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1. Introduction and preliminaries

Hilbert’s Nullstellensatz establishes a fundamental relationship between geometry and 
algebra, relating algebraic sets in affine spaces to radical ideals in polynomial rings 
over algebraically closed fields. On the other hand, for any ring R, the set of radical 
ideals of R can be thought of as a set of representatives of the closed sets of X :=
Spec(R), in the sense that the map J , sending a closed set C of X to the radical 
ideal J (C) :=

⋂
{P | P ∈ C}, is a natural order-reversing bijection, having as inverse 

the map V defined by sending a radical ideal H of R to the Zariski-closed subspace 
V(H) := {P ∈ Spec(R) | H ⊆ P} of X.

In the present paper, we will put into a topological perspective the relationship be-
tween the geometry of Spec(R) and ideal theory of R, shedding new light onto the 
Nullstellensatz-type correspondence established by the maps J and V.

Precisely, we consider Rd(R) := {H ideal of R | H = rad(H) � R} endowed with 
the so-called hull-kernel topology, that is the topology defined by taking, as a subbasis 
of open sets, the collection of all the subsets of the form {H ∈ Rd(R) | x1, . . ., xn /∈
H}, for x1, . . ., xn varying in the ring R. In this situation, we show that Rd(R)hk (i.e., 
Rd(R) with hull-kernel topology) is a spectral space (after Hochster [12]), using a general 
approach described below. On the other hand, we introduce a natural topology, called 
the Zariski topology, on the space X ′(R) of all the nonempty closed subspaces of the 
spectral space Spec(R), by declaring as a basis of open sets the collection of the sets of 
the form

U ′(Ω) := {C ∈ X ′(R) | C ∩ Ω = ∅},

where Ω runs in the family of all quasi-compact open subspaces of Spec(R).
In such a way, X ′(R) becomes a T0 topological space which can be considered as a 

natural order-reversing topological extension of Spec(R). More precisely, if Spec(R) is 
endowed with the inverse topology (as defined by Hochster; the definition will be recalled 
later), then the natural map ϕ′ : Spec(R) → X ′(R), P �→ Cl({P}), turns out to be a 
topological embedding, where Cl({P}) denotes the Zariski-closure in Spec(R) of the 
singleton {P}, i.e., Cl({P}) = V(P ).

Among the main results of the present paper, we show that the topological space 
X ′(R), endowed with the Zariski topology (denoted by X ′(R)zar), is a spectral space. 
By linking algebraic and topological properties, we show that J establishes a homeo-
morphism between X ′(R)inv (that is, X ′(R) endowed with the inverse topology) and 
Rd(R)hk (Theorem 4.1).

The topological properties that we prove concerning the space Rd(R) are obtained as 
particular cases of a more general construction. Indeed, given a R-module M , we define 
in a standard way the hull-kernel topology on the set SMod(M |R) of all R-submodules 
of M , and we prove that this topological space is a spectral space, by using a character-
ization based on ultrafilters. Then, we focus on the subspace SpecR(M) of SMod(M |R)
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given by the prime R-submodules of M (definition recalled later), and we show that 
SpecR(M) is spectral if and only if it is quasi-compact; this happens, for example, 
when M is finitely generated. Among other facts, we investigate whether some distin-
guished subspaces of SMod(M |R) are closed, with respect to the constructible topology. 
We show that this happens to the space SModc(M |R) := {N ∈ SMod(M |R) | N = N c}, 
where c : SMod(R|M) → SMod(R|M), N �→ N c, is a closure operation of finite type; in 
particular, it is a spectral space, with the hull-kernel topology. Thus, keeping in mind 
that the set of all ideals of R, denoted by Id(R), coincides with the spectral space 
SMod(R|R) and that the mapping rad : Id(R) → Id(R) (sending an ideal I of R to 
its radical) is a closure operation of finite type, we deduce that Rd(R) (with the hull-
kernel topology) is a spectral space. Furthermore, we show that the Krull dimension 
of this spectral space can be evaluated by the formula dim(Rd(R)) = |Spec(R)| − 1 ≥
dim(Spec(R)).

In the following, we will freely use some well known facts on spectral spaces [12]. 
However, for convenience of the reader we recall now briefly some basic definitions and 
background material.

1.1. Spectral spaces

Let X be a topological space. According to [12], X is called a spectral space if there 
exists a ring R such that Spec(R), with the Zariski topology, is homeomorphic to X. 
Spectral spaces can be characterized in a purely topological way: a topological space X
is spectral if and only if X is T0 (this means that for every pair of distinct points of X, 
at least one of them has an open neighborhood not containing the other), quasi-compact 
(i.e., any open cover of X admits a finite subcover), admits a basis of quasi-compact open 
subspaces that is closed under finite intersections, and every irreducible closed subspace 
C of X has a unique generic point (i.e., there exists a unique point xC ∈ C such that C
coincides with the closure of this point) [12, Proposition 4].

1.2. The inverse topology on a spectral space

Let X be a topological space and let Y be any subset of X. We denote by Cl(Y )
the closure of Y in the topological space X. Recall that the topology on X induces a 
natural preorder ≤ on X, defined by setting x ≤ y if y ∈ Cl({x}). It is straightforward 
to see that ≤ is a partial order if and only if X is a T0 space (e.g., this holds when 
X is spectral). The set Y gen := {x ∈ X | y ∈ Cl({x}), for some y ∈ Y } is called 
closure under generizations of Y . Similarly, using the opposite order, the set Y sp :=
{x ∈ X | x ∈ Cl({y}), for some y ∈ Y } is called closure under specializations of Y . We 
say that Y is closed under generizations (respectively, closed under specializations) if 
Y = Y gen (respectively, Y = Y sp). For any two elements x, y in a spectral space X, we 
have:
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x ≤ y ⇔ {x}gen ⊆ {y}gen ⇔ {x}sp ⊇ {y}sp .

Suppose that X is a spectral space, then X can be endowed with another topology, 
introduced by Hochster [12, Proposition 8], whose basis of closed sets is the collection of 
all the quasi-compact open subspaces of X. This topology is called the inverse topology 
on X (called also the O-topology in [21]; see also [11]). For a subset Y of X, let Clinv(Y )
be the closure of Y , in the inverse topology of X; we denote by Xinv the set X, equipped 
with the inverse topology. The name given to this new topology is due to the fact that, 
given x, y ∈ X, x ∈ Clinv({y}) if and only if y ∈ Cl({x}), i.e., the partial order induced 
by the inverse topology is the opposite order of the partial order induced by the given 
spectral topology [12, Proposition 8].

By definition, for any subset Y of X, we have

Clinv(Y ) :=
⋂

{U | U open and quasi-compact in X, U ⊇ Y } .

In particular, keeping in mind that the inverse topology reverses the order of the given 
spectral topology, it follows that the closure under generizations {x}gen of a singleton is 
closed in the inverse topology of X, since

{x}gen = Clinv({x}) =
⋂

{U | U ⊆ X quasi-compact and open, x ∈ U}

[12, Proposition 8]. On the other hand, it is trivial, by the definition, that the closure 
under specializations of a singleton {x}sp is closed in the given topology of X, since 
{x}sp = Cl({x}).

For recent developments in the use of the inverse topology in Commutative Algebra 
and spaces of valuation domains see, for example, [20].

1.3. The constructible topology on a spectral space

Let X be a spectral space. As it is well known, the topology of X is Hausdorff if and 
only if X is zero-dimensional. Following [9], there is a natural way to refine the topology 
of X in order to make X an Hausdorff space without losing compactness. Precisely, define 
the constructible topology on X to be the coarsest topology for which the quasi-compact 
open subspaces of X form a collection of clopen sets. In this way, X becomes a totally 
disconnected Hausdorff spectral space. Let Xcons denote the set X endowed with the 
constructible topology. By [12, Proposition 9], any closed subset of Xcons is a spectral 
subspace of X (with respect to the original spectral topology). Thus, in particular, any 
quasi-compact open subspace Ω of X is spectral, since Ω is clopen in the constructible 
topology, by definition. It is, in general, not so easy to describe the closed sets of Xcons. 
The following results provides both a criterion to characterize when a topological space 
X is spectral and to characterize the closed sets of Xcons. This result is based on the 
use of ultrafilters. For background material on this topic and application of ultrafilters 
to Commutative Ring Theory see, for example, [16] and [22].
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Theorem 1.1. [5, Corollary 3.3] Let X be a topological space.

(1) The following conditions are equivalent.
(i) X is a spectral space.
(ii) There exists a subbasis S of X such that, for any ultrafilter U on X, the set

X(U ) := {x ∈ X | [∀S ∈ S, the following holds: x ∈ S ⇔ S ∈ U ]}

is nonempty.
(2) If the previous equivalent conditions hold and S is as in (ii), then a subset Y of X

is closed, with respect to the constructible topology, if and only if for any ultrafilter 
V on Y we have

Y (V ) := {x ∈ X | [∀S ∈ S the following holds: x ∈ S ⇔ S ∩ Y ∈ V ]} ⊆ Y.

Corollary 1.2. Let X be a topological space satisfying the equivalent conditions of Theo-
rem 1.1(1), and let S be as in Theorem 1.1(1,ii). Then S is a subbasis of quasi-compact 
open subspaces of X.

Proof. By [5, Corollary 2.9, Propositions 2.11 and 3.2], S is a collection of clopen sets 
with respect to the constructible topology on the spectral space X. In the constructible 
topology, every clopen set is quasi-compact with respect to the given spectral topology. 
The claim follows. �
2. Spectral spaces of ideals and modules

The main purpose of the present section is to apply the general construction of the 
space of inverse-closed subspaces of the prime spectrum of a ring, considered in the 
previous section, to obtain a topological version of Hilbert’s Nullstellensatz.

Let R be a ring and M be an R-module. On the set SMod(M |R) of R-submodules of 
M we can define an hull-kernel topology having, as a subbasis for the closed sets, the 
subsets of the form

V (x1, x2, . . . , xm) := {N ∈ SMod(M |R) | x1, x2, . . . , xm ∈ N} ,

where x1, x2, . . . , xm varies among all finite subsets of M . Moreover, let

D(x1, x2, . . ., xm) := SMod(M |R) \ V (x1, , x2. . ., xm).

Note that the hull-kernel topology is clearly T0 and, by definition, the order induced 
by this topology on SMod(M |R) coincides with the order provided by the set-theoretic 
inclusion ⊆.
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Proposition 2.1. For any ring R and for any R-module M , SMod(M |R) is a spectral space. 
Moreover, the collection of sets S := {D(x1, . . ., xn) | x1, . . ., xn ∈ M} is a subbasis of 
quasi-compact open subspaces of SMod(M |R).

Proof. Let U be an ultrafilter on SMod(M |R), and set NU := {y ∈ M | V (y) ∈ U }.
If y1, y2, y ∈ NU and r ∈ R, then V (y1), V (y2) and V (y) are in U . Since V (y1−y2) ⊇

V (y1) ∩V (y2) and V (xr) ⊇ V (y), by definition of ultrafilter we have V (y1 − y2) ∈ NU

and V (ry) ∈ NU , i.e., y1 − y2, ry ∈ NU . Therefore, NU is a R-submodule of M .
From the definition, it follows easily that:

NU ∈ SMod(M |R)(U ) := {N ∈ SMod(M |R) | [∀Ω ∈ S, N ∈ Ω ⇐⇒ Ω ∈ U ]} .

Hence, by [5, Corollary 3.3], SMod(M |R) is a spectral space. The last statement follows 
from Corollary 1.2. �

As particular cases of the spectral space of the submodules of a given module, we can 
consider the following distinguished cases.

(a) Given any ring R, let

Id(R) := SMod(R|R) ,

Id•(R) := Id(R) \ {R},

where Id(R) (respectively, Id•(R)) is the set of all ideals (respectively, the set of all 
proper ideals).

(b) Given any integral domain D with quotient field K, let

F (D) := SMod(K|D) = {E | E is a D-submodule of K} .

Corollary 2.2. Let R be a ring and let D be an integral domain with quotient field K, 
D �= K.

(1) The set Id(R) (respectively, Id•(R)), endowed with the hull-kernel topology, is a 
spectral space.

(2) Let Rd(R) be the set of proper radical ideals of R and consider the following topolog-
ical embeddings with respect to the hull-kernel topology, induced from Id(R),

Spec(R) ⊆ Rd(R) ⊆ Id•(R) ⊆ Id(R) .

Then, the hull-kernel topology induced on Spec(R) coincides with the Zariski topol-
ogy.

(3) The space F (D) endowed with the hull-kernel topology, is a spectral space.
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(4) The space F (D) of all fractional ideals of D, endowed with the hull-kernel topology, 
is not a spectral space.

Proof. (1) and (3). The statements for Id(R) for F (D) are direct consequences of Propo-
sition 2.1. The claim for Id•(R) follows if we show that NU �= R, when U is an ultrafilter 
of Id•(R). If NU = R then 1 ∈ NU , i.e., D(1) ∩ Id•(R) ∈ U . Since D(1) ∩ Id•(R) = ∅, 
we reach a contradiction. Hence, NU �= R.

(2) is straightforward.
(4) If F (D) were a spectral space, then it would have proper maximal elements. If 

E is one of these, then there is an element x ∈ K \ E (since K is not a fractional ideal 
of D if D �= K) and so E + xD is a fractional ideal properly containing E, against the 
hypothesized maximality. �
Remark 2.3. Since we have proved that Id•(R) is a spectral space (Corollary 2.2(1)), it 
is then natural to ask in general if similar cases might occur:

(Q.1) Is SMod•(M |R) := SMod(M |R) \ {(0)} (with the hull-kernel topology) a spectral 
space?

(Q.2) Is SMod•(M |R) := SMod(M |R) \ {M} (with the hull-kernel topology) a spectral 
space?

The answer to both question is negative: we shall see in Remark 3.7 a counterexample 
to question (Q.1), while the problem of question (Q.2) will be completely settled in the 
following Proposition 2.4.

Proposition 2.4. Let M be a R-module. Then, SMod•(M |R) := SMod(M |R) \ {M} is a 
spectral space, endowed with the hull-kernel subspace topology, if and only if M is finitely 
generated.

Proof. Consider the subbasis of open sets S := {D(x1, . . ., xn) | x1, . . ., xn ∈ M} of 
X := SMod•(M |R) and assume first that M is finitely generated. If U is an ultrafilter 
on X, recall that the subset NU := {y ∈ M | V (y) ∩X ∈ U } is a R-submodule of M , 
by the proof of Proposition 2.1. In the notation of Theorem 1.1, if we show that NU

is a proper submodule of M , it will follow immediately that NU ∈ X(U ), thus X will 
be spectral. Let F be a finite set of generators for M . If NU = M then, by definition, 
V (F ) ∩X ∈ U and, since the empty set is not a member of any ultrafilter, we can pick 
a submodule N ∈ V (F ) ∩ X. But N ∈ V (F ) implies M = 〈F 〉 = N , a contradiction. 
Then NU �= M and thus the first part of the proof is complete.

Conversely, assume that M is not finitely generated, and note that the family of 
subsets {D(x) | x ∈ M} is obviously an open cover of X. Of course, for any finite 
subset F of M , the collection of open sets {D(x) | x ∈ F} is not a subcover of X, since 
the finitely generated submodule N := 〈F 〉 of M is proper, by assumption, and thus 
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N ∈ X \
⋃
{D(x) | x ∈ F}. This shows that, if M is not finitely generated, then X is 

not quasi-compact and, a fortiori, is not spectral. �
Remark 2.5. In Corollary 2.2, we considered the space of ideals of a ring R as a special 
case of the space of R-submodules of a R-module M . It is possible, however, to reverse 
this relation, in the following way.

With the same proof of Proposition 2.1, we can first show that, given two ideals I and 
J with J ⊆ I, the set Id((I, J)|R) := {H ∈ Id(R) | J ⊆ H ⊆ I} is a spectral space, with 
Id(R) being the special case with J = (0) and I = R. Consider now an R-module M : 
then, M is an ideal of the idealization ring R := R�M [13, Section 25]. In this case, we 
have that Id((M, (0))|R) coincides with SMod(M) and so, from this fact, we can deduce 
that SMod(M) is a spectral space.

In the next proposition we show that the construction of the spectral space SMod(M |R)
is functorial. Recall that a map f : X → Y of spectral spaces is called a spectral map
provided that, for any open and quasi-compact subspace Ω of Y , the set f−1(Ω) is open 
and quasi-compact. In particular, any spectral map of spectral spaces is continuous.

Proposition 2.6. Let R be a ring. For every R-module homomorphism f : M → N , 
set SMod(f) : SMod(N |R) → SMod(M |R), defined by SMod(f)(L) := f−1(L), for each 
L ∈ SMod(N |R). The assignment M �→ SMod(M |R), f �→ SMod(f) gives rise to a con-
travariant functor SMod from the category of R-modules and R-linear maps to the category 
of spectral spaces and spectral maps.

Proof. By Proposition 2.1, SMod(M |R) and SMod(N |R) are spectral spaces. In order to 
show that SMod(f) is continuous and spectral, it is enough to note that, for each finite 
subset {x1, x2, . . . , xm} of K,

SMod(f)−1(V (x1, x2, . . . , xm)) = V (f(x1), f(x2), . . . , f(xm)) .

Moreover, it is clear that SMod(g◦f) = SMod(f) ◦SMod(g), so that SMod is a (contravariant) 
functor. �

For example, let D be an integral domain with quotient field K and let j : D ↪→ K be 
the natural embedding. Then, the map SMod(j) : SMod(K|D) = F (D) → SMod(D|D) =
Id(D), defined by E �→ E∩D, is a spectral retraction (between spectral spaces endowed 
with the hull-kernel topology). In fact, if i : Id(D) ↪→ F (D) is the natural (spectral) 
embedding, then SMod(j) ◦ i is the identity of Id(D).

3. The prime spectrum of a module

Recall that a prime submodule of a R-module M is a submodule P �= M such that, 
whenever am ∈ P for some a ∈ R, m ∈ M , we have m ∈ P or aM ⊆ P (see, for 
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example, [17]). Denote by SpecR(M) the set of prime submodules of M . Note that 
SpecR(M) may be empty (e.g., if R is a domain, K its quotient field and M = K/R) 
and that when M = R it coincides with the prime spectrum of R.

Proposition 3.1. Let M be a R-module and endow SMod(M |R) with the hull-kernel topol-
ogy.

(1) SpecR(M) ∪ {M} is a spectral subspace of SMod(M |R).
(2) SpecR(M) is a spectral space if and only if it is quasi-compact.
(3) If M is finitely generated, then SpecR(M) is a spectral space.

Proof. (1) Let U be an ultrafilter on SpecR(M); like in the proof of Proposition 2.1, it 
is enough to show that the set NU := {x ∈ M | V (x) ∩ SpecR(M) ∈ U } is a prime 
submodule of M , if it is different from M . To shorten the notation, set S := SpecR(M) ∪
{M}, S := SpecR(M), V S(x) := V (x) ∩ SpecR(M) and DS(x) := SpecR(M) \ V S(x).

The proof of Proposition 2.1 shows that NU is a submodule of M . Suppose now that 
a ∈ R, m ∈ M , am ∈ NU , and that m /∈ NU , so NU �= M . By definition of a prime 
submodule, it follows easily that T := V S(am) ∩DS(m) ⊆ V S(ax), for any x ∈ M . Now, 
keeping in mind that m /∈ NU , am ∈ NU and that U is an ultrafilter on SpecR(M), it 
follows that T ∈ U and, a fortiori, V S(ax) ∈ U , for any x ∈ M , that is, xM ⊆ NU . In 
other words, NU is a prime submodule of M .

(2) If S = SpecR(M) is a spectral space then it is clearly quasi-compact. Conversely, 
keeping in mind that {M} is the unique closed point in S, we have that S is open and 
quasi-compact in the spectral space S, and hence it is spectral.

(3) Let U and NU be as in part (1). We need to prove that, if M is finitely generated, 
then NU �= M . In fact, let M = 〈x1, x2, . . ., xn〉, if NU = M , then, by definition, the 
set 

⋂n
i=1 V (xi) ∈ U . Thus, we can pick a prime submodule P ∈

⋂n
i=1 V (xi), that 

is, M = 〈x1, . . . , xn〉 ⊆ P , reaching a contradiction. This proves that, if M is finitely 
generated, then SpecR(M) is a closed set of S, with respect to the constructible topology, 
by Theorem 1.1(2). In particular, SpecR(M) is quasi-compact, when endowed with the 
hull-kernel topology. The conclusion is then a consequence of part (2). �
Remark 3.2.

(1) The condition that M is finitely generated is not necessary for SpecR(M) to be 
spectral. For example, if R = D is an integral domain and M = K is its quotient 
field, then SpecD(K) = {(0)}, which is compact and spectral. However, K is not 
finitely generated over D if D �= K.

(2) SpecR(M) might not be indeed quasi-compact: let R be any ring, P ∈ Spec(R), 
and let M =

⊕
α∈A eαR be a non-finitely generated free module over R. We always 

have SpecR(M) ⊆
⋃

α∈A D(eα). If SpecR(M) were quasi-compact, there would be 
α1, α2 . . . , αn ∈ A such that SpecR(M) ⊆ D(eα1) ∪ D(eα2) ∪ · · · ∪ D(eαn

), and 
so there would be no prime submodule containing all eα1 , eα2 , . . . , eαn

. Since A is 
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infinite, there is an element β ∈ A such that β �= αi for every i, 1 ≤ i ≤ n. Define a 
submodule N of M as follows:

N :=
⊕

α∈A
eαNα, where Nα = R if α �= β and Nβ = P.

We have M/N � R/P , so that N is a prime submodule of M . However, N contains 
eα1 , eα2 , . . ., eαn

, against our hypothesis. Therefore, SpecR(M) is not quasi-compact.
(3) In [17], the set SpecR(M) (indicated with Spec(M)) was endowed with a topology τ

(which the author calls Zariski topology) whose closed sets are those in the form 
V (N) := {P ∈ SpecR(M) | (P : M) ⊆ (N : M)}, as N ranges among the sub-
modules of M . This topology is in general weaker than the topology introduced in 
the present paper, and it is T0 if and only if the map ψ : SpecR(M) → Spec(R), 
defined by P �→ (P : M), is injective. In [17], it was also shown that, if ψ is injective 
and its image is the closed subspace V(ann(M)), then it is an homeomorphism on 
its image (so that, in particular, SpecR(M) endowed with the topology τ is spec-
tral). Even when τ is T0, however, this topology does not always coincide with the 
hull-kernel topology. Indeed, let R := Z, Z2 := Z/2Z and let M := Z2 ⊕Q. We have 
SpecR(M) = {P, Q}, where P := Z2 ⊕ (0) and Q := (0) ⊕ Q; hence both P and Q
are closed points in the hull-kernel topology of SpecR(M). On the other hand, both 
V (P ) and V (Q) are irreducible closed subsets in the topology τ [17, Corollary 5.3]. 
However, (P : M) = 2Z and (Q : M) = (0), so V (P ) = {P} and V (Q) = {P, Q}. It 
follows that SpecR(M) is T0 in the Zariski topology, but Q is not a closed point.

Denote by Overr(D) the set of all overrings of the integral domain D. We observe that 
Overr(D) is a subset of F (D) (in fact, it is a subset of F (D) := F (D) \{(0)}, the set of 
all nonzero D-submodules of K). On the other hand, the set Overr(D) can be endowed 
with a topology, called the Zariski topology, having as basic open sets the subsets of the 
type B(F ) := Overr(D[F ]) = {T ∈ Overr(D) | F ⊆ T}, where F is varying among the 
finite subsets of K. If we denote by Overr(D)zar the topological space Overr(D) with 
the Zariski topology and F (D)hk (respectively, F (D)hk) the space F (D) (respectively, 
F (D)) with the hull-kernel topology (respectively, topology induced from the hull-kernel 
topology of F (D)) then the inclusion maps Overr(D) ⊆ F (D) and Overr(D) ⊆ F (D)
are not continuous. In fact, the quotient field K is the generic point of Overr(D)zar but 
it is a closed point for F (D)hk (and for F (D)hk).

Recall that Overr(D)zar is a spectral space [5, Proposition 3.5(2)] and denote by 
Overr(D)inv (respectively, Overr(D)hk) the set Overr(D) with the inverse topology (re-
spectively, with the hull-kernel topology, induced from F (D)hk).

Proposition 3.3. For any domain D, Overr(D)hk coincides with Overr(D)inv.

Proof. By definition of the inverse topology, a basis for the closed sets of Overr(D)inv
is given by the quasi-compact open subspaces of Overr(D)zar, i.e., by the finite unions 
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of the subsets B(F ), where F is varying among the finite subsets of K. On the other 
hand, by definition, Overr(D[F ]) = V (F ). Moreover, if G is any subset of K, then 
V (G) =

⋂
{V (F ) | F ⊆ G and F is finite}, so that {V (F ) | F is finite subset of K} is 

a basis for the closed sets of the topological space Overr(D)hk. Therefore, we conclude 
that Overr(D)hk = Overr(D)inv. �

Given a ring R, on any R-module M , a closure operation on SMod(M |R) is a map 
(−)c : SMod(M |R) → SMod(M |R) that is extensive (i.e., N ⊆ N c), order-preserving 
(i.e., N1 ⊆ N2 implies N c

1 ⊆ N c
2 ) and idempotent (i.e., (N c)c = N c). We also say 

that c is of finite type if, for any N ∈ SMod(M |R), N c =
⋃
{Lc | L ⊆ N, L ∈

SMod(M |R), L is finitely generated}. For a deeper insight on this topic see, for exam-
ple, [1,3,4,10], and [23].

Proposition 3.4. Let M be an R-module and c be a closure operation of finite type on 
SMod(M |R). The set SModc(M |R) := {N ∈ SMod(M |R) | N = N c} is a spectral space. 
Moreover, SModc(M |R) is closed in SMod(M |R), endowed with the constructible topology.

Proof. With the same notation of the proof of Proposition 2.1, to prove the first state-
ment we only need to show that, if U is an ultrafilter on SModc(M |R), NU is also in 
SModc(M |R).

Let x ∈ (NU )c. Since c is of finite type, there is a finitely generated R-module L ⊆ NU

such that x ∈ Lc. In particular, x ∈ Hc for all H ⊇ L, i.e., for all H ∈ V (L); therefore, 
V (L) ∩ SModc(M |R) ⊆ V (x) ∩ SModc(M |R). If L = �1R+ �2R+ · · ·+ �nR, then V (L) =
V (�1) ∩V (�2) ∩· · ·∩V (�n). Since each V (�i) ∩SModc(M |R) is in U (by definition of NU ), 
then V (L) ∩ SModc(M |R) ∈ U . Hence, V (x) ∩ SModc(M |R) ∈ U , i.e., x ∈ NU . Thus, 
NU = (NU )c and SModc(M |R) is a spectral space.

Finally, from Theorem 1.1(2) we deduce that SModc(M |R) is a closed subspace of 
SMod(M |R), endowed with the constructible topology. �
Corollary 3.5. Let D be an integral domain and 	 be a semistar operation of finite type 
on D (for background material on semistar operations see, for instance, [3,8,19]). Then, 
the subspaces

F (D)� := {E ∈ F (D) | E� = E} and Overr�(D) := {T ∈ Overr(D) | T = T �}

of F (D)hk are spectral spaces.

Proof. By applying Proposition 3.4 and the proof of [5, Proposition 3.5] we note that 
F (D)� and Overr�(D) are closed in F (D), endowed with the constructible topology. 
Then, the conclusion follows by [12, Proposition 9]. �
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Corollary 3.6. Let c be a closure operation of finite type on a ring R. Then, Idc(R) :=
SModc(R|R) (respectively, Idc•(R) := SModc(R|R) \ {R}), endowed with the hull-kernel 
topology, is a spectral space.

Proof. The statements follow from Proposition 3.4 and its proof, using the same argu-
ment of the proof of Corollary 2.2(1). �
Remark 3.7. If c is a closure operation of finite type on an R-module M , we can al-
ways consider a canonical surjective map ψc : SMod(M |R) −→ SModc(M |R), by setting 
ψc(N) := N c, for each N ∈ SMod(M |R). However, ψc is only rarely continuous (with re-
spect to the hull-kernel topology). For example, let M = R be any infinite ring such that 
the intersection of all nonzero ideals is (0) (such a ring is, for example, an integral domain 
that is not a field). Set (0)c := (0), and set Ic to be equal to R if I �= (0). Therefore, 
SModc(R|R) = Idc(R) = {(0), R}. Note that ψ−1

c (R) = {I | I �= (0)} = Id(R) \ {(0)}. 
Since R is a closed point in SMod(R|R) = Id(R) (endowed with the hull-kernel topol-
ogy) and R = Rc, then R is a closed point in SModc(R|R) = Idc(R) (endowed with the 
hull-kernel topology). If ψc were continuous, ψ−1

c (R) = Id(R) \ {(0)} would be closed 
and thus (being a closed subset of a spectral space) it would be a spectral space itself. 
However, Id(R) \ {(0)} cannot be a spectral space, when endowed with the hull-kernel 
topology induced from Id(R), since Id(R) \ {(0)} is not quasi-compact. Indeed, by as-
sumption, the intersection of all nonzero ideals of R is (0), and thus the collection of sets 
{D(x) \ {(0)} | x �= 0} provides an infinite open cover of Id(R) \ {(0)} without finite 
subcovers.

As a particular case of the Proposition 3.4 and Corollary 3.6, we have the following.

Corollary 3.8. Let R be a ring. The sets Rd(R) and Rd(R) ∪ {R}, endowed with the 
hull-kernel topology, are spectral spaces.

Proof. As usual, let rad(I) denote the radical of an ideal I of R. If x ∈ rad(I), then 
x ∈ rad(xn) for some xn ∈ I, so rad is a closure operation of finite type in Id(R), 
i.e., Rd(R) ∪ {R} = Idc(R), where c = rad. The conclusion is now a consequence of 
Corollary 3.6. �
4. A topological version of Hilbert’s Nullstellensatz

Let now X be a spectral space and let Cl (Y ) denote the closure of a subspace Y in 
the given topology of X. Let X ′(X) be the space of nonempty closed sets of X, and 
endow it with a topology whose subbasic open sets are the family of sets

U ′(Ω) := {Y ∈ X ′(X) | Y ∩ Ω = ∅},
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as Ω ranges among the quasi-compact open subspaces of X. Note that the family of sets 
of the type U ′(Ω) forms a basis, since U ′(Ω1) ∩ U ′(Ω2) = U ′(Ω1 ∪ Ω2). We call this 
topology the Zariski topology of the space X ′(X). The notation used here is chosen in 
analogy and for coherence with the construction of the space X (X), which is sketched 
in [6] and elaborated upon in [7].

Note that there is a canonical injective map ϕ′ : Xinv → X ′(X)zar, defined by ϕ′(x) :=
{x}sp, which is a topological embedding. Indeed, ϕ′ is continuous since

ϕ′ −1(U ′(Ω)) = {x ∈ Xsp | {x}sp ∩ Ω = ∅} = X \ Ω ,

which is, by definition, a subbasic open set of Xinv. Moreover, since the family of the 
sets of the type X \ Ω, for Ω ranging among the quasi-compact open subspaces of X, 
forms a subbasis of Xinv, the calculation above shows that ϕ′(X \ Ω) = U ′(Ω) ∩ ϕ′(X), 
and thus the map ϕ′ is a topological embedding.

Now, we are in condition to state a “topological version” of the Hilbert Nullstellensatz.

Theorem 4.1. Let R be a ring and let X ′(R) := X ′(Spec(R)) be the topological space of 
the non-empty Zariski closed subspaces of Spec(R), endowed with the Zariski topology. 
Let Rd(R) be the spectral space of all proper radical ideals of R with the inverse topology. 
Then, the map

J :X ′(R)zar → Rd(R)inv

C �→
⋂

{P ∈ Spec(R) | P ∈ C}

is a homeomorphism. In particular, X ′(R) is a spectral space. Moreover, the same map 
J defines a homeomorphism between X ′(R)inv and Rd(R)hk.

Proof. For each x1, . . ., xn ∈ R, let Δ(x1, . . ., xn) := {H ∈ Rd(R) | (x1, . . ., xn) � H} =
D(x1, . . ., xn) ∩ Rd(R) be a subbasic open set of Rd(R) and let D(x1, . . ., xn) := {P ∈
Spec(R) | x /∈ P} be a subbasic open set of Spec(R). By the definition of the hull-kernel 
topology, by Corollaries 1.2, 3.8 and Proposition 2.1, it follows that B := {Δ(x1, . . ., xn) |
x1, . . ., xn ∈ R} is a collection of quasi-compact open subspaces of Rd(R)hk, that is, it is 
a subbasis of closed sets of Rd(R)inv. Set X ′ := X ′(R). Then,

J −1(Δ(x1, . . ., xn)) = {C ∈ X ′ | J (C) ∈ Δ(x1, . . ., xn)} =

= {C ∈ X ′ | (x1, . . ., xn) � J (C)} =

= {C ∈ X ′ | (x1, . . ., xn) �
⋂

{P ∈ Spec(R) | P ∈ C} } =

=
{
C ∈ X ′ | xi /∈ P for some P ∈ C and some i

}
=

= {C ∈ X ′ | C ∩ D(x1, . . ., xn) �= ∅} =

= X ′ \ U ′(D(x1, . . ., xn))
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which is, by definition, a closed set of X ′. Hence, J is continuous (when Rd(R) is 
equipped with the inverse topology). In order to show that it is a closed map, it is enough 
to note that {X ′ \ U ′(D(x1, . . ., xn)) | x1, . . ., xn ∈ R} is a basis of closed sets of X ′ and 
that, by Hilbert Nullstellensatz, J is bijective; hence J (X ′ \ U ′(D(x1, . . ., xn))) =
Δ(x1, . . ., xn) is closed in Rd(R)inv. Thus, J is a homeomorphism.

The last claim follows directly from Hochster’s duality, that is, more explicitly, from 
the fact that (Rd(R)inv)inv coincides with Rd(R)hk. �

In the following, if X is a topological space, we will denote by dim(X) (respec-
tively, |X|) the dimension (respectively, the cardinality) of X.

Proposition 4.2. Let R be a ring and let Rd(R) be the space of all proper radical ideals 
of R, endowed with the hull-kernel topology. Then

dim(Rd(R)) = |Spec(R)| − 1 ≥ dim(Spec(R)) .

Moreover, if Spec(R) is linearly ordered, then dim(Rd(R)) = dim(Spec(R)).

Proof. Let X be a nonempty finite subset of Spec(R), with |X| = n. Let Pn be a minimal 
element of X and, by induction, let Pi be a minimal element of X \ {Pn, . . . , Pi+1}, for 
1 ≤ i ≤ n − 1. Consider the radical ideals Hi :=

⋂i
�=1 P�, for i = 1, 2, . . . , n. By 

construction, we have Pi � P1, . . . , Pi−1, for i = 2, . . . n, that is Pi � Hi−1. Thus, we get 
a strictly increasing chain of radical ideals of R

Hn � Hn−1 � . . . � H1 := P1 .

Since the order induced by the hull-kernel topology is the set-theoretic inclusion, this 
chain corresponds to a chain of length n − 1 of irreducible closed subspaces of Rd(R). 
Thus, when Spec(R) is infinite, we can get, by applying the previous argument, chains 
of irreducible closed subsets of Rd(R) of arbitrary length. Thus, in this case, the equality 
dim(Rd(R)) = |Spec(R)| − 1 is proved. Assume now that Spec(R) is finite. By applying 
the first part of the proof to X := Spec(R) we deduce immediately that |Spec(R)| − 1 ≤
dim(Rd(R)). Conversely, a chain of length t of irreducible closed subspaces of Rd(R)
corresponds to a chain of radical ideals

L0 � L1 � . . . � Lt

and it provides the following chain of closed sets

V(Lt) � V(Lt−1) � . . . � V(L0)

of Spec(R). Since Spec(R) is finite, V(L0) has at most |Spec(R)| elements. Since all 
inclusions are proper, it follows that t ≤ |Spec(R)| − 1. The first part of the proof is 
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now complete. The last statement follows immediately by noting that Rd(R) = Spec(R)
if and only if Spec(R) is linearly ordered. �

Topologies on the family of the closed subsets of a topological space were introduced 
and intensively studied since the beginning of 20th century, with applications to uniform 
spaces, Functional Analysis, Game Theory, etc. [2,14,15,18]. In this circle of ideas, one of 
the first contributions was made by L. Vietoris in [24]. We briefly recall his construction. 
Let X be any topological space and let, as before, X ′(X) denote the collection of all 
the nonempty closed subspaces of X (called also the hyperspace of X). For any open 
subspace U of X set

U+ := {C ∈ X ′(X) | C ⊆ U} U− := {C ∈ X ′(X) | C ∩ U �= ∅}.

The upper Vietoris topology on X ′(X) (respectively, lower Vietoris topology) is the 
topology on X ′(X) having as a basis (respectively, subbasis) of open sets the collec-
tion V+ := {U+ | U open in X} (respectively, V− := {U− | U open in X}).

We now unveil a relation between the lower Vietoris topology and the Zariski topology 
X ′(X), considered at the beginning of the present section.

Proposition 4.3. Let X be a spectral space. Then, the inverse topology of the spectral 
space X ′(X)zar and the lower Vietoris topology on X ′(X) are the same.

Proof. Note first that, for any spectral space X , if B is a basis of quasi-compact open 
subspaces of X (such a B exists, by definition of a spectral space), then Binv := {X \B |
B ∈ B} is a basis of open sets for X inv.

Starting from the given spectral space X, with the notation introduced at the be-
ginning of the present section, for any open and quasi-compact subspace Ω of X, we 
observe that the set U ′(Ω) is quasi-compact, as a subspace of X ′(X)zar. Indeed, note that 
X \Ω ∈ U ′(Ω) and that, if U ′(Ω) ⊆

⋃
i∈I U

′(Ωi), with Ωi ⊆ X open and quasi-compact, 
then X \ Ω ∈ U ′(Ωi), for some i, that is Ωi ⊆ Ω. Thus, a fortiori, U ′(Ω) ⊆ U ′(Ωi). This 
shows that the basis

B := {U ′(Ω) | Ω quasi-compact open in X}

consists of quasi-compact open subspaces of X ′(X)zar, and thus Binv is a basis of open 
sets for X ′(X)inv. Since, by definition, the typical element in Binv is a set of closed 
subspaces hitting a fixed quasi-compact open subspace of X, it follows immediately that 
the inverse topology of X ′(X)zar is coarser than (or equal to) the lower Vietoris topology.

Conversely, let U be any open set of X and take a point C ∈ U− := {F ∈ X ′(X) |
F ∩ U �= ∅}. If x ∈ C ∩ U , there is a quasi-compact open subspace V of X such that 
V ⊆ U and x ∈ C ∩ V , since the collection of all the quasi-compact open subspaces of a 
spectral space forms a basis. Thus, C ∈ V − = X ′(X) \ U ′(V ) ⊆ U−. This shows that 
U− is open, in the inverse topology of X ′(X)zar. The proof is now complete. �
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Remark 4.4. (a) The previous proposition shows that, given a spectral space X, the lower 
Vietoris topology on X ′(X) is always spectral. However, the same property can fail to 
hold for the upper Vietoris topology. To see this, let D be any integral domain with 
Jacobson radical J �= (0), let X := Spec(D), let Y := V(J) ∈ X ′(X), and let Ω ⊆ X ′(X)
be any open neighborhood of Y , with respect to the upper Vietoris topology. Without 
loss of generality, we can assume that Ω = D(I)+, for some ideal I of D. Since each 
maximal ideal M of D belongs to Y , we have I � M , for each M ∈ Max(D) and thus 
I = D, that is, Ω = X ′(X). This proves that the unique open neighborhood of Y
is X ′(X) and trivially the same holds for the point X ∈ X ′(X), with Y �= X since 
J �= (0). This shows that X ′(X), equipped with the upper Vietoris topology, does not 
satisfy the T0 axiom and, a fortiori, it is not spectral.

Note also that the previous example shows that the inverse topology of the spec-
tral space X ′(X), endowed with the lower Vietoris topology, is not the upper Vietoris 
topology on X ′(X).

(b) Following the idea of intertwining algebra and topology, it is possible to give an 
alternate proof of Proposition 4.3 based on Theorem 4.1.

Let X = Spec(R), and let J0 be the map J defined in the statement of Theorem 4.1, 
but considered as a map from X ′(R)loV (i.e., the space X ′(R) equipped with the lower 
Vietoris topology) to Rd(R)hk (i.e., the space Rd(R) equipped with the hull-kernel topol-
ogy). Obviously, J0 is bijective.

A subbasis of the space Rd(R)hk is composed by the sets of the form D(I) = {H ∈
Rd(R) | I � H}, as I ranges among the ideals of R, while a subbasis of X ′(R)loV is 
composed of the sets of the form D(I)− = {F ∈ X ′(R) | F ∩D(I) �= ∅}, since the open 
sets of Spec(R) are of the form D(I). However,

J −1
0 (D(I)) = {F ∈ X ′(R)loV | I � P for some prime ideal P ∈ F} =

= {F | F � V (I)} =

= {F | F ∩D(I) �= ∅} = D(I)−,

and thus J0 is a homeomorphism.
We thus have a chain of maps

X ′(R)loV J0−−−→ Rd(R)hk id−−→ ((Rd(R)hk)inv)inv (J −1)inv−−−−−−−→ X ′(R)inv,

where id is the identity on the set Rd(R) and (J −1)inv indicates the map J −1 in the 
inverse topology. By Hochster’s duality, id is a homeomorphism, while (J −1)inv and 
J0 are homeomorphism, respectively, by Theorem 4.1 and the above reasoning. Since 
the composition (J −1)inv ◦ id◦J0 is clearly the identity on the set X ′(R), we conclude 
that the lower Vietoris topology and the inverse topology on X ′(R) are identical, as 
claimed.
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