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Abstract. Given an arbitrary spectral space X, we consider the
set X (X) of all nonempty subsets of X that are closed with respect
to the inverse topology. We introduce a Zariski-like topology on
X (X) and, after observing that it coincides the upper Vietoris
topology, we prove that X (X) is itself a spectral space, that this
construction is functorial, and that X (X) provides an extension of
X in a more “complete” spectral space. Among the applications,
we show that, starting from an integral domain D, X (Spec(D))
is homeomorphic to the (spectral) space of all the stable semistar
operations of finite type on D.

1. Introduction

The first study of the set of prime ideals from a topological point of
view is due to M. H. Stone [42, 43], who developed the theory in the con-
text of distributive lattices and Boolean algebras. Later, M. Hochster
[29] defined a spectral space as a topological space that it is homeomor-
phic to the prime spectrum of a (commutative) ring endowed with the
Zariski topology, and proceeded to show that this class of topological
spaces can be characterized in a purely topological way. More precisely,
he proved that a topological space X is spectral if and only if it is T0,
quasi-compact, it admits a basis of quasi-compact open subspaces that
is closed under finite intersections, and it is sober (i.e., every irreducible
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closed subset of X has a (unique) generic point). Spectral spaces can
also be viewed through the lens of ordered topological spaces (via the
concept of Priestley space) [6, 37, 38], of bitopological spaces (through
pairwise Stone spaces) [4], or through domain theory (using the notion
of stably compact space) [30].

The first example of a spectral space which occurs naturally in com-
mutative algebra, but it is not defined as a spectrum, is the Riemann-
Zariski space Zar(K|D) of all the valuation domains with quotient field
K and containing D; this was proved by providing explicitly a Bézout
domain whose prime spectrum is naturally homeomorphic to Zar(K|D)
(see [7], [12] and [28]). Recently, several other spaces, naturally occur-
ring in multiplicative ideal theory, have been shown to be spectral:
for example, this happens for the spaces Overr(D) and Overric(D)
consisting, respectively, of the overrings and of the integrally closed
overrings of an integral domain D. This result was later extended to
the space SStar

f
(D) of all semistar operations of finite type on D, pro-

viding an appropriate and natural topological extension of the spectral
space Overr(D) (and, in particular, of both Spec(D) and Zar(K|D))
[11]. Unlike the proof of the spectrality of Zar(K|D), these spaces were
shown to be spectral using a criterion based on ultrafilters [10], which
is well-suited to this kind of spaces; however, this criterion is not con-
structive, that is, it does not provide explicitly a ring whose spectrum
is homeomorphic to the given spectral space.

If X is a topological space, we denote by Xd the set X endowed with
the co-compact topology, i.e., the topology on X having, as a base of
open sets, the complements of the subsets of X that are both quasi-
compact and obtained as an intersection of open sets [20, Definition
O-5.10]. In the context of spectral spaces, the co-compact topology
of X is called the inverse topology of X, and plays a crucial rôle in
Hochster’s study of spectral spaces; it owes its name to the fact that
the order canonically associated to the inverse topology coincides with
the reverse order of that induced by the spectral topology. Subsets
of a spectral space that are closed in the inverse topology are strictly
related to the study of representations of integrally closed domains as
intersections of collections of valuation domains (see also [33], [34], and
[35]), and they represent a way to classify several distinguished classes
of semistar operations of finite type: it was shown in [12] and [11] that
complete (or, e.a.b.) semistar operations (respectively, stable semis-
tar operations - definitions recalled later) correspond to the subsets of
Zar(D) (respectively, Spec(D)) that are closed in the inverse topol-
ogy. Moreover, these two spaces are spectral extensions of the spaces
Zar(D) and Spec(D) (see also [15]).
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The aim of this paper is to study, for an arbitrary spectral space
X, the space X (X) of all nonempty subsets of X that are closed with
respect to the inverse topology; in particular, this study is carried out
using the same ultrafilter-theoretic approach of [10] and [12], and using
techniques closer to commutative algebra than to general topology, in
an attempt to bridge the gap between the two communities. After
endowing X (X) with a natural topology, we show that it is a spectral
space and a spectral extension of the original space X. It is worth no-
ting that this construction, arisen in the topological context associated
to commutative ring theory, is a special case of the construction of the
Smyth powerdomain of a general topological space X, endowed with
the upper Vietoris topology ([44] and [31]; the definitions are recalled
later), which is usually studied from the point of view of domain theory
(see [30, Section 5] and [41]). In Section 5 we see that the two spaces
of distinguished semistar operations recalled above are examples of the
space X (X), when applied to the spectral spaces X = Zar(D) and X =
Spec(D). We also show that the extension X ↪→ X (X) represents, in a
certain sense, a spectral “completion” of the original space X, matching
the possibility of extending the spectral space Overr(D) inside the
more “complete” spectral space of the semistar operations of finite
type SStar

f
(D). The “completeness” mentioned above is related to a

universal-like property satisfied by X (X): broadly speaking, X (X) is
the completion of X with respect to the existence of the supremum for
families of quasi-compact subspaces.

We thank the referee for his/her thorough reports and highly appre-
ciate the constructive comments and suggestions on the connections
with recent results in domain theory, which significantly contributed
to improving the quality of the paper and gave us the opportunity to
connect two far apart strands of research.

2. Preliminaries

It is well known that the prime spectrum of a commutative ring
endowed with the Zariski topology is always T0 and quasi-compact, but
almost never Hausdorff (it is Hausdorff only in the zero-dimensional
case). Thus, many authors have considered a finer topology on the
prime spectrum of a ring, known as the constructible topology (see [5],
[22, pages 337-339] or [3, Chapter 3, Exercises 27, 28 and 30]) or as the
patch topology [29].

Following [38] or [39], it is possible to introduce the constructible
topology by a Kuratowski closure operator: if X is a spectral space, for
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each subset Y of X, we set:

Clcons(Y ) :=
⋂
{U∪(X\V ) | U and V open and quasi-compact in X,

U∪(X\V ) ⊇ Y } .
We denote by Xcons the set X, equipped with the constructible topol-
ogy. For Noetherian topological spaces, this definition of constructible
topology coincides with the classical one given in [5]. It is well known
that the constructible topology is a refinement of the given topology
and it is always Hausdorff.

Given a topology on a set X, we can define an order ≤X on X by
setting x ≤X y if y ∈ Cl({x}), where Cl(Y ) denotes the closure of a
subset Y of X. This order is the opposite of the specialization order
generally used in topology; however, it is the one more commonly used
in commutative algebra and algebraic geometry, since on the spectrum
of a ring it coincides with the set-theoretic containment (for example,
this is the order used in [29]). The set

Y gen :=↓Y := {x ∈ X | x ≤ y, for some y ∈ Y }
is called closure under generizations of Y . Similarly, using the opposite
order, the set

Y sp :=↑Y := {x ∈ X | y ≤ x, for some y ∈ Y }
is called closure under specializations of Y . We say that Y is closed
under generizations or a down set (respectively, closed under specia-
lizations or an upper set) if Y = Y gen (respectively, Y = Y sp). It is
straightforward that, for two elements x, y in a spectral space X, we
have:

x ≤ y ⇔ {x}gen ⊆ {y}gen ⇔ {x}sp ⊇ {y}sp .
Given a spectral space X, M. Hochster [29, Proposition 8] introduced

a new topology on X, that we call here the inverse topology, by defining
a Kuratowski closure operator, for each subset Y of X, as follows:

Clinv(Y ) :=
⋂
{U | U open and quasi-compact in X, U ⊇ Y } .

If we denote by Xinv the set X equipped with the inverse topology,
Hochster proved that Xinv is still a spectral space and the partial order
on X induced by the inverse topology is the opposite order of that
induced by the given topology on X. In particular, the closure under
generizations {x}gen of a singleton is closed in the inverse topology of
X, since {x}gen =

⋂
{U | U ⊆ X quasi-compact and open, x ∈ U} [29,

Proposition 8]. On the other hand, it is trivial, by the definition, that
the closure under specializations of a singleton {x}sp is closed in the
given topology of X, since {x}sp = Cl({x}).
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Recall that it is well known that Clinv(Y ) = (Clcons(Y ))gen (see for
instance [19, Lemma 1.1] applied to the inverse topology or, explicitly,
[12, Remark 2.2]; a more general situation is considered in [30, Section
2.2]). It follows that each closed set in the inverse topology (called
for short, inverse-closed) is closed under generizations and, from [12,
Proposition 2.6], that a quasi-compact subspace Y of X closed for
generizations is inverse-closed.

We would like to mention here the existence of several different point
of views that might shed further light on the theory of spectral spaces.

One perspective is through the language of ordered topological spaces.
Let X be a topological space and ≤ an order on X: then, the pair (X,≤
) is a Nachbin space if X is quasi-compact and the set {(x, y) ∈ X×X |
x ≤ y} is closed in X×X. A Priestley space is a Nachbin space (X,≤)
such that, for every x, y ∈ X with x � y, there exists a clopen subset Γ
of X that is closed under specialization (with respect to ≤) such that
x ∈ Γ and y /∈ Γ. It is well known that there is an isomorphism between
the category of Priestly spaces (and continuous monotone maps) and
the category of spectral spaces (and spectral maps): if X is a spectral
space, and ≤ is the order induced by the topology, then (Xcons,≤
) is a Priestley space, while if (X,≤) is a Priestley space, then the
topology on X generated by the open subsets of X that are closed under
generizations (with respect to ≤) is a spectral space. In this context,
reversing the order defining a Priestley space amounts to passing from
a spectral topolgy to its inverse topology, while the case when ≤ is the
indiscrete order (i.e., x ≤ y if and only if x = y) corresponds to the
case where the spectral space X is Hausdorff, i.e., when the topology
on X is equal to its own constructible topology. For a deeper insight
on this topic, see, for instance, [4, 6, 37, 38] and [16, Chapter VI].

Another point of view is offered by domain theory. A topological
space X is said to be stably compact (see for instance [30]) if it satisfies
the following properties:

(a) X is T0 and quasi-compact.
(b) X is locally quasi-compact (that is, for any open set U of X and

any x ∈ U , there are a quasi-compact subspace K of X and an
open set V ⊆ X such that x ∈ V ⊆ K ⊆ U).

(c) X is coherent (that is, any finite intersection of quasi-compact
saturated subsets of X is quasi-compact).

(d) X is sober.

Note that stably compact spaces can also be defined as the retracts
of the spectral spaces [40, Lemma 3.13(b)]; further connections are
outlined in the following well known results.
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Recall that a subset of a topological space is called a saturated subset
if it is an intersection of a family of open sets.

Lemma 2.1. Let X be a topological space having a basis for the open
sets given by the quasi-compact open subspaces.

(1) If K ⊆ U ⊆ X, K is quasi-compact and U is open in X, then
there exists a quasi-compact open subspace Ω of X such that K ⊆
Ω ⊆ U .

(2) If X is spectral, then a subset of X is closed, with respect to the
inverse topology, if and only if it is saturated and quasi-compact.

Under this terminology, a spectral space is exactly a stably compact
space such that the quasi-compact open subspaces are a basis:

Lemma 2.2. Let X be a topological space. Then, the following condi-
tions are equivalent.

(i) X is a spectral space.
(ii) X is a stably compact space with a basis for the open sets given

by the quasi-compact open subspaces.

Note that the notion of stably compact space is strictly more general
of that of spectral space. For instance, it is easy to see that the subspace
[0, 1] of the real line is stably compact but not a spectral space, for lack
of quasi-compact open subspaces.

Finally, we observe that the isomorphism between the category of
Priestley spaces and spectral spaces (recalled above) extends naturally
to an isomorphism between the categories of Nachbin spaces (and con-
tinuous monotone maps) and of stably compact spaces (and proper
maps). See [16, Chapter VI].

3. The space of inverse-closed subsets of a spectral space

Let X be a spectral space. The main object of this paper is the space

X (X) := {Y ⊆ X | Y 6= ∅, Y = Clinv(Y )},

that is, X (X) is the set of all nonempty subset of X that are closed
in the inverse topology. From the point of view of ordered topologi-
cal spaces, if (X,≤) is a Priestley space, then X (X) is the space of
nonempty closed downsets of X.

If X is understood from the context, we shall simply write X instead
of X (X). If X = Spec(R) for some ring R, we write for short X (R)
instead of X (Spec(R)).



INVERSE-CLOSED SUBSETS OF A SPECTRAL SPACE 7

We define a Zariski topology on X (X) by taking, as subbasis of open
sets, the sets of the form

U(Ω) := {Y ∈ X | Y ⊆ Ω},
where Ω varies among the quasi-compact open subspaces of X. Note
that the previous subbasis is in fact a basis, since U(Ω) ∩ U(Ω′) =
U(Ω∩Ω′) and Ω∩Ω′ is a quasi-compact open subspace ofX, for any pair
Ω,Ω′ of quasi-compact open subspaces of X. Moreover, ∅ 6= Ω ∈ U(Ω),
since a quasi-compact open subset Ω of X is a closed in the inverse
topology of X. Note also that, when X = Spec(R), for some ring R, a
generic basic open set of the Zariski topology on X (R) is of the form

U(J) := U(D(J)) = {Y ∈ X (R) | Y ⊆ D(J)},
where J is any finitely generated ideal of R.

The construction X (X) can also be understood in terms of the tra-
ditional domain-theoretic definition of the Smyth powerdomain in the
setting of topological spaces. More precisely, let X be a topological
space. Following, for example, [30, Definition 5.2], the Smyth pow-
erdomain of X is the collection Q(X) of all nonempty quasi-compact
saturated subsets of X, equipped with the upper Vietoris topology, that
is, the topology on Q(X) whose basic open sets are the sets of the form

U+ := {Q ∈Q(X) | Q ⊆ U},
for any open set U of X.

In view of Lemma 2.1(1), if X is a spectral space, then Q(X) =
X (X), as sets. Now, we show that this equality holds at a topological
level.

Proposition 3.1. Let X be a spectral space. Then, the space X (X),
endowed with the Zariski topology, coincides with the space Q(X), en-
dowed with the upper Vietoris topology.

Proof. Clearly, it is sufficient to show that, if U is an open subset of X,
then U+ is open, with respect to the Zariski topology on X (X). Take
a set Q ∈ U+. Since Q is, in particular, quasi-compact, Lemma 2.1(1)
implies the existence of a quasi-compact open subspace Ω of X such
that Q ⊆ Ω ⊆ U . It follows immediately that U ∈ U(Ω) = Ω+ ⊆ U+.
The proof is now complete. �

On the other hand, from the theory of stably compact spaces, the
following property hold.

Theorem 3.2. [30, Theorem 5.9] Let X be a stably compact space.
Then the Smyth powerdomain Q(X) of X, equipped with the upper
Vietoris topology, is stably compact.
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By the previous Lemma 2.2, the fact that X (X) is a spectral space
can be seen in the frame of the theory of stably compact spaces. We
start with the following easy lemma, whose proof is left to the reader.

Lemma 3.3. Let X be any spectral space. Then X (X), endowed with
the Zariski topology, is a T0-space.

Theorem 3.4. Let X be a spectral space.

(1) The space X := X (X), endowed with the Zariski topology (i.e.,
with the upper Vietoris topology), is a spectral space.

(2) Let Y1, Y2 ∈ X . Then, Y1 ⊆ Y2 if and only if Y1 ≤X Y2.
(3) The canonical map ϕ : X → X , defined by ϕ(x) := {x}gen,

for each x ∈ X, is a spectral embedding (and, in particular,
an order-preserving embedding between ordered sets, with the
ordering induced by the Zariski topologies).

(4) X has a unique maximal point (i.e., X).

Proof. (1) Let U(Ω) be a member of the canonical basis of X (X), where
Ω 6= ∅ is a quasi-compact open subspace of X. If A is an open cover
of U(Ω), then there is a set A ∈ A such that Ω ∈ A. Hence, there is
a nonempty quasi-compact open set V of X such that Ω ∈ U(V ) ⊆ A.
If now U ∈ U(Ω), then U ⊆ Ω ⊆ V , and thus U ∈ A; it follows that
the singleton {A} is an open subcover of U(Ω). Therefore, U(Ω) is
quasi-compact.

By Proposition 3.1 and Theorem 3.2, X (X) is stably compact; by
Lemma 2.2, and the previous reasoning, it follows that X (X) is a
spectral space.

Statements (2), (3) and (4) are straightforward. �

Remark 3.5. As it was done in the first version of the present paper,
it is also possible to prove the spectrality of X (X) by using, instead
of [30, Theorem 5.9], ultrafilter-theoretic techniques developed by ring
theorists for studying spectral spaces; we sketch how to do it. By [10,
Corollary 3.3], it suffices to show that, if U is an ultrafilter on X , then
the set

X T (U ) := {Y ∈ X | [for each U(Ω), Y ∈ U(Ω)⇔ U(Ω) ∈ U ] }
is nonempty. Set

F (U ) := {Ω | Ω ⊆ X quasi-compact open and U(Ω) ∈ U } .
Then, F (U ) does not contain the empty set and has the finite inter-
section property; therefore,

Y0 :=
⋂
{Ω | Ω ∈ F (U )}
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is a nonempty inverse-closed subset of X, i.e., Y0 ∈ X (X).
Furthermore, if Y0 ∈ U(Ω0) and Ω0 /∈ U , then, since U is closed by

finite intersection,

C := {Ω ∩ (X \ Ω0) | Ω quasi-compact open in X and U(Ω) ∈ U }

is a collection of sets having the finite intersection property, and each
element of C is closed in the constructible topology. Therefore, its
intersection is nonempty, and any point in the intersection belongs to
Y0 \ Ω0, a contradiction. Thus Ω0 ∈ U . Conversely, if Ω0 ∈ U then

Ω0 ⊇
⋂
{Ω | Ω ⊆ X quasi-compact open and U(Ω) ∈ U } = Y0

i.e., Y0 ∈ U(Ω0). Hence, Y0 ∈ X T (U ) and X (X) is a spectral space.

Remark 3.6. (a) Let X be a spectral space and, as above, let Xinv

denote the set X, endowed with the inverse topology. Then, keeping
in mind the Hochster’s duality (i.e., sketchy, (Xinv)inv = X), the set
X ′(X) := X (Xinv) consists of all the nonempty closed sets of X, with
respect to the given spectral topology. Keeping in mind that the quasi-
compact open subspaces of Xinv are precisely the complements of the
quasi-compact open subspaces of X, it follows immediately, by defini-
tion, that the Zariski topology of X ′(X) has as a basis of open sets the
collection of the sets of the type:

U ′(Ω) := U(X\Ω) = {C ∈ X ′(X) | C ∩ Ω = ∅} ,

for Ω varying among the quasi-compact open subspaces of Xinv. Du-
ally, the canonical map ϕ′ : Xinv → X ′(X), defined by x 7→ {x}sp, is
a spectral topological embedding. Now, let X be the prime spectrum
of a ring R, and let Rd(R) be the set of all proper radical ideals of R,
endowed with the so called hull-kernel topology, that is the topology
whose subbasic open sets are those of the form D(x1, x2, . . ., xn) :=
{H ∈ Rd(R) | (x1, x2, . . ., xn)R * H}. In [13], it is proved that
Rd(R) is a spectral space that extends naturally the space Spec(R),
endowed with the Zariski topology. Moreover, it is proved that there
is a canonical homeomorphism λ : X ′(R) := X ′(Spec(R))→ Rd(R)inv,
mapping a nonempty closed set C ⊆ Spec(R) to the radical ideal
λ(C) :=

⋂
{P | P ∈ C}.

(b) Recall that, for any topological space X, the co-compact topology
on X is the topology having as a base for the open sets the complements
of quasi-compact saturated subsets of X [20, Definition O-5.10]. The
topological space X endowed with this topology, denoted by Xd, is
called the de Groot dual of X. It is known that, if X is a stably compact
space, Xd is also stably compact and (Xd)d = X [30, Proposition 3.6].
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For a spectral space X, Xinv coincides with the de Groot dual Xd

(Lemma 2.1(2)).

We collect in the following remark some observations concerning
Theorem 3.4.

Remark 3.7. We preserve the notation of Theorem 3.4.
(a) The subspace ϕ(X) is dense in X (X). In fact, let U be a

nonempty open subset of X (X), take an element C ∈ U and a quasi-
compact open subspace Ω of X such that C ∈ U(Ω) ⊆ U . If c ∈ C,
then {c}gen ⊆ C ⊆ Ω, and thus {c}gen ∈ U(Ω) ⊆ U . This proves that
ϕ(X) ∩ Ω 6= ∅.

(b) Following [22, Définition (2.6.3)], recall that a subset X0 of a
topological space X is called to be very dense in X if, for any open
sets U, V ⊆ X, the equality U ∩X0 = V ∩X0 implies U = V .

The subspace ϕ(X) is not very dense in X (X). Indeed, let V1, V2

be two discrete rank-one valuation domains having the same quotient
field. Then, the prime spectrum X of the ring D := V1 ∩ V2 consists
exactly of (0) and of the two maximal ideals M1 and M2 which are the
(incomparable) contractions in D of the maximal ideals of V1 and V2.
Then, in the present situation,

X (X) = {{(0)}, {(0),M1}, {(0),M2}, X} ;
ϕ(X) = {{(0)}, {(0),M1}, {(0),M2}} .

Since {X} is closed in X (X), it follows that ϕ(X) is open in X (X).
From this fact, we deduce immediately that ϕ(X) is dense but not very
dense in X (X).

(c) Let X be a spectral space and let X̂ (X) := X̂ := {Y ⊆ X | Y =
Clinv(Y )} = X (X) ∪ {∅}. Note that the techniques used in the proof

of Theorem 3.4(1) allow also to show that X̂ (endowed with an obvious
extension of the topology of X ) is a spectral space. Since U(∅) = {∅}
is open in X̂ , then X is a closed (spectral) subspace of X̂ .

Before stating next result, we observe that X ∈ ϕ(X) if and only if
X has a unique closed point (in the given spectral topology).

Proposition 3.8. Let X be a spectral space and let ϕ : X → X (X) the
topological embedding defined in Theorem 3.4(3). Then, ϕ(X) = X (X)
if and only if (X,≤) is linearly ordered.

Proof. Set, as usual X := X (X). In order to avoid the trivial case,
we can assume that X is not a singleton. First, suppose that (X,≤)
is linearly ordered, and let Y ∈ X . Consider the collection C :=
{Cl({y})∩Y | y ∈ Y } of closed sets of Y (with respect to the subspace
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topology induced by the given topology of X). Since (X,≤) is linearly
ordered, C has the finite intersection property. On the other hand,
Y is a quasi-compact subspace of X, since, in particular, it is closed
in the constructible topology of X and so it is quasi-compact in the
constructible topology and, a fortiori, in the given topology of X. Thus,
there is a point y0 ∈

⋂
{C | C ∈ C }. Now, it is easy to infer that

Y = {y0}gen.
Conversely, assume that ϕ(X) = X , and take two points x, y ∈ X.

Clearly, the set Z := {x, y}gen = {x}gen∪{y}gen is nonempty and closed
with respect to the inverse topology on X, i.e., Z ∈ X . By assumption,
there is a point z ∈ X such that ϕ(z) = {z}gen = {x}gen ∪ {y}gen. The
inclusion ⊇ implies x, y ≤ z. On the other hand, the inclusion ⊆
implies that z ≤ x or z ≤ y. From these facts it follows easily that
(X,≤) is linearly ordered. �

We compare next the dimensions ofX and X (X) with the cardinality
|X| of the spectral space X.

Proposition 3.9. Let X be a spectral space. Then, dim(X (X)) =
|X|−1 ≥ dim(X). Moreover, in the finite dimensional case, dim(X (X))
= dim(X) if and only if X is linearly ordered.

Proof. Suppose first that X is finite. If Y0 <X (X) Y1 <X (X) · · · <X (X)

Yn is a chain of points in X (X), then Y0 ( Y1 ( · · · ( Yn is a chain of
nonempty subsets ofX. In particular, |Yk−1| < |Yk| for all k, 1 ≤ k ≤ n.
Therefore, n+ 1 ≤ |X| and dim(X (X)) ≤ |X| − 1.

On the other hand, we can writeX as a sequence x1, x2, . . . , xt (where
t := |X|) such that xi is not bigger that xj for every i < j (simply,
take x1 as a minimal element of X and xi as a minimal element of
X\{x1, . . . , xi−1} for i ≥ 2). In particular, eachXi := {x1, x2, . . . , xi} is
inverse-closed inX, so thatX1 <X (X) X2 <X (X) · · · <X (X) Xt is a chain
of points in X (X) of length t−1. Therefore, dim(X (X)) ≥ |X|−1 and,
by the previous paragraph, we conclude that dim(X (X)) = |X| − 1.

Suppose now thatX is infinite. Take a positive integer t and letX ′ be
a subset ofX of cardinality t. As before, we can enumerate the elements
x1, x2, . . . , xt of X ′ in such a way that xi is not bigger that xj for every
i < j. Then, for each i ∈ {1, 2, . . . , t}, the set Ci := {x1, x2, . . . , xi}gen is
closed in the inverse topology of X, i.e., Ci ∈ X (X). Clearly, Ci ( Ci+1

for each i = 1, 2, . . . , t− 1, since xi+1 ∈ Ci+1 \Ci. This proves that, for
any positive integer t, there is a chain of lenght t− 1 in X (X). Thus,
dim(X (X)) =∞.
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If X is finite, dim(X) = |X| − 1 if and only if, in X, there is a chain
of the type x0 < x1 < . . . x|X|−1. This means that all elements of X
are in such chain, i.e., X is linearly ordered. �

Remark 3.10. While the inequality |X| − 1 ≥ dim(X) is sharp by
the previous proposition, the more non-comparable elements the set X
contains the more dim(X) is small with respect to |X|. For example,
if X is homeomorphic to the prime spectrum of the direct product of
n+ 1 fields, n ≥ 1, then dim(X) = 0 while |X| − 1 = n.

If dim(X) is not finite, then clearly dim(X (X)) = dim(X), but we
can easily choose X to be not linearly ordered.

4. Functorial properties

A map ψ : X1 → X2 of spectral spaces is called spectral if ψ−1(Ω)
is a quasi-compact open subset of X1 for every quasi-compact open
subset Ω of X2.

Proposition 4.1. Let ψ : X1 → X2 be a spectral map of spectral spaces
and denote by ϕ1 : X1 → X (X1) and ϕ2 : X2 → X (X2) the topological
embeddings defined in Theorem 3.4(3). Then, there is a spectral map
X (ψ) : X (X1)→ X (X2) such that X (ψ) ◦ ϕ1 = ϕ2 ◦ ψ.

Proof. First note that each C ∈ X (X1) is quasi-compact in X1 and
so ψ(C) is quasi-compact in X2 and thus Clinv(ψ(C)) = ψ(C)gen =⋃
{{x2}gen | x2 ∈ ψ(C)} = sup{{x2}gen | x2 ∈ ψ(C)} [12, Remark

2.2 and Proposition 2.6]. For every C ∈ X (X1), define X (ψ)(C) :=
ψ(C)gen. In particular, we have that X (ψ)({x}gen) = {ψ(x)}gen, for
each x ∈ X1.

Let Ω be a quasi-compact open subset of X2. We claim that

(X (ψ))−1(U(Ω)) = U(ψ−1(Ω)),

which is quasi-compact open in X (X2), since ψ is spectral (and so
ψ−1(Ω) is quasi-compact open in X1). As a matter of fact, let C ∈
(X (ψ))−1(U(Ω)), i.e., X (ψ)(C) ⊆ Ω, therefore ψ−1(X (ψ)(C)) ⊆ ψ−1(Ω)
and thus, clearly, C ⊆ ψ−1(X (ψ)(C)). Conversely, let C ⊆ ψ−1(Ω),
then X (ψ)(C) ≤ X (ψ)(ψ−1(Ω)). Moreover, we have that X (ψ)(ψ−1(Ω))
= (ψ(ψ−1(Ω)))gen ⊆ Ωgen = Ω. Therefore X (ψ)(C) ∈ U(Ω). We con-
clude that X (ψ) is a spectral map. �

It is well known that, for compact Hausdorff spaces and, hence,
for Stone spaces, the upper Vietoris construction is functorial. Si-
milarly, we now show that the assignment X defined by the pair
(X 7→ X (X), ψ 7→ X (ψ)) can be interpreted as a functor from the
category of spectral spaces into itself.
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Proposition 4.2. We preserve the notation of Proposition 4.1.

(1) If X1
ψ1−→ X2

ψ2−→ X3 is a chain of spectral maps, then the spectral
map X (ψ2◦ψ1) : X (X1)→ X (X3), induced by ψ2◦ψ1 is equal to
the composition X (ψ2) ◦X (ψ1). It follows that the assignment
(X 7→ X (X), ψ 7→ X (ψ)) defines a functor from the category
of spectral spaces into itself.

(2) Let Ψ : X (X1)→ X (X2) be a spectral map. Assume that there
exists a spectral map ψ : X1 → X2 such that Ψ ◦ ϕ1 = ϕ2 ◦ ψ,
then, X (ψ) ≤ Ψ (i.e., X (ψ)(C) ⊆ Ψ(C) for each C ∈ X (X1)).

Proof. (1) The proof is straightforward.
(2) Let C ∈ X (X1). For every c ∈ C, we have C ⊇ ϕ1(c) = {c}gen

(i.e., C ≥ ϕ1(c) with respect to the order of X (X1) induced by the
Zariski topology). Since Ψ is continuous, it is order-preserving, and
thus Ψ(C) ≥ Ψ(ϕ1(c)) = ϕ2(ψ(c)) = {ψ(c)}gen. Hence, ψ(c) ∈ Ψ(C),
and thus ψ(C) ⊆ Ψ(C). Since Ψ(C) is closed in the inverse topology
on X2, then Clinv(ψ(C)) ⊆ Ψ(C). On the other hand, by definition,
X (ψ)(C) = ψ(C)gen = Clinv(ψ(C)) ≤ Ψ(C), hence X (ψ) ≤ Ψ. �

Remark 4.3. The previous result is very similar to the statement con-
cerning the functoriality of the Smyth powerdomain construction Q(X)
proved in [20, Proposition IV.8.19, page 371] when X is a directed-
complete partial order (that is, a partially ordered set where each
directed subset has a supremum) endowed with the topology gener-
ated by the upper sets (called the Scott topology). However, despite
the similarity of the construction, the Scott topology does not coin-
cide with the given spectral topology but, in general, it is stronger
than the inverse topology [27, Proposition 2.9]. Nevertheless, by order-
theoretic reasons, the functoriality of the Smyth powerdomain con-
struction Q(X) given in [20] is closer to functoriality of the construc-
tion X ′(X) := X (Xinv) [13] recalled briefly in Remark 3.6(a).

The next example shows that it is possible to have Ψ 6= X (ψ), i.e., it
is possible to have more than one “extension” of ψ : X1 → X2 between
the spaces X (X1) and X (X2). On the other side, we will show in the
following Proposition 4.5 that this situation does not occur when Ψ is
a homeomorphism.

Example 4.4. Let X1 = {a1, a2, b} and X2 := {c1, c2}. Suppose that
a1 and a2 are incomparable but both smaller than b and suppose also
that c1 < c2. It is straightforward that the order structures of X1 and
X2 are compatible with the order of suitable spectral topologies on X1

and X2. When X1 and X2 are equipped with these spectral topolo-
gies, it is easy to see that X (X1) = {{a1}, {a2}, {a1, a2}, {b, a1, a2}},
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Figure 1. Illustration of Example 4.4. Black circle rep-
resents elements of ϕ1(X1) and ϕ2(X2).

while X (X2) = {{c1}, {c1, c2}}. Let ψ : X1 → X2 be the spec-
tral map defined by ψ(a1) := ψ(a2) := c1 and ψ(b) := c2. Let Ψ :
X (X1) → X (X2) be the map defined by Ψ({a1}) := Ψ({a2}) := {c1}
and Ψ({b, a1, a2}) := Ψ({a1, a2}) := {c1, c2}. Clearly, Ψ is a spectral
map of spectral spaces, since

Ψ−1(U({c1})) = {{a1}, {a2}} = U({a1}) ∪ U({a2}),
and Ψ−1(U({c1, c2})) = Ψ−1(X2) = X1. Moreover, it is obvious that
Ψ “extends” ψ. However, the “natural extension” X (ψ) of ψ (defined
in Proposition 4.1) is such that X (ψ)({a1, a2}) = {c1}, and thus Ψ 6=
X (ψ). The situation is illustrated in Figure 1.

Proposition 4.5. Let X1, X2 be spectral spaces and let ϕ1 : X1 →
X (X1) and ϕ2 : X2 → X (X2) be the canonical embeddings (as in
Theorem 3.4(3)).

(1) If ψ : X1 → X2 is a topological embedding (respectively, an
homeomorphism), then X (ψ) : X (X1)→ X (X2) (as defined in
Proposition 4.1) is a topological embedding (resp., homeomor-
phism).

(2) If Ψ : X (X1)→ X (X2) is a homeomorphism, then there exists
a unique homeomorphism ψ : X1 → X2 such that Ψ = X (ψ)
(and so Ψ ◦ ϕ1 = ϕ2 ◦ ψ).

(3) In particular, X1 and X2 are homeomorphic if and only if X (X1)
and X (X2) are homeomorphic.

Proof. (1) By Proposition 4.1, X (ψ) ◦ ϕ1 = ϕ2 ◦ ψ. Since ϕ1 and ϕ2

are topological embeddings, if also ψ is an embedding so is ϕ2 ◦ψ, and
thus so is X (ψ) ◦ ϕ1; hence also X (ψ) is an embedding. If ψ is an
homemorphism, and C ∈ X (X2), then C = X (ψ)(ψ−1(C)), so that
X (ψ) is surjective and thus an homeomorphism.

(2) We start by showing the following.
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Claim 1. Let X be a spectral space and let ϕ : X → X (X) be
the canonical embedding. Then, ϕ(X) is precisely the set of all the
irreducibile closed subset of X, endowed with the inverse topology.

As a matter of fact, it is well known that the space Xinv, i.e., the
set X endowed with the inverse topology, is itself a spectral space [29,
Proposition 8], and thus any irreducible closed subspace C of Xinv has
a unique generic point, say x, that is C = Clinv({x}) = {x}gen = ϕ(x).
On the orther hand, it is trivial that ϕ(X) is contained in the set of all
the irreducibile closed subset of Xinv.

Claim 2. Assume that Ψ : X (X1) → X (X2) is a homeomorphism.
Let C be an irreducible and closed subspace of Xinv

1 . Then Ψ(C) is an
irreducible (and closed) subset of Xinv

2 .
Let D′, D′′ ∈ X (X2) be such that D′ ∪ D′′ = Ψ(C). Since Ψ is a

homeomorphism is also an isomorphism of ordered sets, we see that
C = Ψ−1(D′) ∪ Ψ−1(D′′). Since C is irreducible, we have either C =
Ψ−1(D′) or C = Ψ−1(D′′), and thus either Ψ(C) = D′ or Ψ(C) = D′′.

Now, fix a point x ∈ X1. By Claim 2, the set Ψ({x}gen) is irreducible
in X2, thus by Claim 1 there is a unique point xΨ ∈ X2 such that
{xΨ}gen = Ψ({x}gen). Thus Ψ induces naturally a map ψ : X1 −→ X2

by setting ψ(x) := xΨ, for any x ∈ X. Clearly, ϕ2 ◦ ψ = Ψ ◦ ϕ1. Next,
we want to who that ψ : X1 → X2 is homeomorphism.

Claim 3. Assume that Ψ : X (X1) → X (X2) is a homeomorphism.
Let Ω be a quasi-compact open subspace of X1 (in particular, Ω ∈
X (X1)). Then Ψ(Ω) is a quasi-compact open subspace of X2.

Note that the quasi-compact open subspace U(Ω) of X (X1) coin-
cides with {Ω}gen (where the generizations are taken in X (X1)). Since
Ψ is a homeomorphism, then Ψ(U(Ω)) = Ψ({Ω}gen) = {Ψ(Ω)}gen is
a quasi-compact open set of X (X2) which is irreducible as inverse-
closed subspace of X (X2). In order to show that Ψ(Ω) is a quasi-
compact open subspace ofX2, we observe that Ψ({Ω}gen) = Ψ(U(Ω)) =⋃
{U(Vi) | 1 ≤ i ≤ n} =

⋃
{{Vi}gen | 1 ≤ i ≤ n}, for a finite family

of quasi-compact open subspaces {Vi | 1 ≤ i ≤ n} of X2. Therefore,
Ψ({Ω}gen) = {Vĩ}gen for some ĩ and so Ψ(Ω) = Vĩ.

In order to prove that ψ : X1 → X2 is a homeomorphism, we start
by showing that ψ is continuous. Let V ⊆ X2 be a quasi-compact
open. We claim that ψ−1(V ) = Ψ−1(V ), where Ψ−1(V ) ∈ X (X1) is
a quasi-compact open subspace of X1, since Ψ is a homeomorphism.
Moreover, U(Ψ−1(V )) = {Ψ−1(V )}gen = Ψ−1({(V )}gen) = Ψ−1(U(V )).
Now, take a point x ∈ X1. Then

ψ(x) ∈ V ⇔ {xψ}gen ⊆ V ⇔ Ψ({x}gen) ∈ U(V )
⇔ {x}gen ∈ Ψ−1(U(V ))⇔ x ∈ Ψ−1(V ),
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i.e., ψ−1(V ) = Ψ−1(V ).
Now, we show that ψ : X1 → X2 is open. Let Ω be a quasi-compact

open subspace of X1. By Claim 3, Ψ(Ω) is a quasi-compact open
subspace of X2 and, obviously, Ω = Ψ−1(Ψ(Ω)). Moreover, by the
previous observation, Ψ−1(Ψ(Ω)) = ψ−1(Ψ(Ω)) and, since ψ is bijective,
ψ(Ω) = Ψ(Ω).

Finally, we show that X (ψ) = Ψ. Take a set C ∈ X (X1). Since
ψ is a homeomorphism, it is also a homeomorphism between X inv

1 and
Xinv

2 , and in particular it is a closed map (with respect to the inverse
topologies). Therefore, it suffices to prove that X (ψ)(C) = ψ(C)gen =
ψ(C) coincides with Ψ(C). Let {Ci | i ∈ I} be the collection of the
irreducible (and closed) components of C in X inv

1 . By Claim 1, for any
i ∈ I, let xi ∈ X1 be the unique generic point of Ci in Xinv

1 . Keeping
in mind that both ψ and Ψ are also isomorphism of partially ordered
sets (orderings induced by the topologies), we have

Ψ(C) = Ψ(sup{Ci | i ∈ I}) = sup{Ψ(Ci) | i ∈ I} =
= sup{Ψ({xi}gen) | i ∈ I} =
= sup{{ψ(xi)}gen | i ∈ I} =

⋃
{{ψ(xi)}gen | i ∈ I} =

= ψ(
⋃
{{xi}gen | i ∈ I}) = ψ(

⋃
{Ci | i ∈ I}) = ψ(C) .

The proof of (2) is now complete. Part (3) is an immediate consequence
of statements (1) and (2). �

It is not difficult to see that ϕ(= ϕX) : X → X (X) does not provide
a unique way for embedding a spectral space X in a larger “natural”
spectral space. However, ϕ satisfies an universal-like property.

We start with a lemma.

Lemma 4.6. Let Z be a spectral space and let Y be a closed set in the
constructible topology of Z; in particular, Y is a spectral space. Assume
that the map ΣY,Z : X (Y )→ Z, C 7→ supZ(C), for each C ∈ X (Y ), is
well-defined. Then, the following statements hold.

(1) If each point of Z has a local basis consisting of sets of the form
{ω}gen, for suitable elements ω ∈ Z, then ΣY,Z is continuous,
spectral and open onto its image.

(2) If Y = Z, then the converse hold.

Proof. (1) For the sake of simplicity, set Σ := ΣY,Z . Let x ∈ Z and
Vx a basic open set of Z containing x: then, we claim that Σ−1(Vx) =
U(Vx∩Y ) and that Σ(U(Vx∩Y )) = Vx∩Σ(X (Y )). (Note that, since Y
is closed, with respect to the constructible topology, Vx ∩ Y is open in
Y and quasi-compact, and thus determines a basic open set of X (Y ).)
Indeed, take a point K ∈ Σ−1(Vx): then k := supZ(K) ∈ Vx, and thus
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K ⊆ {k}gen ⊆ Vx. Since, clearly, K ⊆ Y , we have K ∈ U(Vx ∩ Y ).
Conversely, take a point K ∈ U(Vx ∩ Y ): in particular, K ⊆ Vx, and
thus we have k := supZ(K) ≤ x, or equivalently k ∈ Vx. Hence,
K ∈ Σ−1(Vx). This reasoning also shows the second equality.

The hypotheses on Z now imply that Σ is continuous, spectral and
open onto its image.

(2) Now, let Σ := ΣZ,Z . Take a point z ∈ Z and an open neigh-
borhood U of Z. Since z = Σ({z}gen) and Σ is continuous, there is
a quasi-compact open subspace Ω of Z such that {z}gen ∈ U(Ω) (i.e.,
z ∈ Ω) and Σ(U(Ω)) ⊆ U . Since Ω ∈ U(Ω), the last statement implies
ω := supZ(Ω) ∈ U . It follows z ∈ Ω ⊆ {ω}gen ⊆ U . �

Remark 4.7. Let Z be a spectral space and let ϕZ : Z → X (Z)
be the spectral embedding introduced in Theorem 3.4(3). Under the
assumptions and the equivalent conditions of Lemma 4.6, the map ΣZ

(= ΣZ,Z) gives rise to a topological retraction, since ΣZ ◦ ϕZ is the
identity map on Z.

We say that a map f : X → Y of spectral spaces is sup-preserving
if, whenever F is a finite subset of X and there exists supX(F ), then
there exists supY (f(F )) and f(supX(F )) = supY (f(F )).

Theorem 4.8. Let X be a spectral space and let ϕ(= ϕX) : X →
X (X) be the canonical spectral embedding (Theorem 3.4(3)). Let Z be
a spectral space, and suppose that the map Σ (= Σλ(X),Z) : X (λ(X))→
Z, introduced in Lemma 4.6, is (well-defined and) spectral. Let λ :
X −→ Z be a spectral map.

(1) There is a sup-preserving spectral map λ] : X (X)→ Z, defined
by setting λ](C) := supZ(λ(C)gen), for each C ∈ X (X), such
that λ] ◦ ϕ = λ.

(2) If Λ : X (X) → Z is a spectral map such that Λ ◦ ϕ = λ, then
λ](K) ≤ Λ(K) for every K ∈ X (X) (where ≤ is the order
induced on Z by the topology).

(3) If, moveover, Λ is sup-preserving, then Λ = λ].

Proof. (1) Since λ is a spectral map, it is also continuous when X and Z
are both endowed with the constructible topology. In particular, since
the constructible topology is both quasi-compact and Hausdorff, λ is
a closed map when considered in the constructible topology, and thus
λ(X) is a closed set in the constructible topology of Z; therefore, λ(X)
is a spectral space (so that X (λ(X)) is well-defined) and the inclusion
j : λ(X) ↪→ Z is a spectral map. In particular, it is possible to define
the map Σ(= Σλ(X),Z).



18 CARMELO A. FINOCCHIARO, MARCO FONTANA, AND DARIO SPIRITO

Let λ] : X (X)→ Z be the map defined above. Keeping in mind [35,
Propositions 2.1 and 2.2] and the fact that any point of a quasi-compact
T0 space is ≤ than a maximal point of the space, we easily infer that
λ] = Σ◦X (λ) and thus, by assumption, λ] is spectral. Moreover, both
Σ and X (λ) are sup-preserving (easy verification), and thus λ] is sup-
preserving; by definition it follows that λ] ◦ ϕ = λ.

(2) Suppose now that Λ : X (X) → Z is such that Λ ◦ ϕ = λ, and
fix a K ∈ X (X).

For each x ∈ K we have {x}gen ⊆ K and since, in particular, Λ is
continuous, it follows that

λ(x) = Λ(ϕ(x)) = Λ({x}gen) ≤ Λ(K).

By definition, λ](K) is equal to the supremum in Z of the set λ(K)gen;
moreover, it is equal to the supremum of λ(K), since if y ∈ λ(K)gen then
y ≤ λ(x) for some x ∈ K. By the previous calculation, λ(x) ≤ Λ(K)
for every x ∈ K; therefore, λ](K) ≤ Λ(K), as claimed.

(3) Suppose now that the spectral map Λ is sup-preserving, and as
above let K ∈ X (X). Take any open neighborhood V of z := λ](K)
in Z. Then, by definition and by (2), in order to prove that λ](K) =
Λ(K), it suffices to show that Λ(K) ∈ V . Since Σ is continuous, then
there exist an element v ∈ V and a quasi-compact open subspace W
of Z such that z ∈ W ⊆ {v}gen ⊆ V , in view of Lemma 4.6. For any
x ∈ K, we have

Λ({x}gen) = Λ(ϕ(x)) = λ(x) ≤ supZ(λ(K)gen) = z ∈ W .

SinceW is (in particular) closed under generizations, it follows Λ({x}gen)
∈ W . Since Λ is continuous, there is a quasi-compact open subspace
Ax of Z such that {x}gen ∈ U(Ax) (i.e., x ∈ Ax) and Λ(U(Ax)) ⊆ W .
Thus,

⋃
x∈K Ax ⊇ K and, since K is (in particular) quasi-compact,

there are finitely many elements x1, x2, . . ., xn ∈ K such that K ⊆⋃n
i=1 Axi . Note that

⋃n
i=1Axi ∈ X (Z), since any Axi ∈ X (Z) is open

and quasi-compact. Keeping in mind that Λ is continuous (and thus
an order-preserving map), we have

Λ(K) ≤ Λ (
⋃n
i=1Axi) = Λ

(
supX (Z)({Axi | 1 ≤ i ≤ n})

)
= supZ ({Λ(Axi) | 1 ≤ i ≤ n}) .

Since Λ(U(Axi)) ∈ W ⊆ {v}gen, for 1 ≤ i ≤ n, it follows that
supZ({Λ(Axi) | 1 ≤ i ≤ n}) ∈ {v}gen ⊆ V, and, a fortiori, Λ(K) ∈ V .
The proof is now complete. �

Remark 4.9. The last part of the previous theorem provides a slight
generalization of [30, Proposition 5.6]. Indeed, under the equivalence
between the construction X (X) (with the Zariski topology) and the
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Smyth powerdomain Q(X) (with the upper Vietoris topology) esta-
bilished in Proposition 3.1, a sup-preserving map becomes an homo-
morphism of semilattices, and the map Σ coincides with the map

∧
considered in [30]. The difference between Theorem 4.8 and [30, Propo-
sition 5.6] is that we do not require the map Σ to exist on the whole
X (Z), but only on X (λ(X)).

Proposition 4.10. Preserve the notation and the hypotheses of Theo-
rem 4.8, and suppose that the map Σ (= Σλ(X),Z) : X (λ(X)) → Z is
injective. Then, the following hold.

(1) λ] is a spectral embedding.
(2) If, furthermore, z = supZ{λ(x) | x ∈ λ−1({z}gen)} for every

z ∈ Z, and Λ : X (X) → Z is a spectral embedding such that
Λ ◦ ϕ = λ, then Λ = λ].

Proof. (1) The proof of Lemma 4.6 shows that Σ is a spectral embed-
ding whenever it is injective. Since ϕ is also a spectral embedding, so
is Σ◦ϕ, i.e., λ].

(2) In the present situation, we claim that Λ is sup-preserving. Let
C1, C2 ∈ X (X), and consider Λ(C1∪C2) (note that the order on X (X)
is the set-theoretic inclusion, so the union is exactly their supremum);
clearly, Λ(C1∪C2) is bigger than both Λ(C1) and Λ(C2), and thus also
of their supremum.

Let x be such that λ(x) ≤ Λ(C1 ∪ C2), or equivalently such that
x ∈ λ−1(Λ(C1 ∪ C2)). Since λ(x) = Λ({x}gen), the previous inequality
can be rewritten as Λ({x}gen) ≤ Λ(C1 ∪ C2). On the other hand, Λ
is an embedding, i.e., it is a homeomorphism onto its image, and thus
{x}gen ≤ C1 ∪ C2 in X (X). Hence, x ∈ C1 ∪ C2, which means x ∈ C1

or x ∈ C2. Therefore,

Λ({x}gen) ≤ sup{Λ(C1),Λ(C2)}.
By hypothesis, we have

Λ(C1 ∪ C2) = sup{Λ({x}gen) | x ∈ X such that λ(x) ≤ Λ(C1 ∪ C2)} .
Therefore, by the previous inequality, we deduce that Λ(C1 ∪ C2) ≤
sup{Λ(C1), Λ(C2)}. As observed above, the opposite inequality also
holds, thus we have the equality, and so Λ is sup-preserving.

By Theorem 4.8(3), we conclude that Λ = λ]. �

Remark 4.11. In general, it is possible for a spectral map λ : X → Z
to have more than one extension Λ : X (X) → Z, even under the hy-
pothesis z = supZ{λ(x) | x ∈ λ−1({z}gen)} (the previous proposition
merely guarantees the unicity of an extension Λ which is an embed-
ding).
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For example, suppose Z = X (X), and let λ = ϕ be the canoni-
cal inclusion of X in X (X). Clearly, if z ∈ Z = X (X), then A :=
λ−1({z}gen) is composed by the elements of X that belong to {z}gen,
and thus the supremum of the set {λ(x) | x ∈ A}, is exactly z. More-
over, it is clear that the homeomorphism λ] : X (X) −→ Z = X (X)
whose existence is guaranteed by Theorem 4.8 is just the identity
idX (X).

On the other hand, suppose that X = {a, b, c} is composed by three
elements, and endowed with the discrete topology; that is, suppose
that every subset of X is open. Then, X is a spectral space; denote by
Λ : X (X) −→ X (X) the function defined by

Λ(C) :=

{
C if C 6= {a, b},
X if C = {a, b}.

Then, Λ is order-preserving (in the order induced by the Zariski topol-
ogy), and since X (X) is finite this implies that Λ is continuous and
spectral. Moreover, if C is in ϕ(X) (i.e., if C is a singleton) then
Λ(C) = C: therefore, Λ ◦ ϕ = ϕ = idX (X) ◦ ϕ.

5. Applications

In this section, we apply the topological results of the previous sec-
tions to various algebraic settings. In particular, in Section 5.1 we show
how the construction X relates a spectral space associated to a family
of modules with the space of all possible intersections of the family
and we prove that the space of all overrings of an integral domain D
that are integrally closed is a spectral space and it is a topological
quotient of the spectral space obtained using the construction X from
the Riemann-Zariski space Zar(D). In Section 5.2 we use X to repre-
sent some distinguished spaces of semistar operations, and provide a
different general proof of some results shown in [14].

5.1. Spaces of modules and overrings. Let R be a ring, let M be
an R-module, and let SModR(M) be the set of R-submodules of M . The
Zariski topology on SModR(M) is the topology having, as a subbasis of
open sets, the sets in the form

Bf := {N ∈ SModR(M) | f ∈ N},

where f runs in M ; equivalently, the sets in the form

BF := {N ∈ SModR(M) | F ⊆ N},
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where F runs among the finite subsets of M . Under this topology,
SModR(M) is a spectral space [13, Proposition 2.1], and the order in-
duced by the topology is exactly the inverse of the containment order;
in particular, the supremum of a subset X ⊆ SModR(M) is exactly the
intersection of the elements of X . Therefore, Lemma 4.6 translates
immediately to the following.

Proposition 5.1. Let X ⊆ SModR(M) be a subset that is closed in the
constructible topology (in particular, X is a spectral space). Then, the
map

Σ: X (X ) −→ SModR(M)

∆ 7−→
⋂
{N | N ∈ ∆}

is well-defined, continuous, spectral, and open onto its image. �

Let now D be an integral domain. An overring of D is an integral
domain contained between D and its quotient field K; the collection of
all overrings of D is denoted by Overr(D). Under the Zariski topology,
this space is closed in the constructible topology of SModD(K) (this
essentially follows from [36]); in particular, Overr(D) is a spectral space
and a subbase for the open sets of Overr(D) is formed by the sets in
the form

OF := {B ∈ Overr(D) | B ⊇ F},
where F runs among the finite subsets of K.

A distinguished subset of Overr(D) is the Riemann-Zariski space of
D, i.e., the space Zar(D) of all the valuation overrings of D. Then,
Zar(D) is a closed set in the costructible topology of Overr(D) (and
thus of SModD(K)), and in particular it is a spectral space.

Part (2) of the following proposition can also be proved directly, with
the same methods used to show that Overr(D) is a spectral space; see
[10, Proposition 3.5 and 3.6].

Proposition 5.2. Let D be an integral domain, and let X := Overric(D)
⊆ Overr(D) be the space of overrings of D that are integrally closed.

(1) X is a topological quotient of X (Zar(D)).
(2) X is closed in the constructible topology of Overr(D); in par-

ticular, it is a spectral space.
(3) If D is a Prüfer domain, then Overr(D) is homeomorphic to

X (Zar(D)).

Proof. (1) Consider the map

λ : X (Zar(D)) −→ SModD(K)

Y 7−→
⋂
{V | V ∈ Y }.
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By Proposition 5.1, λ is well-defined, continuous, spectral, and open
onto its image. n Moreover, the image of λ is exactly X : indeed, any
intersection of valuation domains is an integrally closed ring, while if
T ∈ X then T = λ(Zar(T )), and Zar(T ) is an inverse-closed subset
of Overr(D) (being quasi-compact and closed under generizations).
Therefore, X is a topological quotient of X (Zar(D)), since the map
λ : X (Zar(D))→X is open, continuous and surjective.

(2) X is closed in the constructible topology of SModD(K) and of
Overr(D), since it is the image of the spectral map λ.

(3) Assume that D is a Prüfer domain. We claim that λ establishes
a homeomorphism between X (Zar(D)) and Overr(D). Indeed, since
D is Prüfer, every overring of D is integrally closed [21, Theorem 26.2],
and thus the image of λ is exactly Overr(D).

Let now C1, C2 ∈ X (Zar(D)) be such that R :=
⋂
{V | V ∈ C1} =⋂

{V | V ∈ C2}. Since R is itself a Prüfer domain (as an overring of
a Prüfer domain), it is vacant and thus, by [12, Corollary 4.16], C1, C2

are dense subspaces of Zar(R), with respect to the inverse topology of
Zar(R). Keeping in mind that C1, C2 ∈ X (Zar(D)), it follows imme-
diately C1 = C2 = Zar(R). This proves that λ is injective. Therefore,
in the present situation, λ : X (Zar(D))→ Overr(D) is bijective, con-
tinuous and open, and thus it is a homeomorphism. �

5.2. Spaces of semistar operations. Let D be an integral domain
and let K be the quotient field of D; let F (D) be the set of D-
submodules of K. A semistar operation on D is a map ? : F (D) −→
F (D), I 7→ I?, such that, for every I, J ∈ F (D), we have: (?1) I ⊆ I?;
(?2) if I ⊆ J , then I? ⊆ J?; (?3) (I?)? = I?; (?4) xI? = (xI)? for every
x ∈ K. For the basic properties of star, semistar and closure operations
we refer to [1], [2], [8], [9], [21], [23], [24], and [32].

In [11] a natural topology, called the Zariski topology, on the space
SStar(D) of all the semistar operations on D was defined, by declaring
as a subbasis of open sets the collection of all the sets fo the type

UF := {? ∈ SStar(D) | 1 ∈ F ?},

where F runs among nonzero D-submodules of K.
A semistar operation ? is stable if (I ∩ J)? = I? ∩ J? for all nonzero

D-submodules I and J of K, and is of finite type if I? =
⋃
{J? |

J ⊆ I, J finitely generated over D} for every nonzero D-submodule I
of K. By [11, Corollary 4.4], a semistar operation ? is simultaneously
stable and of finite type if and only if there is a quasi-compact subset
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Y ⊆ Spec(D) such that ? = sY , where sY is defined as

IsY :=
⋂
{IDP | P ∈ Y }.

We denote by S̃Star(D) the set of all stable semistar operations of
finite type.

It is quite simple to show that the set S̃Star(D), endowed with the
subspace topology induced by that of SStar(D), has basic open sets of
the type

ŨJ := {? ∈ S̃Star(D) | 1 ∈ J?},
as J ranges among the nonzero finitely generated ideal of D (see [14,

Proposition 4.1(1)]). Under this topology, S̃Star(D) is a spectral space
[14, Theorem 4.6] that can be thought of as a natural “extension” of

Spec(D), since the canonical map s : Spec(D)→ S̃Star(D), defined by
P 7→ s{P}, is a topological embedding. The construction X introduces

a new way to represent S̃Star(D).

Proposition 5.3. Let D be an integral domain.

(1) The map s] : X (D) → S̃Star(D), defined by Y 7→ sY , and the

map ∆: S̃Star(D) → X (D), defined by ? 7→ QSpec?(D) :=
{P ∈ Spec(D) | P ? ∩ D = P}, are homeomorphisms and are
inverses of each other.

(2) If ϕ : Spec(D) → X (D) is defined by P 7→ {P}gen and s :

Spec(D)→ S̃Star(D) is defined by P 7→ s{P}, then s] ◦ ϕ = s.

Proof. (1) The fact that s] and ∆ are well-defined and bijective follows
from [11, Corollary 4.4, Proposition 5.1 and Corollary 5.2].

Let ŨJ be a subbasic open set of S̃Star(D), where J is a nonzero
finitely generated ideal of D. Then, s](Y ) ∈ ŨJ if and only if 1 ∈ Js

Y ,

that is, if and only if Y ⊆ D(J). Thus, by definition, s]
−1

(ŨJ) =
U(D(J)) is open.

Conversely, a subbasic open set of X (D) has the form U(D(J)) for
some nonzero finitely generated ideal J . As above, s](U(D(J))) =

s](s]
−1

(ŨJ)) = ŨJ , so that s] is open. Hence, s] is a homeomorphism.

The bijective map ∆ : S̃Star(D) → X (D) is also a homeomorphism,
since it is the inverse map of s] which is, in particular, continuous and
open.

(2) follows from the fact that s{P} and s{P}gen coincide, for each
prime ideal P of D. �

Corollary 5.4. Let D be an integral domain. Then, S̃Star(D) is a
spectral space.
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Proof. Immediate from Propositions 5.3 and 3.4. �

Corollary 5.5. Let D1, D2 be two integral domains. Then, Spec(D1)

and Spec(D2) are homeomorphic if and only if so are S̃Star(D1) and

S̃Star(D2).

Proof. By Proposition 5.3, S̃Star(Di) ' X (Spec(Di)) for i = 1, 2. The
claim now follows from Proposition 4.5(3). �

Using a classical terminology which goes back to W. Krull (and later
adjusted by R. Gilmer), a semistar operation ? on D is called endlich
arithmetisch brauchbar, for short e.a.b., if, given finitely generated
nonzero D-submodules F,G,H of K, then (FG)? ⊆ (FH)? implies
G? ⊆ H?. Note that any Y ⊆ Zar(D) induces a semistar operation
∧Y on D defined by E∧Y :=

⋂
{EV | V ∈ Y }, for each E ∈ F (D),

and a semistar operation of type ∧Y is e.a.b. [18, Proposition 7]. We
denote by SStarf,eab(D) the set of all the semistar operations that are
at the same time e.a.b and of finite type, endowed with the subspace
Zariski topology induced by that of SStar(D).

Theorem 5.6. Let D be an integral domain. Then, the map

ε : X (Zar(D))→ SStarf,eab(D) ,

defined by ε(Y ) := ∧Y , for each Y ∈ X (Zar(D)), is a homeomorphism.

Proof. Let K be the quotient field of D, let V be a valuation overring
of D, and let mV be the maximal ideal of V . Then, the localization
V (T ) := V [T ]mV [T ] of the polynomial ring V [T ] is a valuation domain
of K(T ), called the trivial extension of V to K(T ) [21, Proposition
18.7]. For any nonempty subspace Y of Zar(D), consider the following
subring of K(T )

Kr(Y ) :=
⋂
{V (T ) | V ∈ Y },

[25], [26]. In particular, set R := Kr(Zar(D)). Then, R (like the Kr(Y ))
is a Bézout domain with quotient field K(T ) [17, Theorems 5.1 and
3.11(3)], such that Zar(R) consists of the trivial extensions of the val-
uation domains in Zar(D) [12, Propositions 3.2(2,5), 3.3 and Corollary
3.6(2)]; in particular, Zar(R) is homeomorphic to Zar(D), and thus (by
Proposition 4.5(1)) X (Zar(R)) ' X (Zar(D)). By Proposition 5.2, the
map λ : X (Zar(R)) −→ Overr(R), defined by λ(Z) :=

⋂
{V | V ∈ Z},

for each Z ∈ X (Zar(D)), is a homeomorphism. Therefore, every over-
ring of R is in the form Kr(Y ) for a unique closed set Y ⊆ Zar(D),
with respect to the inverse topology, and thus the claim will follow if we
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prove that the map ε0 : Overr(R) → SStarf,eab(D), defined by setting
ε0(Kr(Y )) := ∧Y , for each Y ∈ X (Zar(D)), is a homeomorphism.

By [12, Corollary 4.17], ε0 is clearly well-defined; it is also injective
by [17, Remark 3.5(b)]. If now ? ∈ SStarf,eab(D), there must be a
quasi-compact subspace Y of Zar(R) such that ? = ∧Y [12, Theorem
4.13], and thus ? = ε0(Kr(Y gen)). Hence, ε0 is bijective.

To show that ε0 is continuous, take a nonzero finitely-generated frac-
tional ideal F = (f0, f1, . . . , fn)D ofD, and let VF = UF∩SStarf,eab(D).
By [17, Corollary 3.4(3) and Theorem 3.11(2)], we have F∧Y = fKr(Y )∩
K, where f is the polynomial f0 + f1T + · · ·+ fnT

n; therefore,

ε−1
0 (VF ) = {A ∈ Overr(R) | 1 ∈ FA ∩K} =

= {A ∈ Overr(R) | f−1 ∈ Kr(Y )} = Of−1 ,

which is, by definition, an open set of Overr(R).
Let now OG be a subbasic open set of Overr(R), where G is a nonzero

finite subset of K(T ). Since R is a Bézout domain, GR = γR for some
γ ∈ K(T ); therefore, OG = Oγ. Let α, β ∈ K[T ] be two nonzero
polynomials such that γ = α/β; then,

ε0(Oα/β) = {∧Y ∈ SStarf,eab(R) | α/β ∈ Kr(Y )} =
= {∧Y ∈ SStarf,eab(R) | α ∈ βKr(Y )}.

With the same reasoning as above, there are b0, b1, . . . , bm, a0, a1, . . . , ak
∈ K such that

βKr(Y ) = (b0, b1, . . . , bm)Kr(Y ) and αKr(Y ) = (a0, a1, . . . , ak)Kr(Y );

therefore,

ε0(Oα/β) = {∧Y ∈ SStarf,eab(R) |a0, a1, . . . , an ∈ βKr(Y )} =
= {∧Y ∈ SStarf,eab(R) |a0, a1, . . . , an ∈ (b0, . . . , bm)Kr(Y )∩K}=
= {∧Y ∈ SStarf,eab(R) |a0, a1, . . . , an ∈ (b0, b1, . . . , bm)∧Y } =
=
⋂n
i=0{∧Y ∈ SStarf,eab(R) |ai ∈ (b0, b1, . . . , bm)∧Y }.

The sets in the last line are each equal to Va−1
i (b0...,bm); in particular,

ε0(Oα/β) is an intersection of a finite number of open sets, and thus open.
It follows that ε0 is open and thus a homeomorphism, as claimed. �
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structibles, Séminaire Henri Cartan 8 (1955-1956), Exp. No. 7, 1–10.

[6] W. H. Cornish, On H. Priestley’s dual of the category of bounded distributive
lattices, Mat. Vesnik 12 (1975), no. 4, 329–332.

[7] D.E. Dobbs and M. Fontana, Kronecker function rings and abstract Riemann
surfaces, J. Algebra 99 (1986), 263–274.

[8] N. Epstein, A guide to closure operations in commutative algebra. Progress in
Commutative Algebra 2, 1–37, Walter de Gruyter, Berlin, 2012.

[9] N. Epstein, Semistar operations and standard closure operations, Comm. Al-
gebra 43 (2015), 325–336.

[10] C.A. Finocchiaro, Spectral spaces and ultrafilters, Comm. Algebra 42 (2014),
1496–1508.

[11] C.A. Finocchiaro and D. Spirito, Some topological considerations on semistar
operations, J. Algebra, to appear.

[12] C.A. Finocchiaro, M. Fontana, and K. A. Loper, The constructible topology on
spaces of valuation domains, Trans. Am. Math. Soc. 365 (2013), 6199–6216.

[13] C.A. Finocchiaro, M. Fontana, D. Spirito, A topological version of Hilbert’s
Nullstellensatz, J. Algebra 461 (2016), 25–41.

[14] C.A. Finocchiaro, M. Fontana, D. Spirito, Spectral spaces of semistar opera-
tions, J. Pure Appl. Algebra 220(8) (2016), 2897–2913.

[15] C.A. Finocchiaro, M. Fontana, D. Spirito, New distinguished classes of spectral
spaces: a survey, in “Multiplicative Ideal Theory and Factorization Theory -
Commutative and Non-Commutative Perspectives”, S. Chapman, M. Fontana,
A. Geroldinger, and B. Olberding, Editors, Springer Proceedings in Mathemat-
ics & Statistics 170, Springer Verlag Publisher 2016.

[16] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott,
Continuous lattices and domains, Cambridge University Press, 2003.

[17] M. Fontana and K.A. Loper: Kronecker function rings: a general approach,
in “Ideal theoretic methods in commutative algebra” (Columbia, MO, 1999),
189-205, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York,
2001.

[18] M. Fontana and K.A. Loper, Cancellation properties in ideal systems: a classi-
fication of e.a.b. semistar operations, J. Pure Appl. Algebra 213 (2009), 2095-
2103.

[19] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat.
Pura Appl. (4) 123 (1980), 331–355.

[20] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and
its Applications (No. 93), Cambridge University Press, 2003.

[21] R. Gilmer, Multiplicative Ideal Theory, M. Dekker, New York, 1972.
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