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THE UPPER VIETORIS TOPOLOGY ON THE SPACE
OF INVERSE-CLOSED SUBSETS OF A SPECTRAL

SPACE AND APPLICATIONS

CARMELO A. FINOCCHIARO, MARCO FONTANA AND DARIO SPIRITO

ABSTRACT. Given an arbitrary spectral space X, we
consider the set X (X) of all nonempty subsets of X that
are closed with respect to the inverse topology. We introduce
a Zariski-like topology on X (X) and, after observing that
it coincides the upper Vietoris topology, we prove that
X (X) is itself a spectral space, that this construction is
functorial, and that X (X) provides an extension of X in a
more “complete” spectral space. Among the applications, we
show that, starting from an integral domain D, X (Spec(D))
is homeomorphic to the (spectral) space of all the stable
semistar operations of finite type on D.

1. Introduction. The first study of the set of prime ideals from
a topological point of view is due to Stone [42, 43], who developed
the theory in the context of distributive lattices and Boolean algebras.
Later, Hochster [28] defined a spectral space as a topological space
that is homeomorphic to the prime spectrum of a (commutative) ring
endowed with the Zariski topology and proceeded to show that this
class of topological spaces can be characterized in a purely topological
way. More precisely, he proved that a topological space X is spectral
if and only if it is T0, quasi-compact, admits a basis of quasi-compact
open subspaces that is closed under finite intersections, and is sober
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(i.e., every irreducible closed subset of X has a (unique) generic point).
Spectral spaces can also be viewed through the lens of ordered topo-
logical spaces (via the concept of the Priestley space) [6, 37, 38], of
bitopological spaces (through pairwise Stone spaces) [4], or through
domain theory (using the notion of the stably compact space) [30].

The first example of a spectral space which occurs naturally in
commutative algebra, but is not defined as a spectrum, is the Riemann-
Zariski space Zar(K |D) of all valuation domains with quotient field
K and containing D; this was proven by explicitly providing a Bézout
domain whose prime spectrum is naturally homeomorphic to Zar(K |D)
(see [7, 11, 27]). Recently, several other spaces, which naturally
occur in multiplicative ideal theory, have been shown to be spectral:
for example, this occurs for the spaces Overr(D) and Overric(D)
consisting, respectively, of the overrings and of the integrally closed
overrings of an integral domain D. This result was later extended
to the space SStarf(D) of all semistar operations of finite type on
D, providing an appropriate and natural topological extension of the
spectral space Overr(D) (and, in particular, of both Spec(D) and
Zar(K |D)) [15]. Unlike the proof of the spectrality of Zar(K |D), these
spaces were shown to be spectral using a criterion based on ultrafilters
[10], which is well suited to this kind of space; however, this criterion
is not constructive, that is, it does not explicitly provide a ring whose
spectrum is homeomorphic to the given spectral space.

If X is a topological space, we denote by Xd the set X endowed
with the co-compact topology, i.e., the topology on X having, as a base
of open sets, the complements of the subsets of X that are both quasi-
compact and obtained as an intersection of open sets [19, Definition
O-5.10]. In the context of spectral spaces, the co-compact topology
of X is called the inverse topology of X and plays a crucial role in
Hochster’s study of spectral spaces; it owes its name to the fact that
the order canonically associated to the inverse topology coincides with
the reverse order of the one induced by the spectral topology. Subsets
of a spectral space that are closed in the inverse topology are strictly
related to the study of representations of integrally closed domains as
intersections of collections of valuation domains (see also [33, 34, 35]),
and they represent a method of classifying several distinguished classes
of semistar operations of finite type. It was shown in [11, 15] that
complete, or eab, semistar operations (respectively, stable semistar
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operations; definitions recalled later) correspond to the subsets of
Zar(D) (respectively, Spec(D)) that are closed in the inverse topology.
Moreover, these two spaces are spectral extensions of the spaces Zar(D)
and Spec(D), also see [14].

The aim of this paper is to study, for an arbitrary spectral space
X, the space X (X) of all nonempty subsets of X that are closed with
respect to the inverse topology; in particular, this study is carried out
using the same ultrafilter-theoretic approach of [10, 11], using tech-
niques closer to commutative algebra than to general topology, in an
attempt to bridge the gap between the two communities. After endow-
ing X (X) with a natural topology, we show that it is a spectral space
and a spectral extension of the original space X. It is worth noting
that this construction, which arises in the topological context associ-
ated to commutative ring theory, is a special case of the construction
of the Smyth powerdomain of a general topological space X, endowed
with the upper Vietoris topology [31, 44] (the definitions are recalled
later), usually studied from the point of view of domain theory (see
[30, Section 5], [41]). In Section 5, we see that the two spaces of
distinguished semistar operations recalled above are examples of the
space X (X), when applied to the spectral spaces X = Zar(D) and
X = Spec(D). We also show that the extension X ↩→ X (X) repre-
sents, in a certain sense, a spectral “completion” of the original space
X, matching the possibility of extending the spectral space Overr(D)
inside the more “complete” spectral space of the semistar operations
of finite type SStarf(D). The “completeness” mentioned above is re-
lated to a universal-like property satisfied by X (X). Broadly speaking,
X (X) is the completion of X with respect to the existence of the supre-
mum for families of quasi-compact subspaces.

2. Preliminaries. It is well known that the prime spectrum of a
commutative ring endowed with the Zariski topology is always T0 and
quasi-compact, but almost never Hausdorff (it is Hausdorff only in the
zero-dimensional case). Thus, many authors have considered a finer
topology on the prime spectrum of a ring, known as the constructible
topology (see [3, Chapter 3, Exercises 27, 28, 30], [5], [21, pages 337–
339]) or as the patch topology [28].

Following [38, 39], it is possible to introduce the constructible
topology by a Kuratowski closure operator: if X is a spectral space,
for each subset Y of X, we set:
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Clcons(Y ) :=
∩

{U∪(X\V ) | U and V open and quasi-compact in X,

U ∪ (X\V ) ⊇ Y }.

We denote by Xcons the set X, equipped with the constructible topol-
ogy. For Noetherian topological spaces, this definition of constructible
topology coincides with the classical one given in [5]. It is well known
that the constructible topology is a refinement of the given topology,
and it is always Hausdorff.

Given a topology on a set X, we can define a preorder ≤X on X by
setting x ≤X y if y ∈ Cl({x}), where Cl(Y ) denotes the closure of a
subset Y of X. This order is the opposite of the specialization order
generally used in topology; however, it is the one more commonly used
in commutative algebra and algebraic geometry, since, on the spectrum
of a ring, it coincides with the set-theoretic containment (for example,
this is the order used in [28]). The set

Y gen :=↓ Y := {x ∈ X | x ≤ y, for some y ∈ Y }

is called closure under generizations of Y . Similarly, using the opposite
order, the set

Y sp :=↑ Y := {x ∈ X | y ≤ x, for some y ∈ Y }

is called closure under specializations of Y . We say that Y is closed
under generalizations or a down set (respectively, closed under special-
izations or an upper set) if Y = Y gen (respectively, Y = Y sp). It is
straightforward that, for two elements x and y in a spectral space X,
we have:

x ≤ y ⇐⇒ {x}gen ⊆ {y}gen ⇐⇒ {x}sp ⊇ {y}sp.

Given a spectral space X, Hochster [28, Proposition 8] introduced
a new topology on X, called here the inverse topology, by defining a
Kuratowski closure operator for each subset Y of X, as follows:

Clinv(Y ) :=
∩

{U | U open and quasi-compact in X, U ⊇ Y }.

If we denote by X inv the set X equipped with the inverse topology,
Hochster proved that X inv is still a spectral space, and the partial
order on X induced by the inverse topology is the opposite order of that
induced by the given topology on X. In particular, the closure under
generizations {x}gen of a singleton is closed in the inverse topology of
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X, since {x}gen =
∩
{U | U ⊆ X quasi-compact and open, x ∈ U} [28,

Proposition 8]. On the other hand, it is trivial, by the definition, that
the closure under specializations of a singleton {x}sp is closed in the
given topology of X, since {x}sp = Cl({x}).

Recall that it is well known that Clinv(Y ) = (Clcons(Y ))gen (see,
for instance, [16, Lemma 1.1] applied to the inverse topology or,
explicitly, [11, Remark 2.2]; a more general situation is considered
in [30, subsection 2.2]). It follows that each closed set in the inverse
topology (for short, inverse-closed) is closed under generizations and,
from [11, Proposition 2.6], that a quasi-compact subspace Y of X
closed for generizations is inverse-closed.

We mention here the existence of several different point of views that
might shed further light on the theory of spectral spaces.

One perspective is through the language of ordered topological spaces.
Let X be a topological space and ≤ an order on X: then, the
pair (X,≤) is a Nachbin space if X is quasi-compact and the set
{(x, y) ∈ X × X | x ≤ y} is closed in X × X. A Priestley space is
a Nachbin space (X,≤) such that, for every x, y ∈ X with x � y,
there exists a clopen subset Γ of X that is closed under specialization
(with respect to ≤) such that x ∈ Γ and y /∈ Γ. It is well known that
there is an isomorphism between the category of Priestly spaces (and
continuous monotone maps) and the category of spectral spaces (and
spectral maps): if X is a spectral space, and ≤ is the order induced by
the topology, then (Xcons,≤) is a Priestley space, while, if (X,≤) is a
Priestley space, then the topology on X generated by the open subsets
ofX that are closed under generizations (with respect to≤) is a spectral
space. In this context, reversing the order defining a Priestley space
amounts to passing from a spectral topolgy to its inverse topology,
while the case where ≤ is the indiscrete order (i.e., x ≤ y if and only if
x = y) corresponds to the case where the spectral space X is Hausdorff,
i.e., when the topology on X is equal to its own constructible topology.
For a deeper insight on this topic, see, for instance, [4, 6, 37, 38] and
[19, Chapter VI].

Another point of view is offered by domain theory. A topological
spaceX is said to be stably compact (see, for instance, [30]) if it satisfies
the following properties:

(1) X is T0 and quasi-compact.
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(2) X is locally quasi-compact (that is, for any open set U of X and
any x ∈ U , there are a quasi-compact subspace K of X and an open
set V ⊆ X such that x ∈ V ⊆ K ⊆ U).

(3) X is coherent (that is, any finite intersection of quasi-compact
saturated subsets of X is quasi-compact).

(4) X is sober.

Note that stably compact spaces can also be defined as the retracts
of the spectral spaces [40, Lemma 3.13(b)]; further connections are
outlined in the following well-known results.

Recall that a subset of a topological space is called a saturated subset
if it is an intersection of a family of open sets.

Lemma 2.1. Let X be a topological space having a basis for the open
sets given by the quasi-compact open subspaces.

(i) If K ⊆ U ⊆ X, K is quasi-compact and U is open in X,
then there exists a quasi-compact open subspace Ω of X such that
K ⊆ Ω ⊆ U .

(ii) If X is spectral, then a subset of X is closed, with respect to the
inverse topology, if and only if it is saturated and quasi-compact.

Under this terminology, a spectral space is exactly a stably compact
space such that the quasi-compact open subspaces are a basis:

Lemma 2.2. Let X be a topological space. Then, the following con-
ditions are equivalent.

(i) X is a spectral space.

(ii) X is a stably compact space with a basis for the open sets given
by the quasi-compact open subspaces.

Note that the notion of stably compact space is strictly more general
than that of spectral space. For instance, it is easy to see that the
subspace [0, 1] of the real line is stably compact but not a spectral
space, for lack of quasi-compact open subspaces.

Finally, we observe that the isomorphism between the category of
Priestley spaces and spectral spaces (recalled above) naturally extends
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to an isomorphism between the categories of Nachbin spaces (and
continuous monotone maps) and of stably compact spaces (and proper
maps). See [19, Chapter VI].

3. The space of inverse-closed subsets of a spectral space.
Let X be a spectral space. The main object of study of this paper is
the space

X (X) := {Y ⊆ X | Y ̸= ∅, Y = Clinv(Y )},

that is, X (X) is the set of all nonempty subsets of X that are closed in
the inverse topology. From the point of view of ordered topological
spaces, if (X,≤) is a Priestley space, then X (X) is the space of
nonempty closed downsets of X.

If X is understood from the context, we shall simply write X instead
of X (X). If X = Spec(R) for some ring R, we write, for short, X (R)
instead of X (Spec(R)).

We define a Zariski topology on X (X) by taking, as subbasis of open
sets, the sets of the form

U(Ω) := {Y ∈ X | Y ⊆ Ω},

where Ω varies among the quasi-compact open subspaces of X. Note
that the previous subbasis is, in fact, a basis, since U(Ω) ∩ U(Ω′) =
U(Ω∩Ω′), and Ω∩Ω′ is a quasi-compact open subspace ofX for any pair
Ω,Ω′ of quasi-compact open subspaces of X. Moreover, ∅ ̸= Ω ∈ U(Ω),
since a quasi-compact open subset Ω of X is closed in the inverse
topology of X. Note also that, when X = Spec(R) for some ring
R, a generic basic open set of the Zariski topology on X (R) is of the
form

U(J) := U(D(J)) = {Y ∈ X (R) | Y ⊆ D(J)},

where J is any finitely generated ideal of R.

The construction X (X) can also be understood in terms of the tra-
ditional domain-theoretic definition of the Smyth powerdomain in the
setting of topological spaces. More precisely, let X be a topological
space. Following, for example, [30, Definition 5.2], the Smyth pow-
erdomain of X is the collection Q(X) of all nonempty quasi-compact
saturated subsets of X, equipped with the upper Vietoris topology, that
is, the topology on Q(X) whose basic open sets are sets of the form
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U+ := {Q ∈ Q(X) | Q ⊆ U},

for any open set U of X.

In view of Lemma 2.1 (i), if X is a spectral space, then Q(X) =
X (X), as sets. Now, we show that this equality holds at a topological
level.

Proposition 3.1. Let X be a spectral space. Then, the space X (X),
endowed with the Zariski topology, coincides with the space Q(X),
endowed with the upper Vietoris topology.

Proof. Clearly, it is sufficient to show that, if U is an open subset
of X, then U+ is open, with respect to the Zariski topology on X (X).
Take a set Q ∈ U+. Since Q is, in particular, quasi-compact, Lemma
2.1 (i) implies the existence of a quasi-compact open subspace Ω of X
such that Q ⊆ Ω ⊆ U . It follows immediately that U ∈ U(Ω) = Ω+ ⊆
U+. The proof is now complete. �

On the other hand, from the theory of stably compact spaces, the
following property holds.

Theorem 3.2 ([30, Theorem 5.9]). Let X be a stably compact space.
Then, the Smyth powerdomain Q(X) of X, equipped with the upper
Vietoris topology, is stably compact.

From Lemma 2.2, the fact that X (X) is a spectral space can be seen
in the frame of the theory of stably compact spaces. We begin with the
following, easy lemma, the proof of which is left to the reader.

Lemma 3.3. Let X be any spectral space. Then, X (X), endowed with
the Zariski topology, is a T0-space.

Theorem 3.4. Let X be a spectral space.

(i) The space X := X (X), endowed with the Zariski topology, i.e.,
with the upper Vietoris topology, is a spectral space.

(ii) Let Y1, Y2 ∈ X . Then, Y1 ⊆ Y2 if and only if Y1 ≤X Y2.
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(iii) The canonical map φ : X → X , defined by φ(x) := {x}gen,
for each x ∈ X, is a spectral embedding (and, in particular, an order-
preserving embedding between ordered sets, with the ordering induced
by the Zariski topologies).

(iv) X has a unique maximal point, i.e., X.

Proof.

(i) Let U(Ω) be a member of the canonical basis of X (X), where
Ω ̸= ∅ is a quasi-compact open subspace of X. If A is an open cover
of U(Ω), then there is a set A ∈ A such that Ω ∈ A. Hence, there is
a nonempty quasi-compact open set V of X such that Ω ∈ U(V ) ⊆ A.
Now, if U ∈ U(Ω), then U ⊆ Ω ⊆ V , and thus, U ∈ A; it follows that
the singleton {A} is an open subcover of U(Ω). Therefore, U(Ω) is
quasi-compact.

From Proposition 3.1 and Theorem 3.2, X (X) is stably compact;
by Lemma 2.2, and the previous reasoning, it follows that X (X) is a
spectral space.

Statements (ii), (iii) and (iv) are straightforward. �

Remark 3.5. As was done in the first version of the present paper,
it is also possible to prove the spectrality of X (X) by using, instead
of [30, Theorem 5.9], ultrafilter-theoretic techniques developed by ring
theorists for studying spectral spaces; we sketch how to do it. From
[10, Corollary 3.3], it suffices to show that, if U is an ultrafilter on X ,
then the set

XT (U ) := {Y ∈ X | (for each U(Ω), Y ∈ U(Ω) ⇐⇒ U(Ω) ∈ U )}

is nonempty. Set

F (U ) := {Ω | Ω ⊆ X quasi-compact open and U(Ω) ∈ U } .

Then, F (U ) does not contain the empty set and has the finite inter-
section property; therefore,

Y0 :=
∩

{Ω | Ω ∈ F (U )}

is a nonempty inverse-closed subset of X, i.e., Y0 ∈ X (X).

Furthermore, if Y0 ∈ U(Ω0) and Ω0 /∈ U , then, since U is closed by
finite intersection,
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C := {Ω ∩ (X \ Ω0) | Ω quasi-compact open in X and U(Ω) ∈ U }

is a collection of sets having the finite intersection property, and each
element of C is closed in the constructible topology. Therefore, its
intersection is nonempty, and any point in the intersection belongs to
Y0 \ Ω0, a contradiction. Thus, Ω0 ∈ U . Conversely, if Ω0 ∈ U , then

Ω0 ⊇
∩

{Ω | Ω ⊆ X quasi-compact open and U(Ω) ∈ U } = Y0,

i.e., Y0 ∈ U(Ω0). Hence, Y0 ∈ XT (U ), and X (X) is a spectral space.

Remark 3.6.

(a) Let X be a spectral space and, as above, let X inv denote the
set X, endowed with the inverse topology. Then, keeping in mind
Hochster’s duality (i.e., sketchy, (X inv)inv = X), the set X ′(X) :=
X (X inv) consists of all of the nonempty closed sets of X, with respect
to the given spectral topology. Keeping in mind that the quasi-compact
open subspaces of X inv are precisely the complements of the quasi-
compact open subspaces of X, it follows immediately, by definition,
that the Zariski topology of X ′(X) has as a basis of open sets the
collection of sets of the type:

U ′(Ω) := U(X \ Ω) = {C ∈ X ′(X) | C ∩ Ω = ∅},

for Ω varying among the quasi-compact open subspaces ofX inv. Dually,
the canonical map

φ′ : X inv −→ X ′(X),

defined by x 7→ {x}sp, is a spectral topological embedding. Now, let
X be the prime spectrum of a ring R, and let Rd(R) be the set of
all proper radical ideals of R, endowed with the so called hull-kernel
topology, that is, the topology whose subbasic open sets are those of
the form

D(x1, x2, . . ., xn) := {H ∈ Rd(R) | (x1, x2, . . ., xn)R * H}.

In [12], it is proven that Rd(R) is a spectral space that naturally ex-
tends the space Spec(R), endowed with the Zariski topology. Moreover,
it is proven that there is a canonical homeomorphism

λ : X ′(R) := X ′(Spec(R)) −→ Rd(R)inv,
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mapping a nonempty closed set C ⊆ Spec(R) to the radical ideal
λ(C) :=

∩
{P | P ∈ C}.

(b) Recall that, for any topological space X, the co-compact topol-
ogy on X is the topology having as a base for the open sets the comple-
ments of quasi-compact saturated subsets of X [19, Definition O-5.10].
The topological space X endowed with this topology, denoted Xd, is
called the de Groot dual of X. It is known that, if X is a stably
compact space, Xd is also stably compact and (Xd)d = X [30, Propo-
sition 3.6]. For a spectral space X, X inv coincides with the de Groot
dual Xd (Lemma 2.1 (ii)).

We set forth in the following remark some observations concerning
Theorem 3.4.

Remark 3.7. The notation of Theorem 3.4 is preserved.

(a) The subspace φ(X) is dense in X (X). In fact, let U be a
nonempty open subset of X (X), and take an element C ∈ U and a
quasi-compact open subspace Ω of X such that C ∈ U(Ω) ⊆ U . If
c ∈ C, then {c}gen ⊆ C ⊆ Ω, and thus, {c}gen ∈ U(Ω) ⊆ U . This
proves that φ(X) ∩ Ω ̸= ∅.

(b) Following [21, Definition (2.6.3)], recall that a subset X0 of a
topological space X is said to be very dense in X if, for any open sets
U, V ⊆ X, the equality U ∩X0 = V ∩X0 implies U = V .

The subspace φ(X) is not very dense in X (X). Indeed, let V1 and V2
be two discrete rank-one valuation domains having the same quotient
field. Then, the prime spectrum X of the ring D := V1 ∩ V2 consists
exactly of (0) and of the two maximal ideals M1 and M2 which are the
(incomparable) contractions in D of the maximal ideals of V1 and V2.
Then, in the present situation,

X (X) = {{(0)}, {(0),M1}, {(0),M2}, X};
φ(X) = {{(0)}, {(0),M1}, {(0),M2}}.

Since {X} is closed in X (X), it follows that φ(X) is open in X (X).
From this fact, we immediately deduce that φ(X) is dense but not very
dense in X (X).

(c) Let X be a spectral space, and let

X̂ (X) := X̂ := {Y ⊆ X | Y = Clinv(Y )} = X (X) ∪ {∅}.
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Note that the techniques used in the proof of Theorem 3.4 (i) also

allows us to show that X̂ (endowed with an obvious extension of the

topology of X ) is a spectral space. Since U(∅) = {∅} is open in X̂ ,

then X is a closed (spectral) subspace of X̂ .

Before stating the next result, we observe that X ∈ φ(X) if and only
if X has a unique closed point (in the given spectral topology).

Proposition 3.8. Let X be a spectral space, and let φ : X → X (X) be
the topological embedding defined in Theorem 3.4 (iii). Then, φ(X) =
X (X) if and only if (X,≤) is linearly ordered.

Proof. Set, as usual, X := X (X). In order to avoid the trivial
case, we can assume that X is not a singleton. First, suppose that
(X,≤) is linearly ordered, and let Y ∈ X . Consider the collection
C := {Cl({y}) ∩ Y | y ∈ Y } of closed sets of Y (with respect to the
subspace topology induced by the given topology of X). Since (X,≤)
is linearly ordered, C has the finite intersection property. On the other
hand, Y is a quasi-compact subspace of X, since, in particular, it is
closed in the constructible topology of X. Thus, it is quasi-compact in
the constructible topology, and, a fortiori, in the given topology of X.
Therefore, there is a point y0 ∈ ∩{C | C ∈ C }. Now, it is easy to infer
that Y = {y0}gen.

Conversely, assume that φ(X) = X , and take two points x, y ∈ X.
Clearly, the set Z := {x, y}gen = {x}gen∪{y}gen is nonempty and closed
with respect to the inverse topology on X, i.e., Z ∈ X . By assumption,
there is a point z ∈ X such that φ(z) = {z}gen = {x}gen ∪ {y}gen. The
inclusion ⊇ implies x, y ≤ z. On the other hand, the inclusion ⊆ implies
that z ≤ x or z ≤ y. From these facts, it easily follows that (X,≤) is
linearly ordered. �

Next, we compare the dimensions of X and X (X) with the cardi-
nality |X| of the spectral space X.

Proposition 3.9. Let X be a spectral space. Then, dim(X (X)) =
|X|−1 ≥ dim(X). Moreover, in the finite-dimensional case, dim(X (X))
= dim(X) if and only if X is linearly ordered.

Proof. Suppose first that X is finite. If Y0 <X (X) Y1 <X (X)

· · · <X (X) Yn is a chain of points in X (X), then Y0 ( Y1 ( · · · ( Yn is
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a chain of nonempty subsets of X. In particular, |Yk−1| < |Yk| for all
k, 1 ≤ k ≤ n. Therefore, n+ 1 ≤ |X| and dim(X (X)) ≤ |X| − 1.

On the other hand, we can write X as a sequence x1, x2, . . . , xt
(where t := |X|) such that xi is not bigger than xj for every i < j
(simply, take x1 as a minimal element of X and xi as a minimal
element of X \ {x1, . . . , xi−1} for i ≥ 2). In particular, each Xi :=
{x1, x2, . . . , xi} is inverse-closed in X, so that X1 <X (X) X2 <X (X)

· · · <X (X) Xt is a chain of points in X (X) of length t − 1. Therefore,
dim(X (X)) ≥ |X| − 1 and, by the previous paragraph, we conclude
that dim(X (X)) = |X| − 1.

Suppose now that X is infinite. Take a positive integer t, and let
X ′ be a subset of X of cardinality t. As before, we can enumerate
the elements x1, x2, . . . , xt of X ′ in such a way that xi is not bigger
than xj for every i < j. Then, for each i ∈ {1, 2, . . . , t}, the set
Ci := {x1, x2, . . . , xi}gen is closed in the inverse topology of X, i.e.,
Ci ∈ X (X). Clearly, Ci ( Ci+1 for each i = 1, 2, . . . , t − 1, since
xi+1 ∈ Ci+1 \ Ci. This proves that, for any positive integer t, there is
a chain of length t− 1 in X (X). Thus, dim(X (X)) = ∞.

If X is finite, dim(X) = |X|−1 if, and only if, in X, there is a chain
of the type x0 < x1 < · · ·x|X|−1. This means that all elements of X
are in such a chain, i.e., X is linearly ordered. �

Remark 3.10. While the inequality |X| − 1 ≥ dim(X) is sharp by
Proposition 3.9, the more incomparable elements the set X contains,
the more dim(X) is small with respect to |X|. For example, if X is
homeomorphic to the prime spectrum of the direct product of n + 1
fields, n ≥ 1, then dim(X) = 0 while |X| − 1 = n.

If dim(X) is not finite, then, clearly, dim(X (X)) = dim(X); how-
ever, we can easily choose X not to be linearly ordered.

4. Functorial properties. A map ψ : X1 → X2 of spectral spaces
is called spectral if ψ−1(Ω) is a quasi-compact open subset of X1 for
every quasi-compact open subset Ω of X2.

Proposition 4.1. Let ψ : X1 → X2 be a spectral map of spectral
spaces, and denote by φ1 : X1 → X (X1) and φ2 : X2 → X (X2) the
topological embeddings defined in Theorem 3.4 (iii). Then, there is a
spectral map X (ψ) : X (X1) → X (X2) such that X (ψ) ◦ φ1 = φ2 ◦ ψ.
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Proof. First, note that each C ∈ X (X1) is quasi-compact in X1 and,

thus, ψ(C) is quasi-compact in X2. Thus, Clinv(ψ(C)) = ψ(C)gen =
∪{{x2}gen | x2 ∈ ψ(C)} = sup{{x2}gen | x2 ∈ ψ(C)} [11, Remark 2.2,
Proposition 2.6]. For every C ∈ X (X1), define X (ψ)(C) := ψ(C)gen.
In particular, we have thatX (ψ)({x}gen) = {ψ(x)}gen, for each x ∈ X1.

Let Ω be a quasi-compact open subset of X2. We claim that

(X (ψ))−1(U(Ω)) = U(ψ−1(Ω)),

which is quasi-compact open in X (X2), since ψ is spectral (and,
thus, ψ−1(Ω) is quasi-compact open in X1). As a matter of fact, let
C ∈ (X (ψ))−1(U(Ω)), i.e., X (ψ)(C) ⊆ Ω; therefore, ψ−1(X (ψ)(C)) ⊆
ψ−1(Ω), and thus, clearly, C ⊆ ψ−1(X (ψ)(C)). Conversely, let C ⊆
ψ−1(Ω). Then, X (ψ)(C) ≤ X (ψ)(ψ−1(Ω)). Moreover, we have that

X (ψ)(ψ−1(Ω)) = (ψ(ψ−1(Ω)))gen ⊆ Ωgen = Ω.

Therefore, X (ψ)(C) ∈ U(Ω). We conclude that X (ψ) is a spectral
map. �

It is well known that, for compact Hausdorff spaces, and hence for
Stone spaces, the upper Vietoris construction is functorial. Similarly,
we now show that the assignment X defined by the pair (X 7→
X (X), ψ 7→ X (ψ)) can be interpreted as a functor from the category
of spectral spaces into itself.

Proposition 4.2. We preserve the notation of Proposition 4.1.

(i) If X1
ψ1−−→ X2

ψ2−−→ X3 is a chain of spectral maps, then the
spectral map X (ψ2 ◦ ψ1) : X (X1) → X (X3), induced by ψ2 ◦ ψ1, is
equal to the composition X (ψ2)◦X (ψ1). It follows that the assignment
(X 7→ X (X), ψ 7→ X (ψ)) defines a functor from the category of spectral
spaces into itself.

(ii) Let Ψ : X (X1) → X (X2) be a spectral map. Assume that there
exists a spectral map ψ : X1 → X2 such that Ψ ◦ φ1 = φ2 ◦ ψ. Then,
X (ψ) ≤ Ψ, i.e., X (ψ)(C) ⊆ Ψ(C) for each C ∈ X (X1).

Proof.

(i) The proof is straightforward.
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(ii) Let C ∈ X (X1). For every c ∈ C, we have

C ⊇ φ1(c) = {c}gen

(i.e., C ≥ φ1(c) with respect to the order of X (X1) induced by the
Zariski topology). Since Ψ is continuous, it is order-preserving, and
thus, Ψ(C) ≥ Ψ(φ1(c)) = φ2(ψ(c)) = {ψ(c)}gen. Hence, ψ(c) ∈ Ψ(C),
and therefore, ψ(C) ⊆ Ψ(C). Since Ψ(C) is closed in the inverse

topology on X2, then Clinv(ψ(C)) ⊆ Ψ(C). On the other hand,

by definition, X (ψ)(C) = ψ(C)gen = Clinv(ψ(C)) ≤ Ψ(C); hence,
X (ψ) ≤ Ψ. �

Remark 4.3. The previous result is very similar to the statement
concerning the functoriality of the Smyth powerdomain construction
Q(X), proven in [19, page 371, Proposition IV.8.19], when X is a
directed-complete partial order (that is, a partially ordered set where
each directed subset has a supremum) endowed with the topology gen-
erated by the upper sets (called the Scott topology). However, despite
the similarity of the construction, the Scott topology does not coincide
with the given spectral topology, but, in general, it is stronger than
the inverse topology [26, Proposition 2.9]. Nevertheless, by order-
theoretic reasons, the functoriality of the Smyth powerdomain construc-
tion Q(X) given in [19] is closer to functoriality of the construction
X ′(X) := X (X inv) [12], recalled briefly in Remark 3.6 (a).

The next example shows that it is possible to have Ψ ̸= X (ψ), i.e.,
it is possible to have more than one “extension” of ψ : X1 → X2

between the spaces X (X1) and X (X2). On the other hand, we will
show in Proposition 4.5 that this situation does not occur when ψ is a
homeomorphism.

Example 4.4. Let X1 = {a1, a2, b} and X2 := {c1, c2}. Suppose that
a1 and a2 are incomparable but both are smaller than b, and also sup-
pose that c1 < c2. It is straightforward that the order structures of X1

and X2 are compatible with the order of suitable spectral topologies on
X1 and X2. When X1 and X2 are equipped with these spectral topolo-
gies, it is easy to see that X (X1) = {{a1}, {a2}, {a1, a2}, {b, a1, a2}},
while X (X2) = {{c1}, {c1, c2}}. Let

ψ : X1 −→ X2
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be the spectral map defined by ψ(a1) := ψ(a2) := c1 and ψ(b) := c2.
Let

Ψ : X (X1) −→ X (X2)

be the map defined by Ψ({a1}) := Ψ({a2}) := {c1} and Ψ({b, a1, a2}) :=
Ψ({a1, a2}) := {c1, c2}. Clearly, Ψ is a spectral map of spectral spaces,
since

Ψ−1(U({c1})) = {{a1}, {a2}} = U({a1}) ∪ U({a2}),

and Ψ−1(U({c1, c2})) = Ψ−1(X2) = X1. Moreover, it is obvious
that Ψ “extends” ψ. However, the “natural extension” X (ψ) of ψ,
defined in Proposition 4.1, is such that X (ψ)({a1, a2}) = {c1}, and
thus, Ψ ̸= X (ψ). This situation is illustrated in Figure 1.

Figure 1. Illustration of Example 4.4. Black circles represent elements of
φ1(X1) and φ2(X2).

Proposition 4.5. Let X1 and X2 be spectral spaces, and let φ1 : X1 →
X (X1) and φ2 : X2 → X (X2) be the canonical embeddings (as in
Theorem 3.4 (iii)).

(i) If ψ : X1 → X2 is a topological embedding (respectively, a
homeomorphism), then X (ψ) : X (X1) → X (X2) (as defined in Propo-
sition 4.1) is a topological embedding (respectively, homeomorphism).

(ii) If Ψ : X (X1) → X (X2) is a homeomorphism, then there exists a
unique homeomorphism ψ : X1 → X2 such that Ψ = X (ψ) (and thus,
Ψ ◦ φ1 = φ2 ◦ ψ).
(iii) In particular, X1 and X2 are homeomorphic if and only if X (X1)

and X (X2) are homeomorphic.
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Proof.

(i) By Proposition 4.1, X (ψ) ◦ φ1 = φ2 ◦ ψ. Since φ1 and φ2

are topological embeddings, if ψ is also an embedding, so is φ2 ◦ ψ.
Thus, so is X (ψ) ◦ φ1; hence, X (ψ) is also an embedding. If ψ is a
homemorphism, and C ∈ X (X2), then C = X (ψ)(ψ−1(C)) so that
X (ψ) is surjective and, thus, a homeomorphism.

(ii) We begin with showing the following.

Claim 4.5.1. Let X be a spectral space, and let φ : X → X (X) be the
canonical embedding. Then, φ(X) is precisely the set of all irreducible
closed subsets of X, endowed with the inverse topology.

As a matter of fact, it is well known that the space X inv, i.e., the
set X endowed with the inverse topology, is itself a spectral space [28,
Proposition 8], and thus, any irreducible closed subspace C of X inv has

a unique generic point, say x, that is, C = Clinv({x}) = {x}gen = φ(x).
On the other hand, it is trivial that φ(X) is contained in the set of all
irreducible closed subsets of X inv.

Claim 4.5.2. Assume that Ψ : X (X1) → X (X2) is a homeomorphism.
Let C be an irreducible and closed subspace of X inv

1 . Then, Ψ(C) is an
irreducible (and closed) subset of X inv

2 .

Let D′, D′′ ∈ X (X2) be such that D′ ∪ D′′ = Ψ(C). Since Ψ
is a homeomorphism and also is an isomorphism of ordered sets, we
see that C = Ψ−1(D′) ∪ Ψ−1(D′′). Since C is irreducible, we have
either C = Ψ−1(D′) or C = Ψ−1(D′′), and thus, either Ψ(C) = D′ or
Ψ(C) = D′′.

Now, fix a point x ∈ X1. By Claim 4.5.2, the set Ψ({x}gen) is
irreducible in X2; thus, by Claim 4.5.1, there is a unique point xΨ ∈ X2

such that {xΨ}gen = Ψ({x}gen). Thus, Ψ naturally induces a map
ψ : X1 −→ X2 by setting ψ(x) := xΨ for any x ∈ X. Clearly,
φ2 ◦ ψ = Ψ ◦ φ1. Next, we want to prove that ψ : X1 → X2 is a
homeomorphism.

Claim 4.5.3. Assume that Ψ : X (X1) → X (X2) is a homeomorphism.
Let Ω be a quasi-compact open subspace of X1, in particular, Ω ∈
X (X1). Then, Ψ(Ω) is a quasi-compact open subspace of X2.
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Note that the quasi-compact open subspace U(Ω) of X (X1) coin-
cides with {Ω}gen (where the generizations are taken in X (X1)). Since
Ψ is a homeomorphism, then Ψ(U(Ω)) = Ψ({Ω}gen) = {Ψ(Ω)}gen is
a quasi-compact open set of X (X2) which is irreducible as an inverse-
closed subspace of X (X2). In order to show that Ψ(Ω) is a quasi-
compact open subspace of X2, we observe that

Ψ({Ω}gen) = Ψ(U(Ω)) =
∪

{U(Vi) | 1 ≤ i ≤ n}

=
∪

{{Vi}gen | 1 ≤ i ≤ n},

for a finite family of quasi-compact open subspaces {Vi | 1 ≤ i ≤ n} of
X2. Therefore, Ψ({Ω}gen) = {Vĩ}gen for some ĩ and so Ψ(Ω) = Vĩ.

In order to prove that ψ : X1 → X2 is a homeomorphism, we start
by showing that ψ is continuous. Let V ⊆ X2 be a quasi-compact
open. We claim that ψ−1(V ) = Ψ−1(V ), where Ψ−1(V ) ∈ X (X1) is
a quasi-compact open subspace of X1 since Ψ is a homeomorphism.
Moreover,

U(Ψ−1(V )) = {Ψ−1(V )}gen = Ψ−1({(V )}gen) = Ψ−1(U(V )).

Now, take a point x ∈ X1. Then,

ψ(x) ∈ V ⇐⇒ {xψ}gen ⊆ V ⇐⇒ Ψ({x}gen) ∈ U(V )

⇐⇒ {x}gen ∈ Ψ−1(U(V )) ⇐⇒ x ∈ Ψ−1(V ),

i.e., ψ−1(V ) = Ψ−1(V ).

Now, we show that ψ : X1 → X2 is open. Let Ω be a quasi-compact
open subspace of X1. From Claim 4.5.3, Ψ(Ω) is a quasi-compact
open subspace of X2 and, obviously, Ω = Ψ−1(Ψ(Ω)). Moreover, by
the previous observation, Ψ−1(Ψ(Ω)) = ψ−1(Ψ(Ω)), and, since ψ is
bijective, ψ(Ω) = Ψ(Ω).

Finally, we show that X (ψ) = Ψ. Take a set C ∈ X (X1). Since
ψ is a homeomorphism, it is also a homeomorphism between X inv

1 and
X inv

2 , and, in particular, it is a closed map (with respect to the inverse
topologies). Therefore, it suffices to prove that X (ψ)(C) = ψ(C)gen =
ψ(C) coincides with Ψ(C). Let {Ci | i ∈ I} be the collection of the
irreducible (and closed) components of C in X inv

1 . From Claim 4.5.1,
for any i ∈ I, let xi ∈ X1 be the unique generic point of Ci in X inv

1 .
Keeping in mind that both ψ and Ψ are also isomorphisms of partially
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ordered sets (orderings induced by the topologies), we have

Ψ(C) = Ψ(sup{Ci | i ∈ I}) = sup{Ψ(Ci) | i ∈ I}
= sup{Ψ({xi}gen) | i ∈ I} = sup{{ψ(xi)}gen | i ∈ I}

=
∪

{{ψ(xi)}gen | i ∈ I} = ψ
(∪

{{xi}gen | i ∈ I}
)

= ψ
(∪

{Ci | i ∈ I}
)
= ψ(C).

The proof of (ii) is now complete. Part (iii) is an immediate conse-
quence of statements (i) and (ii). �

It is not difficult to see that φ(= φX) : X → X (X) does not provide
a unique way for embedding a spectral space X into a larger, “natural”
spectral space. However, φ satisfies a universal-like property.

We begin with a lemma.

Lemma 4.6. Let Z be a spectral space, and let Y be a closed set in the
constructible topology of Z; in particular, Y is a spectral space. Assume
that the map

ΣY,Z : X (Y ) −→ Z, C 7−→ supZ(C)

for each C ∈ X (Y ) is well defined. Then, the following statements
hold.

(i) If each point of Z has a local basis consisting of sets of the form
{ω}gen for suitable elements ω ∈ Z, then ΣY,Z is continuous,
spectral and open onto its image.

(ii) If Y = Z, then the converse holds.

Proof.

(i) For the sake of simplicity, set Σ := ΣY,Z . Let x ∈ Z and Vx
be a basic open set of Z containing x; then, we claim that Σ−1(Vx) =
U(Vx∩Y ) and that Σ(U(Vx∩Y )) = Vx∩Σ(X (Y )). (Note that, since Y
is closed, with respect to the constructible topology, Vx ∩ Y is open in
Y and quasi-compact and thus determines a basic open set of X (Y ).)
Indeed, take a point K ∈ Σ−1(Vx). Then, k := supZ(K) ∈ Vx, and
thus, K ⊆ {k}gen ⊆ Vx. Since, clearly, K ⊆ Y , we have K ∈ U(Vx∩Y ).
Conversely, take a point K ∈ U(Vx ∩ Y ), in particular, K ⊆ Vx, and
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thus, we have k := supZ(K) ≤ x, or, equivalently, k ∈ Vx. Hence,
K ∈ Σ−1(Vx). This reasoning also shows the second equality.

The hypotheses on Z now imply that Σ is continuous, spectral and
open onto its image.

(ii) Let now Σ := ΣZ,Z . Take a point z ∈ Z and an open
neighborhood U of Z. Since z = Σ({z}gen), and Σ is continuous, there
is a quasi-compact open subspace Ω of Z such that {z}gen ∈ U(Ω), i.e.,
z ∈ Ω, and Σ(U(Ω)) ⊆ U . Since Ω ∈ U(Ω), the last statement implies
that ω := supZ(Ω) ∈ U . It follows that z ∈ Ω ⊆ {ω}gen ⊆ U . �

Remark 4.7. Let Z be a spectral space, and let φZ : Z → X (Z)
be the spectral embedding introduced in Theorem 3.4 (iii). Under the
assumptions and the equivalent conditions of Lemma 4.6, the map ΣZ
(= ΣZ,Z) gives rise to a topological retraction since ΣZ ◦ φZ is the
identity map on Z.

We say that a map f : X → Y of spectral spaces is sup-preserving if,
whenever F is a finite subset of X and there exists an supX(F ), then
there exist supY (f(F )) and f(supX(F )) = supY (f(F )).

Theorem 4.8. Let X be a spectral space, and let φ (= φX) : X →
X (X) be the canonical spectral embedding (Theorem 3.4 (iii)). Let Z
be a spectral space, and let λ : X → Z be a spectral map. Suppose that
the map Σ (= Σλ(X),Z) : X (λ(X)) → Z, introduced in Lemma 4.6, is
(well defined and) spectral.

(i) There is a sup-preserving spectral map λ♯ : X (X) → Z, defined

by setting λ♯(C) := supZ(λ(C)
gen), for each C ∈ X (X), such that

λ♯ ◦ φ = λ.

(ii) If Λ : X (X) → Z is a spectral map such that Λ ◦ φ = λ, then

λ♯(K) ≤ Λ(K) for every K ∈ X (X) (where ≤ is the order induced on
Z by the topology).

(iii) If, moreover, Λ is sup-preserving, then Λ = λ♯.

Proof.

(i) Since λ is a spectral map, it is also continuous when X and Z
are both endowed with the constructible topology. In particular, since
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the constructible topology is both quasi-compact and Hausdorff, λ is
a closed map when considered in the constructible topology, and thus,
λ(X) is a closed set in the constructible topology of Z; therefore, λ(X)
is a spectral space (so that X (λ(X)) is well defined) and the inclusion
j : λ(X) ↩→ Z is a spectral map. In particular, it is possible to define
the map Σ (= Σλ(X),Z).

Let λ♯ : X (X) → Z be the map defined above.

Keeping in mind [35, Propositions 2.1, 2.2] and the fact that any
point of a quasi-compact T0 space is less than or equal to a maximal
point of the space, we easily infer that λ♯ = Σ ◦ X (λ), and thus,

by assumption, λ♯ is spectral. Moreover, both Σ and X (λ) are sup-

preserving (which is easily verified), and thus, λ♯ is sup-preserving; by

definition, it follows that λ♯ ◦ φ = λ.

(ii) Suppose now that Λ : X (X) → Z is such that Λ ◦φ = λ, and fix
K ∈ X (X).

For each x ∈ K, we have {x}gen ⊆ K, and since, in particular, Λ is
continuous, it follows that

λ(x) = Λ(φ(x)) = Λ({x}gen) ≤ Λ(K).

By definition, λ♯(K) is equal to the supremum in Z of the set λ(K)gen;
moreover, it is equal to the supremum of λ(K) since, if y ∈ λ(K)gen,
then y ≤ λ(x) for some x ∈ K. By the previous calculation, λ(x) ≤
Λ(K) for every x ∈ K; therefore, λ♯(K) ≤ Λ(K), as claimed.

(iii) Suppose now that the spectral map Λ is sup-preserving, and, as

above, let K ∈ X (X). Take any open neighborhood V of z := λ♯(K)
in Z. Then, by definition as well as by (ii), in order to prove that

λ♯(K) = Λ(K), it suffices to show that Λ(K) ∈ V . Since Σ is con-
tinuous, there exist an element v ∈ V and a quasi-compact open
subspace W of Z such that z ∈ W ⊆ {v}gen ⊆ V , in view of Lemma
4.6. For any x ∈ K, we have

Λ({x}gen) = Λ(φ(x)) = λ(x) ≤ sup Z(λ(K)gen) = z ∈W.

Since W is (in particular) closed under generalizations, it follows that
Λ({x}gen) ∈ W . Since Λ is continuous, there is a quasi-compact
open subspace Ax of Z such that {x}gen ∈ U(Ax), i.e., x ∈ Ax, and
Λ(U(Ax)) ⊆ W . Thus, ∪x∈KAx ⊇ K and, since K is (in particular)
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quasi-compact, there are finitely many elements x1, x2, . . ., xn ∈ K such
that K ⊆ ∪ni=1Axi

. Note that ∪ni=1Axi
∈ X (Z) since any Axi

∈ X (Z)
is open and quasi-compact. Keeping in mind that Λ is continuous (and
thus, an order-preserving map), we have

Λ(K) ≤ Λ

( n∪
i=1

Axi

)
= Λ(supX (Z)({Axi | 1 ≤ i ≤ n}))

= sup Z({Λ(Axi) | 1 ≤ i ≤ n}).

Since Λ(U(Axi)) ∈ W ⊆ {v}gen, for 1 ≤ i ≤ n, it follows that
supZ({Λ(Axi) | 1 ≤ i ≤ n}) ∈ {v}gen ⊆ V , and a fortiori, Λ(K) ∈ V .
The proof is now complete. �
Remark 4.9. Theorem 4.11 (iii) provides a slight generalization of [30,
Proposition 5.6]. Indeed, under the equivalence between the construc-
tion X (X) (with the Zariski topology) and the Smyth powerdomain
Q(X) (with the upper Vietoris topology) established in Proposition
3.1, a sup-preserving map becomes a homomorphism of semilattices,
and the map Σ coincides with the map ∧ considered in [30]. The dif-
ference between Theorem 4.8 and [30, Proposition 5.6] is that we do
not require the map Σ to exist on the whole of X (Z), but only on
X (λ(X)).

Proposition 4.10. Preserve the notation and hypotheses of Theorem
4.8, and suppose that the map Σ (= Σλ(X),Z) : X (λ(X)) → Z is injec-
tive. Then, the following hold.

(i) λ♯ is a spectral embedding.

(ii) If, furthermore, z = supZ{λ(x) | x ∈ λ−1({z}gen)} for every
z ∈ Z, and Λ : X (X) → Z is a spectral embedding such that Λ◦φ = λ,

then Λ = λ♯.
Proof.

(i) The proof of Lemma 4.6 shows that Σ is a spectral embedding
whenever it is injective. Since φ is also a spectral embedding, so is
Σ ◦ φ, i.e., λ♯.
(ii) In the present situation, we claim that Λ is sup-preserving. Let

C1, C2 ∈ X (X), and consider Λ(C1 ∪ C2) (note that the order on
X (X) is the set-theoretic inclusion; thus, the union is exactly their
supremum). Clearly, Λ(C1∪C2) is bigger than both Λ(C1) and Λ(C2),
and thus, also of their supremum.
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Let x be such that λ(x) ≤ Λ(C1 ∪ C2), or equivalently, such that
x ∈ λ−1(Λ(C1 ∪C2)). Since λ(x) = Λ({x}gen), the previous inequality
can be rewritten as Λ({x}gen) ≤ Λ(C1 ∪ C2). On the other hand, Λ
is an embedding, i.e., it is a homeomorphism onto its image, and thus,
{x}gen ≤ C1 ∪ C2 in X (X). Hence, x ∈ C1 ∪ C2, which means x ∈ C1

or x ∈ C2. Therefore,

Λ({x}gen) ≤ sup{Λ(C1),Λ(C2)}.

By hypothesis, we have

Λ(C1 ∪ C2) = sup{Λ({x}gen) | x ∈ X such that λ(x) ≤ Λ(C1 ∪ C2)}.

Therefore, by the previous inequality, we deduce that Λ(C1 ∪ C2) ≤
sup{Λ(C1), Λ(C2)}. As observed above, the opposite inequality also
holds; thus, we have the equality, and so, Λ is sup-preserving.

By Theorem 4.8 (iii), we conclude that Λ = λ♯. �

Remark 4.11. In general, it is possible for a spectral map λ : X →
Z to have more than one extension Λ : X (X) → Z, even under
the hypothesis z = supZ{λ(x) | x ∈ λ−1({z}gen)} (the previous
proposition merely guarantees the unicity of an extension Λ, which
is an embedding).

For example, suppose that Z = X (X), and let λ = φ be the
canonical inclusion of X in X (X). Clearly, if z ∈ Z = X (X), then
A := λ−1({z}gen) is composed of the elements of X that belong to
{z}gen, and thus, the supremum of the set {λ(x) | x ∈ A} is exactly z.
Moreover, it is clear that the homeomorphism

λ♯ : X (X) −→ Z = X (X),

whose existence is guaranteed by Theorem 4.8, is merely the identity
idX (X).

On the other hand, suppose that X = {a, b, c} is composed of three
elements and endowed with the discrete topology, that is, suppose that
every subset of X is open. Then, X is a spectral space; denote by
Λ : X (X) → X (X) the function defined by

Λ(C) :=

{
C if C ̸= {a, b},
X if C = {a, b}.
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Then, Λ is order-preserving (in the order induced by the Zariski
topology), and since X (X) is finite, this implies that Λ is continuous
and spectral. Moreover, if C is in φ(X), i.e., if C is a singleton, then
Λ(C) = C. Therefore, Λ ◦ φ = φ = idX (X) ◦ φ.

5. Applications. In this section, we apply the topological results
of the previous sections to various algebraic settings. In particular,
in subsection 5.1, we show how the construction X relates a spectral
space associated to a family of modules with the space of all possible
intersections of the family, and we prove that the space of all overrings
of an integral domain D that are integrally closed is a spectral space
and it is a topological quotient of the spectral space obtained using the
construction X from the Riemann-Zariski space Zar(D). In subsection
5.2, we use X to represent some distinguished spaces of semistar
operations and provide a different general proof of some results shown
in [13].

5.1. Spaces of modules and overrings. Let R be a ring, let M
be an R-module, and let SModR(M) be the set of R-submodules of
M . The Zariski topology on SModR(M) is the topology having, as a
subbasis of open sets, the sets in the form

Bf := {N ∈ SModR(M) | f ∈ N},

where f runs in M ; equivalently, the sets in the form

BF := {N ∈ SModR(M) | F ⊆ N},

where F runs among the finite subsets of M . Under this topology,
SModR(M) is a spectral space [12, Proposition 2.1], and the order
induced by the topology is exactly the inverse of the containment order.
In particular, the supermum of a subset X ⊆ SModR(M) is exactly
the intersection of the elements of X . Therefore, Lemma 4.6 translates
immediately to the following.

Proposition 5.1. Let X ⊆ SModR(M) be a subset that is closed in
the constructible topology, in particular, X is a spectral space. Then,
the map

Σ: X (X ) −→ SModR(M)

∆ 7−→
∩

{N | N ∈ ∆}

is well defined, continuous, spectral and open onto its image.
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Now, let D be an integral domain. An overring of D is an integral
domain contained between D and its quotient field K; the collection
of all overrings of D is denoted Overr(D). Under the Zariski topology,
this space is closed in the constructible topology of SModD(K) (this
essentially follows from [36]); in particular, Overr(D) is a spectral
space, and a subbase for the open sets of Overr(D) is formed by the
sets in the form

OF := {B ∈ Overr(D) | B ⊇ F},

where F runs among the finite subsets of K.

A distinguished subset of Overr(D) is the Riemann-Zariski space of
D, i.e., the space Zar(D) of all of the valuation overrings of D. Then,
Zar(D) is a closed set in the constructible topology of Overr(D) (and
thus, of SModD(K)), and in particular, it is a spectral space.

Proposition 5.2 (ii) can also be directly proved using the same
methods as those used to show that Overr(D) is a spectral space, see
[10, Propositions 3.5, 3.6].

Proposition 5.2. Let D be an integral domain, and let X :=
Overric(D) ⊆ Overr(D) be the space of overrings of D that are in-
tegrally closed.

(i) X is a topological quotient of X (Zar(D)).

(ii) X is closed in the constructible topology of Overr(D), in partic-
ular, it is a spectral space.

(iii) If D is a Prüfer domain, then Overr(D) is homeomorphic to
X (Zar(D)).

Proof.

(i) Consider the map

λ : X (Zar(D)) −→ SModD(K)

Y 7−→
∩

{V | V ∈ Y }.

From Proposition 5.1, λ is well defined, continuous, spectral and open
onto its image. Moreover, the image of λ is exactly X : indeed, any
intersection of valuation domains is an integrally closed ring, while, if
T ∈ X , then T = λ(Zar(T )), and Zar(T ) is an inverse-closed subset
of Overr(D) (since it is quasi-compact and closed under generizations).
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Therefore, X is a topological quotient of X (Zar(D)) since the map
λ : X (Zar(D)) → X is open, continuous and surjective.

(ii) X is closed in the constructible topology of SModD(K) and of
Overr(D) since it is the image of the spectral map λ.

(iii) Assume that D is a Prüfer domain. We claim that λ establishes
a homeomorphism between X (Zar(D)) and Overr(D). Indeed, since D
is Prüfer, every overring of D is integrally closed [20, Theorem 26.2],
and thus, the image of λ is exactly Overr(D).

Now, let C1, C2 ∈ X (Zar(D)) be such that R := ∩{V | V ∈ C1} =
∩{V | V ∈ C2}. Since R is itself a Prüfer domain (as an overring of a
Prüfer domain), it is vacant, and thus, by [11, Corollary 4.16], C1 and
C2 are dense subspaces of Zar(R) with respect to the inverse topology
of Zar(R). Keeping in mind that C1, C2 ∈ X (Zar(D)), it immediately
follows that C1 = C2 = Zar(R). This proves that λ is injective. There-
fore, in the present situation, λ : X (Zar(D)) → Overr(D) is bijective,
continuous and open, and, thus, it is a homeomorphism. �

5.2. Spaces of semistar operations. Let D be an integral domain,
and let K be the quotient field of D. Let F (D) be the set of D-
submodules of K. A semistar operation on D is a map

⋆ : F (D) −→ F (D), I 7−→ I⋆,

such that, for every I, J ∈ F (D), we have

(⋆1) I ⊆ I⋆;

(⋆2) if I ⊆ J , then I⋆ ⊆ J⋆;

(⋆3) (I
⋆)⋆ = I⋆;

(⋆4) xI
⋆ = (xI)⋆ for every x ∈ K.

For the basic properties of star, semistar and closure operations, the
reader is referred to [1, 2, 8, 9, 20, 22, 23, 32].

In [15], a natural topology, called the Zariski topology, on the space
SStar(D) of all the semistar operations on D, was defined by declaring
as a subbasis of open sets the collection of all of the sets of the type

UF := {⋆ ∈ SStar(D) | 1 ∈ F ⋆},

where F runs among nonzero D-submodules of K.
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A semistar operation ⋆ is stable if (I ∩ J)⋆ = I⋆ ∩ J⋆ for all nonzero
D-submodules I and J of K, and is of finite type if

I⋆ =
∪

{J⋆ | J ⊆ I, J finitely generated over D}

for every nonzero D-submodule I of K. By [15, Corollary 4.4], a
semistar operation ⋆ is simultaneously stable and of finite type if and
only if there is a quasi-compact subset Y ⊆ Spec(D) such that ⋆ = sY ,
where sY is defined as

IsY :=
∩

{IDP | P ∈ Y }.

We denote by S̃Star(D) the set of all stable semistar operations of finite

type. It is quite simple to show that the set S̃Star(D), endowed with
the subspace topology induced by that of SStar(D), has basic open sets
of the type

ŨJ := {⋆ ∈ S̃Star(D) | 1 ∈ J⋆},

as J ranges among the nonzero finitely generated ideal of D (see [13,

Proposition 4.1(1)]). Under this topology, S̃Star(D) is a spectral space
[13, Theorem 4.6] that can be thought of as a natural “extension” of

Spec(D) since the canonical map s: Spec(D) → S̃Star(D), defined by
P 7→ s{P}, is a topological embedding. The construction X introduces

a new way to represent S̃Star(D).

Proposition 5.3. Let D be an integral domain.

(i) The map s♯ : X (D) → S̃Star(D), defined by Y 7→ sY , and the map

∆: S̃Star(D) → X (D), defined by ⋆ 7→ QSpec⋆(D) := {P ∈ Spec(D) |
P ⋆ ∩D = P}, are homeomorphisms and are inverses of each other.

(ii) If φ : Spec(D) → X (D) is defined by P 7→ {P}gen and s:

Spec(D) → S̃Star(D) is defined by P 7→ s{P}, then s♯ ◦ φ = s.

Proof.

(i) The fact that s♯ and ∆ are well defined and bijective follows from
[15, Corollaries 4.4, 5.2, Proposition 5.1].

Let ŨJ be a subbasic open set of S̃Star(D), where J is a nonzero

finitely generated ideal of D. Then, s♯(Y ) ∈ ŨJ if and only if
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1 ∈ J s
Y , that is, if and only if Y ⊆ D(J). Thus, by definition,

s♯
−1

(ŨJ) = U(D(J)) is open.

Conversely, a subbasic open set of X (D) has the form U(D(J)) for
some nonzero finitely generated ideal J . As above, s♯(U(D(J))) =

s♯(s♯
−1

(ŨJ)) = ŨJ , so that s♯ is open. Hence, s♯ is a homeomorphism.

The bijective map ∆ : S̃Star(D) → X (D) is also a homeomorphism
since it is the inverse map of s♯ which is, in particular, continuous and
open.

(ii) This follows from the fact that s{P} and s{P}gen coincide for each
prime ideal P of D. �

Corollary 5.4. Let D be an integral domain. Then, S̃Star(D) is a
spectral space.

Proof. Immediate from Propositions 3.4 and 5.3. �

Corollary 5.5. Let D1 and D2 be two integral domains. Then,
Spec(D1) and Spec(D2) are homeomorphic if and only if so are

S̃Star(D1) and S̃Star(D2).

Proof. From Proposition 5.3, S̃Star(Di) ≃ X (Spec(Di)) for i = 1, 2.
The claim now follows from Proposition 4.5 (iii). �

Using classical terminology which originated with Krull [29] (and
later was adjusted by Gilmer [20]), a semistar operation ⋆ on D is
called endlich arithmetisch brauchbar (eab) if, given finitely generated
nonzero D-submodules F,G,H of K, then (FG)⋆ ⊆ (FH)⋆ implies
G⋆ ⊆ H⋆. Note that any Y ⊆ Zar(D) induces a semistar operation ∧Y
on D, defined by E∧Y :=

∩
{EV | V ∈ Y }, for each E ∈ F (D), and a

semistar operation of type ∧Y is eab [18, Proposition 7]. We denote
by SStarf,eab(D) the set of all semistar operations that are at the same
time eab and of finite type, endowed with the subspace Zariski topology
induced by that of SStar(D).

Theorem 5.6. Let D be an integral domain. Then, the map

ϵ : X (Zar(D)) −→ SStarf,eab(D),

defined by ϵ(Y ) := ∧Y for each Y ∈ X (Zar(D)), is a homeomorphism.
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Proof. LetK be the quotient field ofD, let V be a valuation overring
of D and let mV be the maximal ideal of V . Then, the localization
V (T ) := V [T ]mV [T ] of the polynomial ring V [T ] is a valuation domain
of K(T ), called the trivial extension of V to K(T ) [20, Proposition
18.7]. For any nonempty subspace Y of Zar(D), consider the following
subring of K(T ):

Kr(Y ) :=
∩

{V (T ) | V ∈ Y }

[24, 25]. In particular, set R := Kr(Zar(D)). Then, R (like Kr(Y ))
is a Bézout domain with quotient field K(T ) [17, Theorems 3.11(3),
5.1], such that Zar(R) consists of the trivial extensions of the valuation
domains in Zar(D) [11, Propositions 3.2 (2,5), 3.3, Corollary 3.6(2)].
In particular, Zar(R) is homeomorphic to Zar(D), and thus, by Propo-
sition 4.5 (i), X (Zar(R)) ≃ X (Zar(D)). From Proposition 5.2, the
map

λ : X (Zar(R)) −→ Overr(R),

defined by λ(Z) := ∩{V | V ∈ Z}, for each Z ∈ X (Zar(D)), is a
homeomorphism. Therefore, every overring of R is in the form Kr(Y )
for a unique closed set Y ⊆ Zar(D), with respect to the inverse
topology, and thus the claim will follow if we prove that the map
ϵ0 : Overr(R) → SStarf,eab(D), defined by setting ϵ0(Kr(Y )) := ∧Y ,
for each Y ∈ X (Zar(D)), is a homeomorphism.

By [11, Corollary 4.17], ϵ0 is clearly well defined; it is also injective
by [17, Remark 3.5(b)]. If, now, ⋆ ∈ SStarf,eab(D), there must be a
quasi-compact subspace Y of Zar(R) such that ⋆ = ∧Y [11, Theorem
4.13], and thus, ⋆ = ϵ0(Kr(Y gen)). Hence, ϵ0 is bijective.

In order to show that ϵ0 is continuous, take a nonzero finitely-
generated fractional ideal F = (f0, f1, . . . , fn)D of D, and let VF =
UF∩SStarf,eab(D). By [17, Corollary 3.4(3), Theorem 3.11(2)], we have
F∧Y = f Kr(Y )∩K, where f is the polynomial f0 + f1T + · · ·+ fnT

n;
therefore,

ϵ−1
0 (VF ) = {A ∈ Overr(R) | 1 ∈ FA ∩K}

= {A ∈ Overr(R) | f−1 ∈ Kr(Y )} = Of−1 ,

which is, by definition, an open set of Overr(R).
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Now, let OG be a subbasic open set of Overr(R), where G is a nonzero
finite subset of K(T ). Since R is a Bézout domain, GR = γR for some
γ ∈ K(T ); therefore, OG = Oγ . Let α, β ∈ K[T ] be two nonzero
polynomials such that γ = α/β. Then,

ϵ0(Oα/β) = {∧Y ∈ SStarf,eab(R) | α/β ∈ Kr(Y )}
= {∧Y ∈ SStarf,eab(R) | α ∈ βKr(Y )}.

With the same reasoning as above, there are b0, b1, . . . , bm, a0, a1, . . . ,
ak ∈ K such that

βKr(Y ) = (b0, b1, . . . , bm)Kr(Y )

and

αKr(Y ) = (a0, a1, . . . , ak)Kr(Y );

therefore,

ϵ0(Oα/β) =

{∧
Y

∈SStarf,eab(R) | a0, a1, . . . , an ∈ βKr(Y )

}
=

{∧
Y

∈SStarf,eab(R) | a0, a1, . . . , an∈(b0, . . . , bm)Kr(Y )∩K
}

=

{∧
Y

∈SStarf,eab(R) | a0, a1, . . . , an ∈ (b0, b1, . . . , bm)∧Y

}

=
n∩
i=0

{∧
Y

∈SStarf,eab(R) | ai ∈ (b0, b1, . . . , bm)∧Y

}
.

The sets in the last line are each equal to Va−1
i (b0...,bm), in particular,

ϵ0(Oα/β) is an intersection of a finite number of open sets, and thus,
is open. It follows that ϵ0 is open, and thus, a homeomorphism, as
claimed. �
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29. W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche I–II,
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