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IDEMPOTENCE AND DIVISORIALTY IN PRÜFER-LIKE

DOMAINS

MARCO FONTANA, EVAN HOUSTON, AND MI HEE PARK

Abstract. Let D be a Prüfer ⋆-multiplication domain, where ⋆ is a semistar

operation on D. We show that certain ideal-theoretic properties related to

idempotence and divisoriality hold in Prüfer domains, and we use the associ-

ated semistar Nagata ring of D to show that the natural counterparts of these

properties also hold in D.

1. introduction and preliminaries

Throughout this work, D will denote an integral domain, and K will denote its

quotient field. Recall that Arnold [1] proved that D is a Prüfer domain if and only

if its associated Nagata ring D[X ]N , where N is the set of polynomials in D[X ]

whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized

to Prüfer v-multiplication domains (PvMDs) by Zafrullah [16] and Kang [14] and

to Prüfer ⋆-multiplication domains (P⋆MDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that

hold in Prüfer domains transfer in a natural way to P⋆MDs. For example, we show

that an ideal I of a Prüfer domain is idempotent if and only if it is a radical ideal

each of whose minimal primes is idempotent (Theorem 2.9), and we use a Nagata

ring transfer “machine” to transfer a natural counterpart of this characterization

to P⋆MDs. For another example, in Theorem 3.5 we show that an ideal in a Prüfer

domain of finite character is idempotent if and only it is a product of idempotent

prime ideals and, perhaps more interestingly, we characterize ideals that are simul-

taneously idempotent and divisorial as (unique) products of incomparable divisorial

idempotent primes; and we then extend this to P⋆MDs.

Let us review terminology and notation. Denote by F (D) the set of all nonzero

D–submodules of K, and by F (D) the set of all nonzero fractional ideals of D, i.e.,

E ∈ F (D) if E ∈ F (D) and there exists a nonzero d ∈ D with dE ⊆ D. Let f (D)

be the set of all nonzero finitely generated D–submodules of K. Then, obviously,

f(D) ⊆ F (D) ⊆ F (D).
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Following Okabe-Matsuda [15], a semistar operation on D is a map ⋆ : F (D) →

F (D), E 7→ E⋆, such that, for all x ∈ K, x 6= 0, and for all E,F ∈ F (D), the

following properties hold:

(⋆1) (xE)⋆ = xE⋆;

(⋆2) E ⊆ F implies E⋆ ⊆ F ⋆;

(⋆3) E ⊆ E⋆ and E⋆⋆ := (E⋆)
⋆
= E⋆.

Of course, semistar operations are natural generalizations of star operations–see

the discussion following Corollary 2.5 below.

The semistar operation ⋆ is said to have finite type if E⋆ =
⋃
{F ⋆ | F ∈

f(D), F ⊆ E} for each E ∈ F (D). To any semistar operation ⋆ we can associate a

finite-type semistar operation ⋆
f
given by

E⋆
f =

⋃
{F ⋆ | F ∈ f(D), F ⊆ E}.

We say that a nonzero ideal I of D is a quasi-⋆-ideal if I = I⋆ ∩ D, a quasi-

⋆-prime ideal if it is a prime quasi-⋆-ideal, and a quasi-⋆-maximal ideal if it is

maximal in the set of all proper quasi-⋆-ideals. A quasi-⋆-maximal ideal is a prime

ideal. We will denote by QMax⋆(D) (QSpec⋆(D)) the set of all quasi-⋆-maximal

ideals (quasi-⋆-prime ideals) of D. While quasi-⋆-maximal ideals may not exist,

quasi-⋆
f
-maximal ideals are plentiful in the sense that each proper quasi-⋆

f
-ideal is

contained in a quasi-⋆
f
-maximal ideal. (See [9] for details.) Now we can associate

to ⋆ yet another semistar operation: for E ∈ F (D), set

E⋆̃ =
⋂

{EDQ | Q ∈ QMax⋆f (D)}.

Then ⋆̃ is also a finite-type semistar operation, and we have I ⋆̃ ⊆ I⋆f ⊆ I⋆ for all

I ∈ F (D).

Let ⋆ be a semistar operation on D. Set N(⋆) = {g ∈ D[X ] | c(g)⋆ = D⋆},

where c(g) is the content of the polynomial g, i.e., the ideal of D generated by the

coefficients of g. Then N(⋆) is a saturated multiplicatively closed subset of D[X ],

and we call the ring Na(D, ⋆) := D[X ]N(⋆) the semistar Nagata ring of D with

respect to ⋆. The domain D is called a Prüfer ⋆-multiplication domain (P⋆MD) if

(FF−1)⋆f = D⋆
f (= D⋆) for each F ∈ f (D) (i.e., each such F is ⋆

f
-invertible).

(Recall that F−1 = (D : F ) = {u ∈ K | uF ⊆ D}.)

In the following two lemmas, we assemble the facts we need about Nagata rings

and P⋆MDs. Most of the proofs can be found in [6], [9], or [5].

Lemma 1.1. Let ⋆ be a semistar operation on D. Then:

(1) D⋆ = D⋆
f .

(2) QMax⋆f (D) = QMax⋆̃(D).

(3) The map QMax⋆f (D) → Max(Na(D, ⋆)), P 7→ PNa(D, ⋆), is a bijection

with inverse map M 7→M ∩D.

(4) P 7→ PNa(D, ⋆) defines an injective map QSpec⋆̃(D) → Spec(Na(D, ⋆)).

(5) N(⋆) = N(⋆
f
) = N(⋆̃) and (hence) Na(D, ⋆) = Na(D, ⋆

f
) = Na(D, ⋆̃).

(6) For each E ∈ F (D), E⋆̃ = ENa(D, ⋆) ∩K, and E⋆̃Na(D, ⋆) = ENa(D, ⋆).

(7) A nonzero ideal I of D is a quasi-⋆̃-ideal if and only if I = INa(D, ⋆)∩D.

Lemma 1.2. Let ⋆ be a semistar operation on D.
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(1) The following statements are equivalent.

(a) D is a P⋆MD.

(b) Na(D, ⋆) is a Prüfer domain.

(c) The ideals of Na(D, ⋆) are extended from ideals of D.

(d) DP is a valuation domain for each P ∈ QMax⋆f (D).

(2) Assume that D is a P⋆MD. Then:

(a) ⋆̃ = ⋆
f
and (hence) D⋆ = D⋆̃.

(b) The map QSpec⋆f (D) → Spec(Na(D, ⋆)), P 7→ PNa(D, ⋆), is a bijec-

tion with inverse map Q 7→ Q ∩D.

(c) Finitely generated ideals of Na(D, ⋆) are extended from finitely gener-

ated ideals of D.

2. Idempotence

We begin with our basic definition.

Definition 2.1. Let ⋆ be a semistar operation on D. An element E ∈ F (D) is

said to be ⋆-idempotent if E⋆ = (E2)⋆.

Our primary interest will be in (nonzero) ⋆-idempotent ideals of D. Let ⋆ be a

semistar operation on D, and let I be a nonzero ideal of D. It is well known that

I⋆ ∩D is a quasi-⋆-ideal of D. (This is easy to see: we have

(I⋆ ∩D)⋆ ⊆ I⋆⋆ = I⋆ = (I ∩D)⋆ ⊆ (I⋆ ∩D)⋆,

and hence I⋆ = (I⋆ ∩ D)⋆; it follows that I⋆ ∩ D = (I⋆ ∩ D)⋆ ∩ D.) It therefore

seems natural to call I⋆∩D the quasi-⋆-closure of I. If we also call I ⋆-proper when

I⋆ ( D⋆, then it is easy to see that I is ⋆-proper if and only if its quasi-⋆-closure is

a proper quasi-⋆-ideal. Now suppose that I is ⋆-idempotent. Then

(I⋆ ∩D)⋆ = I⋆ = (I2)⋆ = ((I⋆)2)⋆ = (((I⋆ ∩D)⋆)2)⋆ = ((I⋆ ∩D)2)⋆,

whence I⋆ ∩ D is a ⋆-idempotent quasi-⋆-ideal of D. A similar argument gives

the converse. Thus a (⋆-proper) nonzero ideal is ⋆-idempotent if and only if its

quasi-⋆-closure is a (proper) ⋆-idempotent quasi-⋆-ideal.

Our study of idempotence in Prüfer domains and P⋆MDs involves the notions

of sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal P ∈ Spec(D), set

∇(P ) := {M ∈ Max(D) |M + P} and

Θ(P ) :=
⋂
{DM |M ∈ ∇(P )} .

We say that P is sharp if Θ(P ) * DP (see [11, Lemma 1] and [3, Section 1 and

Proposition 2.2]). The domain D itself is sharp (doublesharp) if every maximal

(prime) ideal of D is sharp. (Note that a Prüfer domain D is doublesharp if and

only if each overring of D is sharp [7, Theorem 4.1.7].) Now let ⋆ be a semistar

operation on D. Given a prime ideal P ∈ QSpec⋆f (D), set

∇⋆
f (P ) := {M ∈ QMax⋆f (D) |M + P} and

Θ⋆
f (P ) :=

⋂
{DM |M ∈ ∇⋆

f (P )} .
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Call P ⋆
f
-sharp if Θ⋆

f (P ) * DP . For example, if ⋆ = d is the identity, then

the ⋆
f
-sharp property coincides with the sharp property. We then say that D is

⋆
f
-(double)sharp if each quasi-⋆

f
-maximal (quasi-⋆

f
-prime) ideal of D is ⋆

f
-sharp.

(For more on sharpness, see [10], [11], [13], [7, page 62], [3], [4, Chapter 2, Section

3], and [5].)

Recall that a prime ideal P of a ring is said to be branched if there is a P -primary

ideal distinct from P . Also, recall that the domain D has finite character if each

nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties

between D (on which a semistar operation ⋆ has been defined) and its associated

Nagata ring.

Lemma 2.2. Let ⋆ be a semistar operation on D.

(1) Let E ∈ F (D). Then E is ⋆̃-idempotent if and only if ENa(D, ⋆) is idem-

potent. In particular, if D is a P⋆MD, then E is ⋆
f
-idempotent if and only

if ENa(D, ⋆) is idempotent.

(2) Let P be a quasi-⋆̃-prime of D and I a nonzero ideal of D. Then:

(a) I is P -primary in D if and only if I is a quasi-⋆̃-ideal of D and

INa(D, ⋆) is PNa(D, ⋆)-primary in Na(D, ⋆).

(b) P is branched in D if and only if PNa(D, ⋆) is branched in Na(D, ⋆).

(3) D has ⋆
f
-finite character (i.e., each nonzero element of D belongs to only

finitely many (possibly zero) M ∈ QMax⋆f (D)) if and only if Na(D, ⋆) has

finite character.

(4) Let I be a quasi-⋆̃-ideal of D. Then I is a radical ideal if and only if

INa(D, ⋆) is a radical ideal of Na(D, ⋆).

(5) Assume that D is a P⋆MD. Then:

(a) If P ∈ QSpec⋆f (D), then P is ⋆
f
-sharp if and only if PNa(D, ⋆) is

sharp in Na(D, ⋆).

(b) D is ⋆
f
-(double)sharp if and only if Na(D, ⋆) is (double)sharp.

Proof. (1)We use Lemma 1.1(6). If ENa(D, ⋆) is idempotent, then E⋆̃ = ENa(D, ⋆)∩

K = E2Na(D, ⋆)∩K = (E2)⋆̃. Conversely, if E is ⋆̃-idempotent, then (ENa(D, ⋆))2 =

E2Na(D, ⋆) = (E2)⋆̃Na(D, ⋆) = E⋆̃Na(D, ⋆) = ENa(D, ⋆). The “in particular”

statement follows because ⋆
f
= ⋆̃ in a P⋆MD (Lemma 1.2(2a)).

(2) (a) Suppose that I is P -primary. Then ID[X ] is PD[X ]-primary. Since P is

a quasi-⋆̃-prime of D, PNa(D, ⋆) is a prime ideal of Na(D, ⋆) (Lemma 1.1(4)), and

then, since Na(D, ⋆) is a quotient ring of D[X ], INa(D, ⋆) is PNa(D, ⋆)-primary

in Na(D, ⋆). Also, again using the fact that ID[X ] is PD[X ]-primary (along with

Lemma 1.1(6)), we have

I ⋆̃ ∩D = INa(D, ⋆) ∩D ⊆ ID[X ]PD[X] ∩D[X ] ∩D = ID[X ] ∩D = I,

whence I is a quasi-⋆̃-ideal of D. Conversely, assume that I is a quasi-⋆̃-ideal of

D and that INa(D, ⋆) is PNa(D, ⋆)-primary. Then for a ∈ P , there is a positive

integer n for which an ∈ INa(D, ⋆) ∩D = I ⋆̃ ∩D = I. Hence P = rad(I). It now

follows easily that I is P -primary.
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(b) Suppose that P is branched in D. Then there is a P -primary ideal I of

D distinct from P , and INa(D, ⋆) is PNa(D, ⋆)-primary by (a). Also by (a), I is

a quasi-⋆̃-ideal, from which it follows that INa(D, ⋆) 6= PNa(D, ⋆). Now suppose

that PNa(D, ⋆) is branched and that J is a PNa(D, ⋆)-primary ideal of Na(D, ⋆)

distinct from PNa(D, ⋆). Then it is straightforward to show that J ∩D is distinct

from P and is P -primary.

(3) Let ψ be a nonzero element of Na(D, ⋆), and let N be a maximal ideal with

ψ ∈ N . Then ψNa(D, ⋆) = fNa(D, ⋆) for some f ∈ D[X ], and writing N =

MNa(D, ⋆) for some M ∈ QMax⋆f (D) (Lemma 1.1(3)), we must have f ∈MD[X ]

and hence c(f) ⊆ M . Therefore, if D has finite ⋆
f
-character, then Na(D, ⋆) has

finite character. The converse is even more straightforward.

(4) Suppose that I is a radical ideal of D, and let ψn ∈ INa(D, ⋆) for some

ψ ∈ Na(D, ⋆) and positive integer n. Then there is an element g ∈ N(⋆) with

(gψn and hence) (gψ)n ∈ ID[X ]. Since ID[X ] is a radical ideal of D[X ], gψ ∈

ID[X ] and we must have ψ ∈ INa(D, ⋆). Therefore, INa(D, ⋆) is a radical ideal of

Na(D, ⋆). The converse follows easily from the fact that INa(D, ⋆)∩D = I ⋆̃∩D = I

(Lemma 1.1(7)).

(5) (a) This is part of [5, Proposition 3.5], but we give here a proof more in the

spirit of this paper. Let P ∈ QSpec⋆f (D). If P is ⋆
f
-sharp, then by [5, Proposition

3.1] P contains a finitely generated ideal I with I * M for all M ∈ ∇⋆
f (P ),

and, using the description of Max(Na(D, ⋆)) given in Lemma 1.1(3), INa(D, ⋆) is

a finitely generated ideal of Na(D, ⋆) contained in PNa(D, ⋆) but in no element

of ∇(PNa(D, ⋆)). Therefore, PNa(D, ⋆) is sharp in the Prüfer domain Na(D, ⋆).

For the converse, assume that PNa(D, ⋆) is sharp in Na(D, ⋆). Then PNa(D, ⋆)

contains a finitely generated ideal J with J ⊆ PNa(D, ⋆) but J * N for N ∈

∇(PNa(D, ⋆)) [13, Corollary 2]. Then J = INa(D, ⋆) for some finitely generated

ideal I ofD (necessarily) contained in P by Lemma 1.2(2c), and it is easy to see that

I * M for M ∈ ∇⋆
f (D). Then by [5, Proposition 3.1], P is ⋆

f
-sharp. Statement

(b) follows easily from (a) (using Lemma 1.2). �

LetD be an almost Dedekind domain with a non-finitely generated maximal ideal

M . Then M−1 = D, but M is not idempotent (since MDM is not idempotent in

the Noetherian valuation domain DM ). Our next result shows that this cannot

happen in a sharp Prüfer doman.

Theorem 2.3. Let D be a Prüfer domain. If D is (d-)sharp and I is a nonzero

ideal of D with I−1 = D, then I is idempotent.

Proof. Assume that D is sharp. Proceeding contrapositively, suppose that I is a

nonzero, non-idempotent ideal of D. Then, for some maximal ideal M of D, IDM

is not idempotent in DM . Since D is a sharp domain, we may choose a finitely

generated ideal J of D with J ⊆ M but J * N for all maximal ideals N 6= M .

Since IDM is a non-idempotent ideal in the valuation domain DM , there is an

element a ∈ I for which I2DM ( aDM . Let B := J +Da. Then I2DM ⊆ BDM

and, for N ∈ Max(D) \ {M}, I2DN ⊆ DN = BDN . Hence I2 ⊆ B. Since B

is a proper finitely generated ideal, we then have (I2)−1 ⊇ B−1 ) D. Hence

(I2)−1 6= D, from which it follows that I−1 6= D, as desired. �
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Kang [14, Proposition 2.2] proves that, for a nonzero ideal I of D, we always

have I−1Na(D, v) = (Na(D, v)) : I). This cannot be extended to general semistar

Nagata rings; for example, if D is an almost Dedekind domain with non-invertible

maximal idealM and we define a semistar operation ⋆ by E⋆ = EDM for E ∈ F (D),

then (D :M) = D and hence (D :M)Na(D, ⋆) = Na(D, ⋆) = D[X ]M [X] = DM (X)

( (DM : MDM )DM (X) = (Na(D, ⋆) : MNa(D, ⋆)) (where the proper inclusion

holds becauseMDM is principal in DM ). At any rate, what we really require is the

equality (D⋆ : E)Na(D, ⋆) = (Na(D, ⋆) : E) for E ∈ F (D). In the next lemma, we

show that this holds in a P⋆MD but not in general. The proof of part (1) of the next

lemma is a relatively straightforward translation of the proof of [14, Proposition

2.2] to the semistar setting. In carrying this out, however, we discovered a minor

flaw in the proof of [14, Proposition 2.2]. The flaw involves a reference to [12,

Proposition 34.8], but this result requires that the domain D be integrally closed.

To ensure complete transparency, we give the proof in full detail.

Lemma 2.4. Let ⋆ be a semistar operation on D. Then:

(1) (D⋆ : E)Na(D, ⋆) ⊇ (Na(D, ⋆) : E) for each E ∈ F (D).

(2) The following statements are equivalent:

(a) (D⋆ : E)Na(D, ⋆) = (Na(D, ⋆) : E) for each E ∈ F (D).

(b) D⋆ = D⋆̃.

(c) D⋆ ⊆ Na(D, ⋆).

(3) (D⋆̃ : E)Na(D, ⋆) = (Na(D, ⋆) : E) for each E ∈ F (D).

(4) If D is a P⋆MD, then the equivalent conditions in (2) hold.

Proof. (1) Let E ∈ F (D), and let ψ ∈ (Na(D, ⋆) : E). For a ∈ E, a 6= 0, we may

find g ∈ N(⋆) such that ψag ∈ D[X ]. This yields ψg ∈ a−1D[X ] ⊆ K[X ], and

hence ψ = f/g for some f ∈ K[X ]. We claim that c(f) ⊆ (D⋆ : E). Granting this,

we have f ∈ (D⋆ : E)D[X ], from which it follows that ψ = f/g ∈ (D⋆ : E)Na(D, ⋆),

as desired. To prove the claim, take b ∈ E, and note that fb ∈ Na(D, ⋆). Hence

fbh ∈ D[X ] for some h ∈ N(⋆), and so c(fh)b ⊆ D. By the content formula

[12, Theorem 28.1], there is an integer m for which c(f)c(h)m+1 = c(fh)c(h)m.

Using the fact that c(h)⋆ = D⋆, we obtain c(f)⋆ = c(fh)⋆ and hence that c(f)b ⊆

c(fh)⋆b ⊆ D⋆. Therefore, c(f) ⊆ (D⋆ : E), as claimed.

(2) Under the assumption in (c), D⋆ ⊆ Na(D, ⋆) ∩ K = D⋆̃ (Lemma 1.1(6)).

Hence (c) ⇒ (b). Now assume that D⋆ = D⋆̃. Then for E ∈ F (D), we have

(D⋆ : E)E ⊆ D⋆ = D⋆̃ ⊆ Na(D, ⋆); using (1), the implication (b) ⇒ (a) follows.

That (a) ⇒ (c) follows upon taking E = D in (a).

(3) This follows easily from (2), because Na(D, ⋆) = Na(D, ⋆̃) by Lemma 1.1(5).

(4) This follows from (2), since if D is a P⋆MD, thenD⋆ = D⋆̃ by Lemma 1.2(2a).

�

The conditions in Lemma 2.4(2) need not hold: Let F ( k be fields, V = k[[x]]

the power series ring over V in one variable, and D = F +M , where M = xk[[x]].

Define a (finite-type) semistar operation ⋆ on D by A⋆ = AV for A ∈ F (D). Then

D⋆ = V ) D = DM = D⋆̃.

We can now extend Theorem 2.3 to P⋆MDs.
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Corollary 2.5. Let ⋆ be a semistar operation on D such that D is a ⋆
f
-sharp

P⋆MD, and let I be a nonzero ideal of D with (D⋆ : I) = D⋆. Then I is ⋆
f
-

idempotent.

Proof. By Lemma 2.4(3), we have

(Na(D, ⋆) : INa(D, ⋆)) = (D⋆ : I)Na(D, ⋆) = D⋆Na(D, ⋆) = Na(D, ⋆).

Hence INa(D, ⋆) is idempotent in the Prüfer domain Na(D, ⋆) by Theorem 2.3.

Lemma 2.2(1) then yields that I is ⋆
f
-idempotent. �

Many semistar counterparts of ideal-theoretic properties in domains result in

equations that are “external” to D, since for a semistar operation ⋆ on D and a

nonzero ideal I of D, it is possible that I⋆ * D. Of course, ⋆-idempotence is one

such property. Often, one can obtain a “cleaner” counterpart by specializing from

P⋆MDs to “ordinary” PvMDs. We recall some terminology. Semistar operations

are generalizations of star operations, first considered by Krull and repopularized

by Gilmer [12, Sections 32, 34]. Roughly, a star operation is a semistar opera-

tion restricted to the set F (D) of nonzero fractional ideals of D with the added

requirement that one has D⋆ = D. The most important star operation (aside

from the d-, or trivial, star operation) is the v-operation: For E ∈ F (D), put

E−1 = {x ∈ K | xE ⊆ D} and Ev = (E−1)−1. Then vf (restricted to F (D)) is

the t-operation and ṽ is the w-operation. Thus a PvMD is a domain in which each

nonzero finitely generated ideal is t-invertible. Corollary 2.5 then has the following

restricted interpretation (which has the advantage of being internal to D).

Corollary 2.6. If D is a t-sharp PvMD and I is a nonzero ideal of D for which

I−1 = D, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Prüfer domain such that I is idempotent whenever

I is a nonzero ideal of D with I−1 = D. Then, every branched maximal ideal of D

is sharp.

Proof. Let M be a branched maximal ideal of D. Then MDM = rad(aDM ) for

some nonzero element a ∈ M [12, Theorem 17.3]. Let I := aDM ∩ D. Then I

is M -primary, and since IDM = aDM , (IDM and hence) I is not idempotent.

By hypothesis, we may choose u ∈ I−1 \ D. Since Iu ⊆ D and IDN = DN for

N ∈ Max(D) \ {M}, then u ∈
⋂
{DN | N ∈ Max(D), N 6=M}. On the other hand,

since u /∈ D, u 6∈ DM . It follows that M is sharp. �

Now we extend Proposition 2.7 to P⋆MDs.

Corollary 2.8. Let ⋆ be a semistar operation on D, and assume that D is a P⋆MD

such that I is ⋆
f
-idempotent whenever I is a nonzero ideal of D with (D⋆ : I) = D⋆.

Then, each branched quasi-⋆
f
-maximal ideal of D is ⋆

f
-sharp. (In particular if D

is a PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with

I−1 = D, then each branched maximal t-ideal of D is t-sharp.)
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Proof. Let J be a a nonzero ideal of the Prüfer domain Na(D, ⋆) with (Na(D, ⋆) :

J) = Na(D, ⋆). By Lemma 1.2(1c), J = INa(D, ⋆) for some ideal I of D. Applying

Lemma 2.4(3) and Lemma 1.1(6), we obtain (D⋆ : I) = D⋆. Hence, by hypothesis,

I is ⋆
f
-idempotent, and this yields that J = INa(D, ⋆) is idempotent in the Prüfer

domain Na(D, ⋆) (Lemma 2.2(1)). Now, let M be a branched quasi-⋆
f
-maximal

ideal of D. Then, by Lemma 2.2(2), MNa(D, ⋆) is a branched maximal ideal of

Na(D, ⋆). We may now apply Proposition 2.7 to conclude thatMNa(D, ⋆) is sharp.

Therefore, M is ⋆
f
-sharp in D by Lemma 2.2(5). �

If P is a prime ideal of a Prüfer domain D, then powers of P are P -primary

by [12, Theorem 23.3(b)]; it follows that P is idempotent if and only if PDP is

idempotent. We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be

prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper

idempotent ideal in a Prüfer domain must be a radical ideal. We (re-)prove and

extend this fact and add a converse:

Theorem 2.9. Let D be a Prüfer domain, and let I be an ideal of D. Then I

is idempotent if and only if I is a radical ideal each of whose minimal primes is

idempotent.

Proof. The result is trivial for I = (0) and vacuously true for I = D. Suppose that

I is a proper nonzero idempotent ideal of D, and let P be a prime minimal over I.

Then IDP is idempotent, and we must have IDP = PDP [12, Theorem 17.1(3)].

Hence PDP is idempotent, and therefore, by the comment above, so is P . Now let

M be a maximal ideal containing I. Then IDM is idempotent, hence prime (hence

radical). It follows (checking locally) that I is a radical ideal.

Conversely, let I be a radical ideal each of whose minimal primes is idempotent.

IfM is a maximal ideal containing I and P is a minimal prime of I contained inM ,

then IDM = PDM . Since P is idempotent, this yields IDM = I2DM . It follows

that I is idempotent. �

We next extend Theorem 2.9 to P⋆MDs.

Corollary 2.10. Let D be a P⋆MD, where ⋆ is a semistar operation on D, and let

I be a quasi-⋆
f
-ideal of D. Then I is ⋆

f
-idempotent if and only if I is a radical ideal

each of whose minimal primes is ⋆
f
-idempotent. (In particular, if D is a PvMD

and I is a t-ideal of D, then I is t-idempotent if and only if I is a radical ideal each

of whose minimal primes is t-idempotent.)

Proof. Suppose that I is ⋆
f
-idempotent. Then INa(D, ⋆) is an idempotent ideal

in Na(D, ⋆) by Lemma 2.2(1). By Theorem 2.9, INa(D, ⋆) is a radical ideal of

Na(D, ⋆), and hence, by Lemma 2.2(4), I is a radical ideal of D. Now let P be a

minimal prime of I in D. Then P is a quasi-⋆
f
-prime of D. By Lemma 1.2(2b)

PNa(D, ⋆) is minimal over INa(D, ⋆), whence PNa(D, ⋆) is idempotent, again by

Theorem 2.9. The ⋆
f
-idempotence of P now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and Lemma 2.2. �
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Recall that a Prüfer domain is said to be strongly discrete (discrete) if it has no

nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer

domain must be idempotent [12, Theorem 23.3(b)], a Prüfer domain is strongly

discrete if and only if it is discrete and has no unbranched prime ideals. We have

the following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Prüfer domain.

(1) If D is discrete, then an ideal I of D is idempotent if and only if I is a

radical ideal each of whose minimal primes is unbranched.

(2) If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a P⋆MD ⋆
f
-strongly discrete (⋆

f
-discrete) if it has no (branched)

⋆
f
-idempotent quasi-⋆

f
-prime ideals. From Lemma 2.2(1,2), we have the usual

connection between a property of a P⋆MD and the corresponding property of its

⋆-Nagata ring:

Proposition 2.12. Let ⋆ be a semistar operation on D. Then D is ⋆
f
-(strongly)

discrete P⋆MD if and only if Na(D, ⋆) is a (strongly) discrete Prüfer domain.

Applying Corollary 2.10 and Lemma 2.2(1,2), we have the following extension of

Corollary 2.11.

Corollary 2.13. Let D be a domain.

(1) Assume that D is a P⋆MD for some semistar operation ⋆ on D.

(a) IfD is ⋆
f
-discrete, then a nonzero quasi-⋆

f
-ideal I of D is ⋆

f
-idempotent

if and only if I is a radical ideal each of whose minimal primes is un-

branched.

(b) If D is ⋆
f
-strongly discrete, then D has no ⋆

f
-proper ⋆

f
-idempotent

ideals.

(2) Assume that D is a PvMD.

(a) If D is t-discrete, then a t-ideal I of D is t-idempotent if and only if

I is a radical ideal each of whose minimal primes is unbranched.

(b) If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3. Divisoriality

According to [7, Corollary 4.1.14], if D is a doublesharp Prüfer domain and P is

a nonzero, nonmaximal ideal of D, then P is divisorial. The natural question arises:

If D is a ⋆
f
-doublesharp P⋆MD and P ∈ QSpec⋆f (D)\QMax⋆f (D), is P necessarily

divisorial? Since ⋆ is an arbitrary semistar operation and divisoriality specifically

involves the v-operation, one might expect the answer to be negative. Indeed, we

give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a

general result, a corollary of which does yield divisoriality in the “ordinary” PvMD

case. First, we need a lemma, the first part of which may be regarded as an

extension of [14, Proposition 2.2(2)].

Lemma 3.1. Let ⋆ be a semistar operation on D. Then

(1) (D⋆̃ : (D⋆̃ : E))Na(D, ⋆) = (Na(D, ⋆) : (Na(D, ⋆) : E)) for each E ∈ F (D),

and
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(2) if I is a nonzero ideal of D, then I ⋆̃ is a divisorial ideal of D⋆̃ if and only

if INa(D, ⋆) is a divisorial ideal of Na(D, ⋆).

In particular, if D is a P⋆MD, then (D⋆ : (D⋆ : E))Na(D, ⋆) = (Na(D, ⋆) :

(Na(D, ⋆) : E)) for each E ∈ F (D); and, for a nonzero ideal I of D, I⋆f is

divisorial in D⋆ if and only if INa(D, ⋆) is divisorial in Na(D, ⋆).

Proof. Set N = Na(D, ⋆). For (1), applying Lemma 2.4, we have

(D⋆̃ : (D⋆̃ : E))N = (N : (D⋆̃ : E)) = (N : (N : E)).

(2) Assume that I is a nonzero ideal of D. If I ⋆̃ is divisorial in D⋆̃, then (using

(1))

(N : (N : IN )) = (D⋆̃ : (D⋆̃ : I ⋆̃))N = I ⋆̃N = IN .

Now suppose that IN is divisorial. Then

(D⋆̃ : (D⋆̃ : I ⋆̃))N = (N : (N : I)) = IN ,

whence

(D⋆̃ : (D⋆̃ : I ⋆̃)) ⊆ IN ∩K = I ⋆̃.

The “in particular” statement follows from standard considerations. �

Theorem 3.2. Let ⋆ be a semistar operation on D such that D is a ⋆
f
-doublesharp

P⋆MD, and let P ∈ QSpec⋆f (D) \ QMax⋆f (D). Then P ⋆
f is a divisorial ideal of

D⋆.

Proof. Since Na(D, ⋆) is a doublesharp Prüfer domain (Lemma 2.2(5)), PNa(D, ⋆)

is divisorial by [7, Corollary 4.1.14]. Hence P ⋆
f is divisorial inD⋆ by Lemma 3.1. �

Corollary 3.3. If D is a t-doublesharp PvMD, and P is a non-t-maximal t-prime

of D, then P is divisorial.

Proof. Take ⋆ = v in Theorem 3.2. (More precisely, take ⋆ to be any extension of

the star operation v on D to a semistar operation on D, so that ⋆
f
(restricted to

D) is the t-operation on D.) Then P = P t = P ⋆
f is divisorial by Theorem 3.2. �

Example 3.4. Let p be a prime integer and let D := Int(Z(p)). Then D is a 2-

dimensional Prüfer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a

height 2 maximal idealM of D, and let P be a height 1 prime ideal of D contained in

M . Then P = qQ[X ]∩D for some irreducible polynomial q ∈ Q[X ] [2, Proposition

V.2.3]. By [2, Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of D.

Set E⋆ = EDM for E ∈ F (D). Then, ⋆ is a finite-type semistar operation on D.

Clearly, M is the only quasi-⋆-maximal ideal of D, and, since DM is a valuation

domain, D is a P⋆MD by Lemma 1.2. Moreover, Na(D, ⋆) = DM (X) is also a

valuation domain and hence a doublesharp Prüfer domain, which yields that D is

a ⋆
f
-doublesharp P⋆MD (Lemma 2.2). Finally, since P = PDM ∩D = P ⋆ ∩D, P

is a non-⋆
f
-maximal quasi-⋆

f
-prime of D. �

In the remainder of the paper, we impose on Prüfer domains (P⋆MDs) the finite

character (finite ⋆
f
-character) condition. As we shall see, this allows improved ver-

sions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization

for (quasi-⋆
f
-)ideals that are simultaneously (⋆

f
-)idempotent and (⋆

f
-)divisorial.
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Theorem 3.5. Let D be a Prüfer domain with finite character, and let I be a

nonzero ideal of D. Then:

(1) I is idempotent if and only if I is a product of idempotent prime ideals.

(2) The following statements are equivalent.

(a) I is idempotent and divisorial.

(b) I is a product of non-maximal idempotent prime ideals.

(c) I is a product of divisorial idempotent prime ideals.

(d) I has a unique representation as the product of incomparable divisorial

idempotent primes.

Proof. (1) Suppose that I is idempotent. By Theorem 2.9, I is the intersection of

its minimal primes, each of which is idempotent. Since D has finite character, I is

contained in only finitely many maximal ideals, and, since no two distinct minimal

primes of I can be contained in a single maximal ideal, I has only finitely many

minimal primes and they are comaximal. Hence I is the product of its minimal

primes (and each is idempotent). The converse is trivial.

(2) (a) ⇒ (b): Assume that I is idempotent and divisorial. By (1) and its proof,

I = P1 · · ·Pn = P1 ∩ · · · ∩ Pn, where the Pi are the minimal primes of I. We claim

that each Pi is divisorial. To see this, observe that

(P1)
vP2 · · ·Pn ⊆ (P1 · · ·Pn)

v = Iv = I ⊆ P1.

Since the Pi are incomparable, this gives (P1)
v ⊆ P1, that is, P1 is divisorial. By

symmetry each Pi is divisorial. It is well known that in a Prüfer domain, a maximal

ideal cannot be both idempotent and divisorial. Hence the Pi are non-maximal.

(b) ⇒ (c): Since D has finite character, it is a (d)-doublesharp Prüfer domain

[13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7,

Corollary 4.1.14].

(c) ⇒ (a): Write I = Q1 · · ·Qm, where each Qj is a divisorial idempotent prime.

Since I is idempotent (by (1)), we may also write I = P1 · · ·Pn, where the Pi are

the minimal primes of I. For each i, we have Q1 · · ·Qm = I ⊆ Pi, from which it

follows that Qj ⊆ Pi for some j. By minimality, we must then have Qj = Pi. Thus

each Pi is divisorial, whence I = P1 ∩ · · · ∩ Pn is divisorial.

Finally, we show that (d) follows from the other statements. We use the notation

in the proof of (c) ⇒ (a). In the expression I = P1 · · ·Pn, the Pi are (divisorial,

idempotent, and) incomparable, and it is clear that no Pi can be omitted. To see

that this is the only such expression, consider a representation I = Q1 · · ·Qm, where

the Qi are divisorial, idempotent, and incomparable. Fix a Qk. Then P1 · · ·Pn =

I ⊆ Qk, and we have Pi ⊆ Qk for some i. However, as above, Qj ⊆ Pi for some j,

whence, by incomparability, Qk = Pi. The conclusion now follows easily. �

We note that incomparability is necessary for uniqueness above–for example,

if D is a valuation domain and P ( Q are non-maximal (necessarily divisorial)

primes, then P = PQ.

We close by extending Theorem 3.5 to P⋆MDs and then to “ordinary” PvMDs.

We omit the (by now) straightforward proofs.
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Corollary 3.6. Let ⋆ be a semistar operation on D such that D is a P⋆MD with

finite ⋆
f
-character, and let I be a quasi-⋆

f
-ideal of D. Then:

(1) I is ⋆
f
-idempotent if and only if I⋆f is a ⋆

f
-product of ⋆

f
-idempotent quasi-

⋆
f
-prime ideals in D, that is, I⋆f = (P1 · · ·Pn)

⋆
f , where the Pi are ⋆

f
-

idempotent quasi-⋆
f
-primes of D.

(2) The following statements are equivalent.

(a) I is ⋆
f
-idempotent and ⋆

f
-divisorial (I⋆f is divisorial in D⋆).

(b) I is a ⋆
f
-product of non-quasi-⋆

f
-maximal idempotent quasi-⋆

f
-prime

ideals.

(c) I is a ⋆
f
-product of ⋆

f
-divisorial ⋆

f
-idempotent prime ideals.

(d) I has a unique representation as a ⋆
f
-product of incomparable ⋆

f
-

divisorial ⋆
f
-idempotent primes.

Corollary 3.7. Let D be a PvMD with finite t-character, and let I be a nonzero

t-ideal of D. Then:

(1) I is t-idempotent if and only if I is a t-product of t-idempotent t-prime

ideals in D,

(2) The following statements are equivalent.

(a) I is t-idempotent and divisorial.

(b) I is a t-product of non-t-maximal t-idempotent t-primes.

(c) I is a t-product of divisorial t-idempotent t-primes.

(d) I has a unique representation as a t-product of incomparable divisorial

t-idempotent t-primes.
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