generated ideal J € F,
(I :x zR) € F; for each =z € J. In particular, if
J =&R A+ -+ &R, then there exists a finitely generated H; € F such
that H; C (I :g &R) fori=1,2,--+ ,n. If H =1} H;, then H € Fy and
H¢; C I for each i. Therefore HJ C I with H.J € F;. This implies that
Ic .7:f. O

Proposition 3.2. Let F be a localizing system and x a semistar operation
defined on an integral domain K.

(1) If F is of finite type, then xx is of finite type.
(2) If x is of finite type, then F* is of finite type.

Proof. (1) Let E € F(R) and z € E* = Ex. Then there exists a finitely
generated ideal J € F such that zJ C E. Thusz € (zJ : J) C (zJ)r C Er,

where zJ € f(R), and hence Ex = U{Fr : F € f(R)}.
(2) Let I be an ideal of F*, then I* N R = R. Since x is of finite type,
for some finitely generated ideal J C I, J* N R = R. Therefore J € F*. U

We denote by LS¢(R) (respectively, LSge(R)) the set of localizing systems
of R of finite type (respectively, of finite type F such that R = R). Denote
by SStarg(R) (respectively, Stars(R)) the set of semistar (respectively, star)
operations of R of finite type.

Proposition 3.3. Let R be an integral domain, let
x : LS(R) — SStar(R) be the map defined in Corollary 2.11, and let f
be defined by the following two maps

f : LS(R)—)LSf(R), f*-—)}-f
f : SStar(R) — SStarg(R), x> *;.
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Consider the following diagrams:

*
LS(R) — SStar(R) Fr—  5s

f f

*

LSf(R) — SStarf(R) .7:f e *}"f, (*j:‘)f.

Then x5, < (%x);, for each F € LS(R).

P7'oc_)f. Since _7:f- C F, then *5; < x7, by Corollary 2.11. Moreover, x£, is a
semistar operation of finite-type by Proposition 3.2. Hence *F, = (*}-f) <
(x7);. s =

For sake of. simplicity, if we retain the same notation for the maps x and
[, when restricted to LSo(R) and Star(R), then:

Corollary 3.4. Consider the diagram

LSo(R) =+ Star(R)
f I

*
LSor(R) — Stare(R).
Then, for each F € LSq(R), *xF, < (kF)g. |

PROBLEM. Characterize F € LS(R) such that x5, = i
. L+, = (%£) . (Obvious]
f:ffi*ff:(*]:)f.) ! ! ’

We note that, in general *7; 3 (*xr)y as the following example shows.

Example §.5. Let R,V, M, and F be as in Remark 2.5(a). Then Fj =
{R} and I'"7 = (I : R) = I, for each ideal T of R. On the other hand
I(*f)f = U{J* : J finitely gencrated ideal, J C I} = U{(J : M) : J
finitely generated ideal, J C I }. For instance, if I= zR, for some nonz.ero
z € R, then (zR)™*f = zR S (zR)*#)r = 2(R M) = xV,'

If we start with a semistar operation * on R, then we can consider the
following semistar operations associated with *:

;:*f*’ ;:(*)(}_*)f
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where for each F € F(R),

E* = Ep=U{(E:I): 1€ F"},
E* = By, =U{(E:J): J € F*,J finitely generated}.

It follows from Corollary 2.11, that x = %, = *, and * < %; moreover,
*1 < *y implies that x; < %2 and *1 < *9.

Note that when * is a star operation, then * and % arc star operations
that coincide respectively with the star operations ¥ and %, introduced by
D.D. Anderson and S.J. Cook [3, §2]. In particular, the notion of x,, star
operation construction generalizes the w-operation by Wang Fanggui, and
R.L. McCasland in [7].

Proposition 3.6. Let x be a semistar operation on an integral domain R,
then:

(a) (F); <xp <xand (F); <x < *.

(b) (xp) = (xp) =*. ,
Proof. Statement (a) follows from Propostion 1.6(2) and (3), and Theo-
rem 2.10(B). We already have observed that * <*. By Proposition 3.2(1),

is of finite type, hence * < (¥);. By the previous considerations, (xf) < (*—f)
and (*Nf) < % Let E € F(R) and ¢ € E* = E’”"7. Then there cxists a
finitely generated ideal J of R such that zJ C F and J* N R = R. Since
J is finitely generated, J*/ = J* and thus J € F*/, hence z € Ex1); e,
* < (/*7) If y € E*), then yI C E for some I such that I*/ N R = R.
Since I*/ = U{J* : J is a finitely generated ideal, J C I}, then necessarily
for some finitely generated J,J* N R = R. Thus yJ C E with J finitely
generated, J C I, and J € F*/. Hence I € (F*/); and whence y € E(xs).

1e., (*f) < (*f). O

Proposition 3.7. Let x be a semistar operation on an integral domain K.
Then

(1) * is the largest stable semistar operation on R that precedes x; in
particular x is stable if and only if x = *;

(2) if ' is a semistar operation such that % < * < x, then F* = F o=
F*.

Proof. (1) Since % is associated to a localizing system, % is stable by Propo-
sition 2.4. Moreover, if ¥ is a stable semistar operation preceding %, then
* =) <*

(2) Clearly F* C F* C F*. The conclusion follows from Theorem 2.10(A),
because F* = F*#* = F*, O
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Corollary 3.8. Let x be a semistar operation on an integral domain R.
Then the diagram of inclusions of semistar operations described in Proposi-
tion 3.6 gives rise to the following inclusions of localizing systems:

F* o= F* :j—"(lfv) = Fs) = F &) C F* = F*.
Moreover, F*f = (F*);.

Proof. By Proposition 3.7 and Proposition 3.6, we need only prove that
F*i = (F*)s. From Proposition 3.2, F*f is a localizing system of finite
type. Thus F*/ = (F*f); C (F*)s. If I € (F*)y, then there exists a finitely
generated ideal J C I such that R = J*N R = J* N R. Hence J € F*/,
which implies that I € F*/. ‘ Ol

Corollary 3.9. Let x be a semistar operation on an integral domain R.
Then:

(1) *

(2) *x = % < x is a stable semistar operation of finite type;

(3) *

(4) *f =% & x5 = ().
Proof. (1) Note that ¥ and * are stable semistar operations by Proposi-
tion 2.4. Thus, it follows from Corollary 3.8, that * = *z+ = xz+ and
k= ki = ok = * )y By Corollary 2.11, Proposition 3.3, and Corol-
lary 3.8, we conclude that x = x if and only if F* = F*/ = (F*);; i.e., * is
of finite type.

(2) This follows from (1), since x = % if and only if x = % and * = *.

(3) This is a consequence of Corollary 3.8 and Corollary 2.11.
(4) This follows from Proposition 3.6. O

* & % i3 a semistar operation of finite type;

=5

Il

It is easy to show, mutatis mutandis, Proposition 3.6 and 3.7, and Corol-
laries 3.8 and 3.9 hold also when restricted to star operations, and localizing
systems F of R with the property that Rr = R.

With the notation introduced above consider the following diagram (cf.
Corollary 2.11 and Proposition 3.3).

/
SStar(R) —— LS(R) — - SStar(

R) x+ / F*
(8.10) | f / f ] {
£ * .
R)xf ——m— F* —

SStarf(R) —_— LSf(R) _— SStarf(

*

* < (%)
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Since the left square is always commutative (Corollary 3.8), by Corol-
lary 3.9 the following properties are equivalent:

(i) diagram (3.10) commutes;
(i) the right side of diagram (8.10) commutes;

(iii) * = *, for each x € SStar(R);
(iv) * € SStar¢(R).

The following example (cf. with [3]) will show that, in general, * = (x7) S
*)s-

Example 3.11. A semistar operation % such that (x;) S (¥);. Let R be
an integrally closed domain and {V, : @ € A} be the family of all valu-
ation overrings of R. For each E ¢ F(R), set By = N{EV, : a € A}.
The map E — E, defines a semistar operation on R with R, = R, Theo-
rem 1.2(C). If R is an essential domain; i.e., if each V, is a localization of R
at its center in R, then the b-operation is stable, Example 1.8. By Proposi-
tion 1.6(5), b < v. We want to show that, as in the star case [12, Proposition
44.13), b ~wv. Let F =5 R+ - +a, R € f(R) and let £ € F,. We show
that & € F,. Assume ¢ ¢ Fj, then ¢ ¢ FV, = FRp, for some « € A,
where P, = V, N R. Then FRp, = xRp, for some « € F, because FRp, 1s
an invertible ideal of the valuation domain Rp,. Hence zRp, G {Rp, [12,
Theorem 16.3]. For each generator z; of F, write z; = zr;t~! where r; € R
and t € R\P,, for every . Thus F' C 2zt~ R and therefore F, C zt"!R. On
the other hand ¢ ¢ zt™ 'R and thus ¢ ¢ F,. This contradiction proves that
& e by,

By assuming that R is essential, we have deduced that by = vy =t and
that b = b. By Kang’s theorem of characterizations of the integrally closed
domains that are PvM D-domains ([18, Chapter 2] or [1, Theorem 6}), we
know that if R is an integrally closed, but not a PvM D-domain, then ¢
is not stable; i.e., ¢ z t. Therefore, if R is an essential domain, but not
a PuMD-domain, then b > (b); = by =t 2 t = (bf—) = b. (An explicit
example of an integral domain of this type was given by Heinzer and Ohm

(15].)

4. SPECTRAL LOCALIZING SYSTEMS AND
SEMISTAR OPERATIONS

Let A be a nonempty sct of prime ideals of an integral domain R. For
each E € F(R), define E*> = N{ERp : P € A}. In the following to avoid
trivial cases the set A is always assumed to be a nonempty set.
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Lemma 4.1. (1) The mapping £ — E*2, for each F € F(R), defines a
semistar operation on R. .

(2) F07j each E € F(R) and for cach P € A, ERp = E*2Rp.

(3) *a is a stable semistar operation.

(4) For each P € A, P*aNR = P.

(5) For cach integral ideal I of R such that I*» N R # R, there exists a
prime ideal P € A such that I C P.

Proof. (1) and (2) are particular cases of Theorem 1.2 (C).
(3) If E, F € F(R), then by flatness:

E*Xa n e — (mPEAERP)m(ﬂPEAFRP):OPGA(ERPOFRP)
= NpealBENF)Rp = (BN F).

(4) This is obvious, since P*2 = N{PRg: Q € A and Q D P}.

(5) U I**NR# R, then I*> & R* and I*>Rp # Rp, for some P € A.
Therefore, I"*Rp C PRp and hence I C I*>a C "2aRpNR C PRpNR =
B C C PR

: O

Note that, mutatis mutandis, the properties stated in Lemma 4.1 hold for
star operations [2, Theorem 1].

-A semistar operation %, defined on an integral domain R, is spectral if there
exists A C Spec(R) such that * = *a. In this case, we will say that  is the
spectral semistar operation associated with A. Say that x possesses enough
primes, or x 18 a quasi-spectral semistar operation, if for each integral ideal
I of R such that I* N R # R, there exists a prime ideal P of R with I C P
and P*N R = P. Lemma 4.1(5) shows that a spectral semistar operatio—r; is
quasi-spectral. We will see in Example 4.16 that the converse is not true in
general.

Note that the map A +— %A is contravariant; ie., A; C Ay =
*Ay S kA -

Recall that a localizing system F of R is called spectral if there exists a
set of prime ideals A of R such that F = F(A) = n{F(P) : P € A}
where F(P) is the localizing system {I : I ideal of R, T ¢ P}, [9, p. 127 anci
Proposition 5.1.7]. Note that, as in the semistar operation case, A; C Ay =
F(A3) € F(Ar). )

. Given F, we can consider the following subset of Spec(R) associated to
® =®r = {P €Spec(R): P ¢ F}.

If F is nontrivial, ® is nonempty and we can consider Fsp = F(®) which is
called the spectral localizing system associated to F. It is easy to see that

F C .7:3:,,, and F; C Fy = (fl)sp C (fg)sp.
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Lemma 4.2. Let A be a nonempty set of prime ideals of an integral domain.
Then
*A — *f(A) and F*& = ]:(A),

i.e., the (spectral) semistar operation *a is associated to the (spectral) local-
izing system F(A) and conversely.

Proof. Since %, is stable (Lemma 4.1(3)),

*a = (*a) = *rea.
Moreover,

F*& = {I:1ideal of R such that (NpealRp)NR = R)
{1 : I'ideal of R such that IRp = Rp, for each P A}
= NI :1Iideal of R such that I ¢ P for each P ¢ A}
F(A).
O

Proposition 4.3. Let F be a nontrivial localizing system of an integral do-
mawn R.

(A) The following properties are equivalent:

(i) F is a spectral localizing system;
(it) F = Fop;
(iii) for each ideal I of R, with I & F, there exists a prime ideal P of
R such that I C P and P ¢ F.
(B) The following properties are equivalent:

(7) F is a localizing system of finite type;
(7j) there exists a quasi-compact subspace A of Spec(R) such that F =
F(A);
(777) ®max = {P € Spec(R) : P ¢ F and it is mazimal with respect to
this property } is quasi-compact and F = F(Pmax)-
Proof. [9, (5.1f), and Propositions 5.1.7 and 5.1.8]. O

Corollary 4.4. (1) If* is a spectral semistar operation, then F* is a spec-
tral localizing system. .

(2) If F is a spectral localizing system, then *z is a spectral
semistar operation.

Proof. This is a consequence of Lemma 4.2. O
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Remark 4.5. If A is a nonempty subset of prime ideals of an integral do-
main R and if

At ={Qe Spec(R) : Q C P, for some P ¢ A},

then it is easy to see that for each A such that A C A C A F(A) =
F(A) (cf. [8, Lemma 1.3]). In particular, from Lemma 4.2, %A = Hpy.
Furthermore, if Apax 1s the set of maximal elements of A and if for each
P e A, there exists Q) € Apay with P C Q; then x5 = x5

max *

Corollary 4.6. Let x be the spectral semistar operation defined on an in-
tegral domain R that is associated to a nonempty subspace A of Spec(R).
Let V = {P € Spec(R) : P & F(A)} and let V.. be the set of mazimal
elements in V. Then

(1) %o = % = xyp.
(2) The following are equivalent:

(1) *a is a semistar operation of finite type;
(i) F(A) is a localizing system of finite type;

(#31) Vinax 18 quasi-compact and * = xy

max /)

(iv) there exists a quasi-compact subspace F of Spec(R) such that
*A = kg,

Proof. (1) This follows from the fact that F(A) = F(V), ]9, 5.1f, p. 128],
and Lemma 4.2.

(2) The equivalence (1)4>(ii) is a consequence of Lemma 4.2 and Propo-
sition 3.2.

(ii)<(iii) By Proposition 4.3(B), F(A) is of finite type if and only if
F(AY = F (Vmax) and V., is quasi-compact. The conclusion follows by
Lemma 4.2.

(iii)=(iv) Trivial.

(iv)=(ii) Since x5 = *Fy *F(a) = *7r) (Lemma 4.2), and so F(A) =
F(F), Theorem 2.10(A). The conclusion follows from Proposition 4.3(B).

|

Remark 4.7. Note that *A IS a semistar operation of finite type provided
that the representation R*a = N{Rp:Pe A} is locally finite; i.e., each
nonzero z € R™ is a unit in almost all Rp,P € A. As a matter of fact,
this condition implies that A is quasi-compact. To see this, let {y, : X\ e A}
be a family of elements of R such that A C UxeaD(yy). By assumption,
for a given Yy, there exists at most a finite set {Py,... , P} C A such that
A—-{p,-.. P} C D(yy). If P, ¢ D(y;) for 1 < 4 < t, then clearly
A C D{yx)UD(y) U...UD(y,).
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In case R = R*» = N{Rp : P € A} is locally finite, D.D. Anderson [1,
Theorem 1(6)] proved that x5 defines on R a star operation of finite type.

As we did for localizing systems, we can try to associate, in some canonical
way, to each a semistar operation a spectral semistar operation.
Given a semistar operation » defined on an integral domain R, consider
the set
" = {P € Spec(R) : P # 0 and P* N R # R}.

If I1* is nonempty, we can consider the spectral semistar operation
*sp = KII*

called the spectral semistar operation associated to . By Lemma 4.2, F*»r =
F(IT).
It is easy to sce that:

*p < xg = "2 g = (*l)sp S (*Q)Sm
in particular, (%)g, < %4p.
Our next goal is to study the relation between * and . i

Proposition 4.8. Let x be a semistar operation defined on an integral do-
main R. Assume that IT* # 0. The following statements are equivalent:

(1) xsp < %;
(ii) * is quasi-spectral;
(%) E* = 0{E*Rp : P € II*}, for each E € F(R).

Proof. (1)=>(ii). Suppose that for each ideal I of R, with I* N R # R, we
have I ¢ P for each P € TI*. Then IRp = Rp, for each P € II*. Thus
I*» = N{IRp : P € II*} = N{Rp : P € II*} = R*r. By assumption
I*s» C I* hence I* N R = R, a contradiction.

(ii)=(iii). For each P € II*, let z = zy~! € E*Rp where z € E* and
y € R~ P. Whence, z !E*N R ¢ P, since y € z~'E* N R. Furthermore, it
is easy to see that J = z~'E*N R is a semistar ideal of R; i.e., J* = J. This
leads to a contradiction, since % is quasi—spectrdl.

(iii)=>(i). This follows since E*»» = N{ERp : P € II*} for each E €
F(R). O

Remark 4.9. If x is a quasi-spectral semistar operation defined on an inte-
gral domain R such that R* is not a field, then IT* # (. To see this choose
z € R that is not a unit of R*. Then zR* N R # R, hence there exists a
prime ideal P of R with P*N R = P (hence P € IT*) and «tR* N R C P.
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Corollary 4.10. Let x be a semistar operation defined on an integral do-
main R. Then x is spectral if and only if x = Ksp-

Proof. 1t is obvious that if x = *4p, then % is spectral.

Conversely, if x = xa for some A C Spec(R), then by Lemma 4.2, xp =
*7(a) and *gp = %rqpr). Since it is easy to see that A C IT*, then F(I1%) C
F(A). Let I ¢ F(I1*), then I C P for some P € II*. Thus, I C I* N R C
P*NRC R We claim that I ¢ F(A). If I € F(A), then for each Qe &
I ¢ Q and thus IRg = Rg. Hence I* = I*a = R*» and so I* N R — R, a
contradiction.

By the previous considerations, F(IT*) = F(A) and thus *E(II) = *E(A)-

. Recall that given a semistar operation x on R, we have introduced the
following localizing systems on R associated with %:

F* ={I:1Iideal of R with I # 0 and I*N R = R}
and when IT* #£ (),
F(II*) = {I : I ideal of R with I ¢ P, for each P € I3,

The semistar operations associated to these localizing systems are, respec-
tively, x and *g,.

Proposition 4.11. Let x be a semistar operation defined on an integral do-
main R. Assume that II* # @, then:

(1) F* C F(IT*) and (F*)s, = F*er;
(2) * < Xspy
(3) If % is spectral, then F* = F(II*) (and hence * = *sp)-
Proof. (1) IfI € F*, then I*NR = R. Thus, for each P € II*, T* ¢ P* and

hence I ¢ P; ie., I € F(II*). Note that F*» = Frm+ — Frrm+) — F(11*)
(Lemma 4.2) and (F*),, = F(®*) where

®* = {P € Spec(R) : P ¢ F*}.

It is obvious that IT* C ®*, hence (F*),, C F*er.

It I ¢ F(®*) = (F*)sp, then I C Q for some prime ideal Q & F*, hence
@*NR # R, so @ € II*. We conclude that I ¢ F(I1*) = F*s»_ whence
(F*)op = Frov,

(2) This follows from (1) because * = xz+ and *sp = XF(I1+)-

(3)  We know by Corollary 4.10 that * is spectral if and only if * = g,
and hence F* = F*sr = F(IT*). O
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In the next result, among other facts, we will show that the converse of
Proposition 4.11(3) does not hold in gencral.

Theorem 4.12. Let x be a semistar operation defined on an integral domain
R and assume that TTI* #£ ).

(1) Hsp = (ksp)-
(2) The following propertics are equivalent:
(i) x is quasi-spectral;
(1) *sp = %;
(i4i) * 1is spectral;
(iv) F* = F(I*);
(v) F* is spectral.

(8) The semistar operation  is spectral if and only if it is quasi-spectral
and stable.

Proof. (1)

(2)  (i)=(ii) If x is quasi-spectral, then Proposition 4.8 implies that x,, <
*. On the other hand, * < %, by Proposition 4.11 (2). Using (1) we have
*sp = (*sp) <F < kgp.

(it)=>(iii) and (iv)=(v) are trivial.

(ii)=(iv) Since %4, = *, then by Proposition 3.7, Lemma 4.2, and Theo-
rem 2.10(A), F* = F* = Fr» = Frram) = F(IT*).

(v)=(iii) Apply Lemma 4.2.

(iii)=-(1) Let I be an integral ideal of R such that I* N R # R. By
Propositions 3.7 and 4.11(3), F* = F* = F(IT*). Since F* and F* are
spectral, Proposition 4.3(A) implies that F* = F* = F(®*), where ®* =
{P € Spec(R) : P ¢ F*}. Since I ¢ F* = F(®*), there exists P € ®* with
I C P. Because P ¢ F*, P* N R # R and hence P € II*. Therefore x is
quasi-spectral.

(3) By Lemma 4.1((3) and (5)), * is quasi-spectral and stable. Con-
versely, by the previous statement (2) and Proposition 3.7, * = % = ;. The
conclusion follows from Corollary 4.10. 0

From a historical point of view concerning the statement (3) of the previ-
ous theorem, [1, Theorem 4] gives necessary and sufficient conditions for a
star operation to be spectral; [22, Theorem 22] gives the result for semistar
operations.

Corollary 4.13. (A) Let F be a nontrivial localizing system defined on an
integral domain R, then

(*F)sp = KX Fep-

Since xsp = *£(11+), apply Proposition 2.4 and Proposition 3.7(1).
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In other words, the following diagram

*
LS(R) — '~ SStar(R)
(sp — LS) sp sp

LS(R) — SStar(R)

commutes.
(B) Let x be a semistar operation on R such that II* B, then

(FN)gp = Fo.

In other words, the following diagram

1
SStar() — LS(R)
(sp — SS) sp sp

14
SStar(R) —— LS(R)
commutes when restricted to semistar operations x, where II* # (.

Proof. (A) Note that
' ={PeSpec(R): PFNR# R} Cd={Pe Spec(R) : P ¢ F},

because P € F if and only if Pr = Ry (Remark 2.5(b)). Conversely, if
P e ®, then Pr# Rrandso PC PrNR G R. In fact, PN R = P; for if
z € (PrNR)— P, thenz] C P forsome I € F andso C P, a contradiction.
Now use Lemma 4.2 to get (xx)sp = *pr = *g = *F(P) = XFsp.

Part (B) was already proved in Proposition 4.11(1). |

Remark 4.14. Note that from the commutativity of diagrams (sp — LS)
and (sp — SS) we deduce that, when IT* # ), (F)sp = (kgp)-

Example 4.15. A stable semistar operation which is not quasi-spectral
(hence, not spectral). Let (V, M) be a 1-dimensional nondiscrete valuation
domain with quotient field K. From Remark 1.0(b) we have F(V) — F(V) =
K, the nondivisorial ideals of V' are of the form zM where 0 #z € K, and
M, = V. Hence II" = §. In particular v is not a quasi-spectral (semi-)star
operation on V- and F¥ = {M,V}. We claim that v is stable. If I, J € F(V),
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then there exists 0 # d € V such that dI C V and dJ C V. Without
loss of generality, assume that dJ C dI; hence J C I. It is obvious that
(InJ), = J, = I,n.J,. From Theorem 2.10(B), we deduce that for each
Ec¥F(\V), E,=Er = (E: M).

Example 4.16. A quasi-spectral semistar operation which is not stable
(hence, not spectral). Let R be as in Example 3.11. If R is essential but not
a PuMD, we proved that by = vy =t 2 t, thus t is not stable. However, t is
quasi-spectral. To see this let I be an ideal of R such that I, ; R, then there
exists a maximal f-ideal P of R, which is a prime idecal such that [; C P, = P
and thus I C P, ([17] or the following Lemma 4.20).

Our final goal is to study the following diagrams:

Lsr) - Ls(R)  SStar(R) 2L sStar(R)

LS(R) —2+ LS(R)  SStar(R) & sStar(R)

In general these diagrams do not commute.

Proposition 4.17. Let F be a localizing system of an integral domain R.
Then (Fr)sp = Fy € (Fsp)y. Moreover, (Fr)sp = (Fp)g if and only if, for
each finitely generated ideal J of R, with J € F, there exists a prime ideal
P of R such that J C P and P ¢ F. (When F satisfies this property we say
that F is finitely spectral.)

Proof. By Proposition 4.3(A), a localizing system of finite type is spectral,
hence (Fy)sp = Fy.

For the second part, we first assume that F is finitely spectral. Let [ €
(Fsp) s, then there exists a finitely generated ideal J C I such that J ¢ P, for
each prime ideal P ¢ F. Then J € F; for otherwise if J ¢ F, we could find
a prime ideal P of R such that J C P and P ¢ F, which is a contradiction.
So J € F,J is finitely generated and J C I implies that I € Fy.

Conversely, if (Fsp)r = Fy, then F is finitely spectral. So if for some
finitely generated ideal J of R with J ¢ F, we would have that J ¢ P for
each P ¢ F, then J € (Fyp)5 with J € F;, which is a contradiction. O

Corollary 4.18. If F is a spectral localizing system of an integral domain
R, then
(Frlsp = Fr = (Fop)y- =
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Example 4.19. A non-finitely spectral localizing system. Let V, P and .7:"(]’)
be as in Example 2.1. Suppose that P is the maximal ideal of V. For the
sake of simplicity, we denote simply by F the localizing system F(P P).

Assume that P is idempotent and branched and set Py = Np>1 H", where
H is a P-primary ideal, H # P. Then,

F=AV, P}, Fr=A{V}, and F,p=F(Py) = {I:1ideal of V, P, G I}.
Therefore, F is not finitely spectral since
(fsp)f:j:sp¢]:f"‘7:(P):(j:f>sp
If we assume that P is unbranched, then F is spectral because
F=Fop ={F(Q): Q € Spec(R),Q G P} = {V, P}.
In this case we have
f(P):(Ff)sp:}—f:(}—szl)fg}-:fw-

PROBLEM: Find an example of a finitely spectral non-spectral local-
izing system.

Finally, we want to examine the diagram

SStar(R) “. LS(R)
f f

sStar(R) 2L+ LS(R)
We start with the following preliminary results:

Lemma 4.20. Let x be a semistar operation of finite type defined on an
integral domain R, with R* # K, where K is the guotient field of R. If I
is a proper integral semistar ideal of R; i.e., 0 #*NR =1 C R, then I is
contained in a proper integral mazimal semzstar wdeal of R. Furthermme a
proper mazimal semistar ideal of R is a prime ideal.

Proof. The set of proper integral semistar ideals of R is nonempty and in-
ductive. For instance, if x is a nonzero element of R and a nonunit in R*,
then zR*N R is a proper semistar ideal of R. Let {I, : &« € A} be a chain of
proper integral semistar ideals of R. Then

(UaEAIa)* 2 Ua€A12~
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On the other hand, since % is of finite type, if © € (Upcaly)* then z € J*
for some J € f(R) where J C Ugeal,. Clearly, J C I, for an appropriate
a € A. Thus ¢ € J* C IZ C Uqenl*. Thercfore

(UaeAIa)* NR= (UOGAI;) NR= U(ye/\([é N R) - UaeA]a-

From Zorn’s Lemma, we deduce that each proper integral semistar ideal I
of R is contained in a proper integral maximal seinistar ideal @ of R.

In order to prove that @ is a prime ideal of R, take z,y € R — @ and
suppose that zy € Q. By the maximality of @, (Q, z)* = R*. By the finitness
of %, we can find a finitely generated ideal J C @ such that (J,z)* = R*.
Constder the ideal y(J, z) = (yJ,yz). Theny(J,z) C Q, hencey € yR*"NR C
y(J,z)*NR = (yJ,yz)* N R C Q*N R = Q. This contradicts the assumption
that y € Q. O

Corollary 4.21. A senustar operation of finite type is quasi-spectral. |

Remark 4.22. If % is a semistar operation of finite type and if
L={FcF(R):E* S R*}

then it is easy to prove that each element F € L is contained in a maximal
member of £. Moreover, each maximal member N of L is such that N = N*
and is a prime ideal of R*.

If I is a nonzero ideal of R and I & F*, then I*N R # R and hence I € L.
It is straightforward to see that:

IT, = {M: M ¢ F* where M is an ideal of R, and it is maximal

max

with respect to this property}
= {NNR:N €L and N is maximal in L}.

Proposition 4.23. Let % be a semistar operation defined on an integral do-
main and let TI* #£ 0. Then the following hold.

(1) (xf)sp = (xf) < x5 and hence ((x5)sp) s = (% )sp-

(2) The following conditions are equivalent:

(1) (xp)sp = %55
(i) %y is stable;
(1ii) xg is spectral.

Proof. (1) By Corollary 4.21, x is quasi-spectral and hence (xf)s = (%)

(Theorem 4.12(2)). Moreover, (xf) < x; by Theorem 2.10(B). Furthermore,

since (xf) = % is of finite type, ((xf)); = (x;) (Proposition 3.6).
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(2)  This follows from (1) and from Proposition 3.7(1) and Theorem 4.12(3).
O

Proposition 4.24. Let x be a semistar operation defined on an integral do-
main IR, Assume that TI* # 0. Then:

(1) (;)f < (*sp)f7 hence (*f)sp < (*sp)f;'
(2) If x s quasi-spectral, then (%) f = (ksp) s
(3) (kp)sp = (ksp)g if and only if (F*); = F(II*) s and (xsp)s is stable.

Proof. (1) Note that * < x4, by Proposition 4.11(2), hence (F)r < (*sp) g
By Proposition 4.23, we know that (xf),, = (x5). Since (x£) < (%)¢ (Propo-
sition 3.6), we conclude that (xs)p < (xsp) ;.

(2) By Theorem 4.12(2), if x is quasi-spectral then % = *sp, which implies
the conclusion.

(3) Sinch(*f)sp = (%7), Proposition 3.7(2) and Corollary 3.8 imply
Floplsp = pleg) = 1 — (F*) ;.

On the other hand, since F*s» = F(II*) (Lemma 4.2),

FU=)i = {I:1is an ideal of R such that [ o>J
with .J finitely generated and J € F*r = F(I1*)}
= F(II*)y.

It is clear that (kp)sp = (%sp); implies that (F*),; = (F(IT*))s and that
(*sp) s is stable, because it is spectral (Theorem 4.12(3) and Corollary 4.10).

The converse follows from Theorem 2.10 and the fact that a spectral
semistar operation is stable. (]

PROBLEM: If x is quasi-spectral, is (xf)sp = (rap) f7?

Let x be a semistar operation defined on an integral domain R. An ideal
I of R is x-invertible if these exists an ideal J of R such that (I.J)* = R*.

Proposition 4.25. Let x be a quasi-spectral semistar operation defined on
an integral domain R and let I be an ideal of R. Then I is x-invertible if and
only if I is X-invertible. In particular, if F* = {R}, then I is x-invertible if
and only if I is invertible.

Proof. Since x is quasi-spectral, F* = F* = F(II*), Proposition 3.7(2) and
Theorem 4.12(2).

(=) Assume that (IJ)* = R* and (IJ)* C R*. Then IJ C P for some
P e IT*. Hence, (IJ)* C P*  R*, a contradiction.

(«) Since (IJ)* = R* for some ideal J of R and ¥ < &, then necessarily
1€ (L) ie., (IJ)* = R*.
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For the last statement of the Proposition, note that if F* = {R}, then
E* = Ex. = E, for each E € F(R). ]

Set Inv,(R) = {I : I ideal of R and I *-invertible}. It is casy to see that
Inv,(R) forms a group under the product defined by I -J = (IJ)*. The
subset Princ(R) = {zR : z € K,z # 0} is a subgroup of Inv,(R), and the
quotient group

Cli(R) = Inv4(R)/Princ(R)

is called the x-class group of R.

Corollary 4.26. If x is a semistar operation of an integral domain R, then

Cly,(R) = Clz(R). In particular Cly(R) = Clz(R).

Proof. Note that xy is a quasi-spectral semistar operation on R and (xs) = *.
Now apply the previous proposition. The second part of the Corollary follows
from the first, when « = v. O
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