IDEMPOTENCE AND DIVISORIALTY IN PRÜFER-LIKE DOMAINS

MARCO FONTANA, EVAN HOUSTON, AND MI HEE PARK

ABSTRACT. Let D be a Prüfer *-multiplication domain, where \star is a semistar operation on D. We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of D to show that the natural counterparts of these properties also hold in D.

1. INTRODUCTION AND PRELIMINARIES

Throughout this work, D will denote an integral domain, and K will denote its quotient field. Recall that Arnold [1] proved that D is a Prüfer domain if and only if its associated Nagata ring $D[X]_N$, where N is the set of polynomials in D[X]whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized to Prüfer v-multiplication domains (PvMDs) by Zafrullah [16] and Kang [14] and to Prüfer \star -multiplication domains (P \star MDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that hold in Prüfer domains transfer in a natural way to P \star MDs. For example, we show that an ideal I of a Prüfer domain is idempotent if and only if it is a radical ideal each of whose minimal primes is idempotent (Theorem 2.9), and we use a Nagata ring transfer "machine" to transfer a natural counterpart of this characterization to P \star MDs. For another example, in Theorem 3.5 we show that an ideal in a Prüfer domain of finite character is idempotent if and only it is a product of idempotent prime ideals and, perhaps more interestingly, we characterize ideals that are simultaneously idempotent and divisorial as (unique) products of incomparable divisorial idempotent primes; and we then extend this to P \star MDs.

Let us review terminology and notation. Denote by $\overline{F}(D)$ the set of all nonzero D-submodules of K, and by F(D) the set of all nonzero fractional ideals of D, i.e., $E \in F(D)$ if $E \in \overline{F}(D)$ and there exists a nonzero $d \in D$ with $dE \subseteq D$. Let f(D) be the set of all nonzero finitely generated D-submodules of K. Then, obviously, $f(D) \subseteq F(D) \subseteq \overline{F}(D)$.

Date: November 26, 2018.

The first-named author was partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

The second-named author was supported by a grant from the Simons Foundation (#354565). The third-named author was supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055124).

Following Okabe-Matsuda [15], a semistar operation on D is a map $\star : \overline{F}(D) \to \overline{F}(D), E \mapsto E^{\star}$, such that, for all $x \in K, x \neq 0$, and for all $E, F \in \overline{F}(D)$, the following properties hold:

- $(\star_1) \ (xE)^{\star} = xE^{\star};$
- $(\star_2) \ E \subseteq F \text{ implies } E^{\star} \subseteq F^{\star};$
- $(\star_3) E \subseteq E^{\star} \text{ and } E^{\star\star} := (E^{\star})^{\star} = E^{\star}.$

Of course, semistar operations are natural generalizations of star operations–see the discussion following Corollary 2.5 below.

The semistar operation \star is said to have *finite type* if $E^{\star} = \bigcup \{F^{\star} \mid F \in f(D), F \subseteq E\}$ for each $E \in \overline{F}(D)$. To any semistar operation \star we can associate a finite-type semistar operation \star_{t} given by

$$E^{\star_f} = \bigcup \{ F^* \mid F \in \boldsymbol{f}(D), F \subseteq E \}.$$

We say that a nonzero ideal I of D is a quasi- \star -ideal if $I = I^{\star} \cap D$, a quasi- \star -prime ideal if it is a prime quasi- \star -ideal, and a quasi- \star -maximal ideal if it is maximal in the set of all proper quasi- \star -ideals. A quasi- \star -maximal ideal is a prime ideal. We will denote by QMax^{\star}(D) (QSpec^{\star}(D)) the set of all quasi- \star -maximal ideals (quasi- \star -prime ideals) of D. While quasi- \star -maximal ideals may not exist, quasi- \star_f -maximal ideals are plentiful in the sense that each proper quasi- \star_f -ideal is contained in a quasi- \star_f -maximal ideal. (See [9] for details.) Now we can associate to \star yet another semistar operation: for $E \in \overline{F}(D)$, set

$$E^{\widetilde{\star}} = \bigcap \{ ED_Q \mid Q \in QMax^{\star_f}(D) \}.$$

Then $\widetilde{\star}$ is also a finite-type semistar operation, and we have $I^{\widetilde{\star}} \subseteq I^{\star_f} \subseteq I^{\star}$ for all $I \in \overline{F}(D)$.

Let \star be a semistar operation on D. Set $N(\star) = \{g \in D[X] \mid c(g)^{\star} = D^{\star}\}$, where c(g) is the *content* of the polynomial g, i.e., the ideal of D generated by the coefficients of g. Then $N(\star)$ is a saturated multiplicatively closed subset of D[X], and we call the ring $\operatorname{Na}(D, \star) := D[X]_{N(\star)}$ the *semistar Nagata ring of* D *with respect to* \star . The domain D is called a *Prüfer* \star -*multiplication domain* (P \star MD) if $(FF^{-1})^{\star_f} = D^{\star_f} (= D^{\star})$ for each $F \in f(D)$ (i.e., each such F is \star_f -invertible). (Recall that $F^{-1} = (D:F) = \{u \in K \mid uF \subseteq D\}$.)

In the following two lemmas, we assemble the facts we need about Nagata rings and $P \star MDs$. Most of the proofs can be found in [6], [9], or [5].

Lemma 1.1. Let \star be a semistar operation on D. Then:

- (1) $D^* = D^{*_f}$.
- (2) $\operatorname{QMax}^{\star_f}(D) = \operatorname{QMax}^{\star}(D).$
- (3) The map $\operatorname{QMax}^{\star_f}(D) \to \operatorname{Max}(\operatorname{Na}(D,\star)), P \mapsto P\operatorname{Na}(D,\star), \text{ is a bijection}$ with inverse map $M \mapsto M \cap D$.
- (4) $P \mapsto PNa(D, \star)$ defines an injective map $QSpec^{\star}(D) \to Spec(Na(D, \star))$.
- (5) $N(\star) = N(\star_f) = N(\widetilde{\star})$ and (hence) $\operatorname{Na}(D, \star) = \operatorname{Na}(D, \star_f) = \operatorname{Na}(D, \widetilde{\star}).$
- (6) For each $E \in \overline{F}(D)$, $E^{\widetilde{\star}} = E \operatorname{Na}(D, \star) \cap K$, and $E^{\widetilde{\star}} \operatorname{Na}(D, \star) = E \operatorname{Na}(D, \star)$.
- (7) A nonzero ideal I of D is a quasi- $\tilde{\star}$ -ideal if and only if $I = INa(D, \star) \cap D$.

Lemma 1.2. Let \star be a semistar operation on D.

- (1) The following statements are equivalent.
 - (a) D is a $P \star MD$.
 - (b) $Na(D, \star)$ is a Prüfer domain.
 - (c) The ideals of $Na(D, \star)$ are extended from ideals of D.
 - (d) D_P is a valuation domain for each $P \in QMax^{\star_f}(D)$.
- (2) Assume that D is a $P \star MD$. Then:
 - (a) $\widetilde{\star} = \star_f$ and (hence) $D^{\star} = D^{\widetilde{\star}}$.
 - (b) The map $\operatorname{QSpec}^{\star_f}(D) \to \operatorname{Spec}(\operatorname{Na}(D,\star)), P \mapsto P\operatorname{Na}(D,\star), \text{ is a bijection with inverse map } Q \mapsto Q \cap D.$
 - (c) Finitely generated ideals of $Na(D, \star)$ are extended from finitely generated ideals of D.

2. Idempotence

We begin with our basic definition.

Definition 2.1. Let \star be a semistar operation on D. An element $E \in \overline{F}(D)$ is said to be \star -idempotent if $E^{\star} = (E^2)^{\star}$.

Our primary interest will be in (nonzero) *-idempotent *ideals* of D. Let \star be a semistar operation on D, and let I be a nonzero ideal of D. It is well known that $I^* \cap D$ is a quasi- \star -ideal of D. (This is easy to see: we have

$$(I^* \cap D)^* \subseteq I^{**} = I^* = (I \cap D)^* \subseteq (I^* \cap D)^*,$$

and hence $I^* = (I^* \cap D)^*$; it follows that $I^* \cap D = (I^* \cap D)^* \cap D$.) It therefore seems natural to call $I^* \cap D$ the *quasi-*-closure* of *I*. If we also call I *-*proper* when $I^* \subsetneq D^*$, then it is easy to see that *I* is *-proper if and only if its quasi-*-closure is a proper quasi-*-ideal. Now suppose that *I* is *-idempotent. Then

$$(I^* \cap D)^* = I^* = (I^2)^* = ((I^*)^2)^* = (((I^* \cap D)^*)^2)^* = ((I^* \cap D)^2)^*,$$

whence $I^* \cap D$ is a *-idempotent quasi-*-ideal of D. A similar argument gives the converse. Thus a (*-proper) nonzero ideal is *-idempotent if and only if its quasi-*-closure is a (proper) *-idempotent quasi-*-ideal.

Our study of idempotence in Prüfer domains and P*MDs involves the notions of sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal $P \in \text{Spec}(D)$, set

$$\nabla(P) := \{ M \in \operatorname{Max}(D) \mid M \not\supseteq P \} \text{ and } \\ \Theta(P) := \bigcap \{ D_M \mid M \in \nabla(P) \}.$$

We say that P is sharp if $\Theta(P) \not\subseteq D_P$ (see [11, Lemma 1] and [3, Section 1 and Proposition 2.2]). The domain D itself is sharp (doublesharp) if every maximal (prime) ideal of D is sharp. (Note that a Prüfer domain D is doublesharp if and only if each overring of D is sharp [7, Theorem 4.1.7].) Now let \star be a semistar operation on D. Given a prime ideal $P \in \operatorname{QSpec}^{\star_f}(D)$, set

$$\nabla^{\star_f}(P) := \{ M \in \operatorname{QMax}^{\star_f}(D) \mid M \not\supseteq P \} \text{ and } \\ \Theta^{\star_f}(P) := \bigcap \{ D_M \mid M \in \nabla^{\star_f}(P) \} .$$

Call $P \star_f$ -sharp if $\Theta^{\star_f}(P) \notin D_P$. For example, if $\star = d$ is the identity, then the \star_f -sharp property coincides with the sharp property. We then say that D is \star_f -(double)sharp if each quasi- \star_f -maximal (quasi- \star_f -prime) ideal of D is \star_f -sharp. (For more on sharpness, see [10], [11], [13], [7, page 62], [3], [4, Chapter 2, Section 3], and [5].)

Recall that a prime ideal P of a ring is said to be *branched* if there is a P-primary ideal distinct from P. Also, recall that the domain D has *finite character* if each nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties between D (on which a semistar operation \star has been defined) and its associated Nagata ring.

Lemma 2.2. Let \star be a semistar operation on D.

- (1) Let $E \in \overline{F}(D)$. Then E is $\tilde{\star}$ -idempotent if and only if $ENa(D, \star)$ is idempotent. In particular, if D is a P \star MD, then E is \star_f -idempotent if and only if $ENa(D, \star)$ is idempotent.
- (2) Let P be a quasi-x→-prime of D and I a nonzero ideal of D. Then:
 (a) I is P-primary in D if and only if I is a quasi-x→-ideal of D and INa(D,*) is PNa(D,*)-primary in Na(D,*).
 - (b) P is branched in D if and only if $PNa(D, \star)$ is branched in $Na(D, \star)$.
- (3) D has *_f-finite character (i.e., each nonzero element of D belongs to only finitely many (possibly zero) M ∈ QMax*_f(D)) if and only if Na(D,*) has finite character.
- (4) Let I be a quasi-x̄-ideal of D. Then I is a radical ideal if and only if INa(D,★) is a radical ideal of Na(D,★).
- (5) Assume that D is a $P \star MD$. Then:
 - (a) If $P \in \operatorname{QSpec}^{\star_f}(D)$, then P is \star_f -sharp if and only if $\operatorname{PNa}(D,\star)$ is sharp in $\operatorname{Na}(D,\star)$.
 - (b) D is \star_{f} -(double)sharp if and only if Na(D, \star) is (double)sharp.

Proof. (1) We use Lemma 1.1(6). If $ENa(D, \star)$ is idempotent, then $E^{\widetilde{\star}} = ENa(D, \star) \cap K = E^2Na(D, \star) \cap K = (E^2)^{\widetilde{\star}}$. Conversely, if *E* is $\widetilde{\star}$ -idempotent, then $(ENa(D, \star))^2 = E^2Na(D, \star) = (E^2)^{\widetilde{\star}}Na(D, \star) = E^{\widetilde{\star}}Na(D, \star) = ENa(D, \star)$. The "in particular" statement follows because $\star_f = \widetilde{\star}$ in a P \star MD (Lemma 1.2(2a)).

(2) (a) Suppose that I is P-primary. Then ID[X] is PD[X]-primary. Since P is a quasi- $\tilde{\star}$ -prime of D, $P\operatorname{Na}(D, \star)$ is a prime ideal of $\operatorname{Na}(D, \star)$ (Lemma 1.1(4)), and then, since $\operatorname{Na}(D, \star)$ is a quotient ring of D[X], $I\operatorname{Na}(D, \star)$ is $P\operatorname{Na}(D, \star)$ -primary in $\operatorname{Na}(D, \star)$. Also, again using the fact that ID[X] is PD[X]-primary (along with Lemma 1.1(6)), we have

$$I^{\star} \cap D = I \mathrm{Na}(D, \star) \cap D \subseteq I D[X]_{PD[X]} \cap D[X] \cap D = I D[X] \cap D = I,$$

whence I is a quasi- $\tilde{\star}$ -ideal of D. Conversely, assume that I is a quasi- $\tilde{\star}$ -ideal of D and that $INa(D, \star)$ is $PNa(D, \star)$ -primary. Then for $a \in P$, there is a positive integer n for which $a^n \in INa(D, \star) \cap D = I^{\tilde{\star}} \cap D = I$. Hence P = rad(I). It now follows easily that I is P-primary.

(b) Suppose that P is branched in D. Then there is a P-primary ideal I of D distinct from P, and $INa(D, \star)$ is $PNa(D, \star)$ -primary by (a). Also by (a), I is a quasi- $\tilde{\star}$ -ideal, from which it follows that $INa(D, \star) \neq PNa(D, \star)$. Now suppose that $PNa(D, \star)$ is branched and that J is a $PNa(D, \star)$ -primary ideal of $Na(D, \star)$ distinct from $PNa(D, \star)$. Then it is straightforward to show that $J \cap D$ is distinct from P and is P-primary.

(3) Let ψ be a nonzero element of Na (D, \star) , and let N be a maximal ideal with $\psi \in N$. Then ψ Na $(D, \star) = f$ Na (D, \star) for some $f \in D[X]$, and writing N = MNa (D, \star) for some $M \in Q$ Max^{\star_f}(D) (Lemma 1.1(3)), we must have $f \in MD[X]$ and hence $c(f) \subseteq M$. Therefore, if D has finite \star_f -character, then Na (D, \star) has finite character. The converse is even more straightforward.

(4) Suppose that I is a radical ideal of D, and let $\psi^n \in INa(D, \star)$ for some $\psi \in Na(D, \star)$ and positive integer n. Then there is an element $g \in N(\star)$ with $(g\psi^n \text{ and hence}) \ (g\psi)^n \in ID[X]$. Since ID[X] is a radical ideal of D[X], $g\psi \in ID[X]$ and we must have $\psi \in INa(D, \star)$. Therefore, $INa(D, \star)$ is a radical ideal of $Na(D, \star)$. The converse follows easily from the fact that $INa(D, \star) \cap D = I^{\tilde{\star}} \cap D = I$ (Lemma 1.1(7)).

(5) (a) This is part of [5, Proposition 3.5], but we give here a proof more in the spirit of this paper. Let $P \in \operatorname{QSpec}^{\star_f}(D)$. If P is \star_f -sharp, then by [5, Proposition 3.1] P contains a finitely generated ideal I with $I \notin M$ for all $M \in \nabla^{\star_f}(P)$, and, using the description of $\operatorname{Max}(\operatorname{Na}(D,\star))$ given in Lemma 1.1(3), $I\operatorname{Na}(D,\star)$ is a finitely generated ideal of $\operatorname{Na}(D,\star)$ contained in $P\operatorname{Na}(D,\star)$ but in no element of $\nabla(P\operatorname{Na}(D,\star))$. Therefore, $P\operatorname{Na}(D,\star)$ is sharp in the Prüfer domain $\operatorname{Na}(D,\star)$. For the converse, assume that $P\operatorname{Na}(D,\star)$ is sharp in $\operatorname{Na}(D,\star)$. Then $P\operatorname{Na}(D,\star)$ contains a finitely generated ideal J with $J \subseteq P\operatorname{Na}(D,\star)$ but $J \notin N$ for $N \in \nabla(P\operatorname{Na}(D,\star))$ [13, Corollary 2]. Then $J = I\operatorname{Na}(D,\star)$ for some finitely generated ideal I of D (necessarily) contained in P by Lemma 1.2(2c), and it is easy to see that $I \notin M$ for $M \in \nabla^{\star_f}(D)$. Then by [5, Proposition 3.1], P is \star_f -sharp. Statement (b) follows easily from (a) (using Lemma 1.2).

Let D be an almost Dedekind domain with a non-finitely generated maximal ideal M. Then $M^{-1} = D$, but M is not idempotent (since MD_M is not idempotent in the Noetherian valuation domain D_M). Our next result shows that this cannot happen in a sharp Prüfer doman.

Theorem 2.3. Let D be a Prüfer domain. If D is (d-)sharp and I is a nonzero ideal of D with $I^{-1} = D$, then I is idempotent.

Proof. Assume that D is sharp. Proceeding contrapositively, suppose that I is a nonzero, non-idempotent ideal of D. Then, for some maximal ideal M of D, ID_M is not idempotent in D_M . Since D is a sharp domain, we may choose a finitely generated ideal J of D with $J \subseteq M$ but $J \nsubseteq N$ for all maximal ideals $N \neq M$. Since ID_M is a non-idempotent ideal in the valuation domain D_M , there is an element $a \in I$ for which $I^2D_M \subsetneq aD_M$. Let B := J + Da. Then $I^2D_M \subseteq BD_M$ and, for $N \in \text{Max}(D) \setminus \{M\}$, $I^2D_N \subseteq D_N = BD_N$. Hence $I^2 \subseteq B$. Since B is a proper finitely generated ideal, we then have $(I^2)^{-1} \supseteq B^{-1} \supseteq D$. Hence $(I^2)^{-1} \neq D$, from which it follows that $I^{-1} \neq D$, as desired.

Kang [14, Proposition 2.2] proves that, for a nonzero ideal I of D, we always have $I^{-1}\operatorname{Na}(D, v) = (\operatorname{Na}(D, v)) : I)$. This cannot be extended to general semistar Nagata rings; for example, if D is an almost Dedekind domain with non-invertible maximal ideal M and we define a semistar operation \star by $E^{\star} = ED_M$ for $E \in \overline{F}(D)$, then (D:M) = D and hence $(D:M)\operatorname{Na}(D,\star) = \operatorname{Na}(D,\star) = D[X]_{M[X]} = D_M(X)$ $\subsetneq (D_M:MD_M)D_M(X) = (\operatorname{Na}(D,\star):M\operatorname{Na}(D,\star))$ (where the proper inclusion holds because MD_M is principal in D_M). At any rate, what we really require is the equality $(D^{\star}:E)\operatorname{Na}(D,\star) = (\operatorname{Na}(D,\star):E)$ for $E \in \overline{F}(D)$. In the next lemma, we show that this holds in a P \star MD but not in general. The proof of part (1) of the next lemma is a relatively straightforward translation of the proof of [14, Proposition 2.2] to the semistar setting. In carrying this out, however, we discovered a minor flaw in the proof of [14, Proposition 2.2]. The flaw involves a reference to [12, Proposition 34.8], but this result requires that the domain D be integrally closed. To ensure complete transparency, we give the proof in full detail.

Lemma 2.4. Let \star be a semistar operation on D. Then:

- (1) $(D^*: E)$ Na $(D, \star) \supseteq$ (Na $(D, \star): E)$ for each $E \in \overline{F}(D)$.
- (2) The following statements are equivalent:
 - (a) $(D^*: E)$ Na $(D, \star) = ($ Na $(D, \star): E)$ for each $E \in \overline{F}(D)$.
 - (b) $D^* = D^{\widetilde{*}}$.
 - (c) $D^* \subseteq \operatorname{Na}(D, \star)$.
- (3) $(D^{\tilde{\star}}: E)$ Na $(D, \star) = ($ Na $(D, \star): E)$ for each $E \in \overline{F}(D)$.
- (4) If D is a $P \star MD$, then the equivalent conditions in (2) hold.

Proof. (1) Let $E \in \overline{F}(D)$, and let $\psi \in (\operatorname{Na}(D, \star) : E)$. For $a \in E$, $a \neq 0$, we may find $g \in N(\star)$ such that $\psi ag \in D[X]$. This yields $\psi g \in a^{-1}D[X] \subseteq K[X]$, and hence $\psi = f/g$ for some $f \in K[X]$. We claim that $c(f) \subseteq (D^{\star} : E)$. Granting this, we have $f \in (D^{\star} : E)D[X]$, from which it follows that $\psi = f/g \in (D^{\star} : E)\operatorname{Na}(D, \star)$, as desired. To prove the claim, take $b \in E$, and note that $fb \in \operatorname{Na}(D, \star)$. Hence $fbh \in D[X]$ for some $h \in N(\star)$, and so $c(fh)b \subseteq D$. By the content formula [12, Theorem 28.1], there is an integer m for which $c(f)c(h)^{m+1} = c(fh)c(h)^m$. Using the fact that $c(h)^{\star} = D^{\star}$, we obtain $c(f)^{\star} = c(fh)^{\star}$ and hence that $c(f)b \subseteq c(fh)^{\star}b \subseteq D^{\star}$. Therefore, $c(f) \subseteq (D^{\star} : E)$, as claimed.

(2) Under the assumption in (c), $D^* \subseteq \operatorname{Na}(D, \star) \cap K = D^{\widetilde{\star}}$ (Lemma 1.1(6)). Hence (c) \Rightarrow (b). Now assume that $D^* = D^{\widetilde{\star}}$. Then for $E \in \overline{F}(D)$, we have $(D^*: E)E \subseteq D^* = D^{\widetilde{\star}} \subseteq \operatorname{Na}(D, \star)$; using (1), the implication (b) \Rightarrow (a) follows. That (a) \Rightarrow (c) follows upon taking E = D in (a).

- (3) This follows easily from (2), because $\operatorname{Na}(D, \star) = \operatorname{Na}(D, \widetilde{\star})$ by Lemma 1.1(5).
- (4) This follows from (2), since if D is a P*MD, then $D^* = D^*$ by Lemma 1.2(2a).

The conditions in Lemma 2.4(2) need not hold: Let $F \subsetneq k$ be fields, V = k[[x]]the power series ring over V in one variable, and D = F + M, where M = xk[[x]]. Define a (finite-type) semistar operation \star on D by $A^{\star} = AV$ for $A \in \overline{F}(D)$. Then $D^{\star} = V \supsetneq D = D_M = D^{\tilde{\star}}$.

We can now extend Theorem 2.3 to $P\star MDs$.

Corollary 2.5. Let \star be a semistar operation on D such that D is a \star_f -sharp $P\star MD$, and let I be a nonzero ideal of D with $(D^{\star}: I) = D^{\star}$. Then I is \star_f -idempotent.

Proof. By Lemma 2.4(3), we have

$$(\operatorname{Na}(D,\star): I\operatorname{Na}(D,\star)) = (D^{\star}: I)\operatorname{Na}(D,\star) = D^{\star}\operatorname{Na}(D,\star) = \operatorname{Na}(D,\star).$$

Hence $INa(D, \star)$ is idempotent in the Prüfer domain $Na(D, \star)$ by Theorem 2.3. Lemma 2.2(1) then yields that I is \star_{t} -idempotent.

Many semistar counterparts of ideal-theoretic properties in domains result in equations that are "external" to D, since for a semistar operation \star on D and a nonzero ideal I of D, it is possible that $I^* \not\subseteq D$. Of course, \star -idempotence is one such property. Often, one can obtain a "cleaner" counterpart by specializing from $P\star MDs$ to "ordinary" PvMDs. We recall some terminology. Semistar operations are generalizations of *star* operations, first considered by Krull and repopularized by Gilmer [12, Sections 32, 34]. Roughly, a star operation is a semistar operation restricted to the set F(D) of nonzero fractional ideals of D with the added requirement that one has $D^* = D$. The most important star operation (aside from the d-, or trivial, star operation) is the *v*-operation: For $E \in F(D)$, put $E^{-1} = \{x \in K \mid xE \subseteq D\}$ and $E^v = (E^{-1})^{-1}$. Then v_f (restricted to F(D)) is the *t*-operation and \tilde{v} is the *w*-operation. Thus a PvMD is a domain in which each nonzero finitely generated ideal is *t*-invertible. Corollary 2.5 then has the following restricted interpretation (which has the advantage of being *internal* to D).

Corollary 2.6. If D is a t-sharp PvMD and I is a nonzero ideal of D for which $I^{-1} = D$, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Prüfer domain such that I is idempotent whenever I is a nonzero ideal of D with $I^{-1} = D$. Then, every branched maximal ideal of D is sharp.

Proof. Let M be a branched maximal ideal of D. Then $MD_M = \operatorname{rad}(aD_M)$ for some nonzero element $a \in M$ [12, Theorem 17.3]. Let $I := aD_M \cap D$. Then Iis M-primary, and since $ID_M = aD_M$, $(ID_M \text{ and hence}) I$ is not idempotent. By hypothesis, we may choose $u \in I^{-1} \setminus D$. Since $Iu \subseteq D$ and $ID_N = D_N$ for $N \in \operatorname{Max}(D) \setminus \{M\}$, then $u \in \bigcap \{D_N \mid N \in \operatorname{Max}(D), N \neq M\}$. On the other hand, since $u \notin D$, $u \notin D_M$. It follows that M is sharp. \Box

Now we extend Proposition 2.7 to $P \star MDs$.

Corollary 2.8. Let \star be a semistar operation on D, and assume that D is a $P\star MD$ such that I is \star_f -idempotent whenever I is a nonzero ideal of D with $(D^*:I) = D^*$. Then, each branched quasi- \star_f -maximal ideal of D is \star_f -sharp. (In particular if D is a PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with $I^{-1} = D$, then each branched maximal t-ideal of D is t-sharp.) *Proof.* Let *J* be a a nonzero ideal of the Prüfer domain Na(*D*, *) with (Na(*D*, *) : *J*) = Na(*D*, *). By Lemma 1.2(1c), *J* = *I*Na(*D*, *) for some ideal *I* of *D*. Applying Lemma 2.4(3) and Lemma 1.1(6), we obtain (*D** : *I*) = *D**. Hence, by hypothesis, *I* is \star_f -idempotent, and this yields that *J* = *I*Na(*D*, *) is idempotent in the Prüfer domain Na(*D*, *) (Lemma 2.2(1)). Now, let *M* be a branched quasi- \star_f -maximal ideal of *D*. Then, by Lemma 2.2(2), *M*Na(*D*, *) is a branched maximal ideal of Na(*D*, *). We may now apply Proposition 2.7 to conclude that *M*Na(*D*, *) is sharp. Therefore, *M* is \star_f -sharp in *D* by Lemma 2.2(5). □

If P is a prime ideal of a Prüfer domain D, then powers of P are P-primary by [12, Theorem 23.3(b)]; it follows that P is idempotent if and only if PD_P is idempotent. We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper idempotent ideal in a Prüfer domain must be a radical ideal. We (re-)prove and extend this fact and add a converse:

Theorem 2.9. Let D be a Prüfer domain, and let I be an ideal of D. Then I is idempotent if and only if I is a radical ideal each of whose minimal primes is idempotent.

Proof. The result is trivial for I = (0) and vacuously true for I = D. Suppose that I is a proper nonzero idempotent ideal of D, and let P be a prime minimal over I. Then ID_P is idempotent, and we must have $ID_P = PD_P$ [12, Theorem 17.1(3)]. Hence PD_P is idempotent, and therefore, by the comment above, so is P. Now let M be a maximal ideal containing I. Then ID_M is idempotent, hence prime (hence radical). It follows (checking locally) that I is a radical ideal.

Conversely, let I be a radical ideal each of whose minimal primes is idempotent. If M is a maximal ideal containing I and P is a minimal prime of I contained in M, then $ID_M = PD_M$. Since P is idempotent, this yields $ID_M = I^2D_M$. It follows that I is idempotent.

We next extend Theorem 2.9 to $P\star MDs$.

Corollary 2.10. Let D be a $P \star MD$, where \star is a semistar operation on D, and let I be a quasi- \star_f -ideal of D. Then I is \star_f -idempotent if and only if I is a radical ideal each of whose minimal primes is \star_f -idempotent. (In particular, if D is a PvMD and I is a t-ideal of D, then I is t-idempotent if and only if I is a radical ideal each of whose minimal primes is t-idempotent.)

Proof. Suppose that I is \star_f -idempotent. Then $INa(D, \star)$ is an idempotent ideal in $Na(D, \star)$ by Lemma 2.2(1). By Theorem 2.9, $INa(D, \star)$ is a radical ideal of $Na(D, \star)$, and hence, by Lemma 2.2(4), I is a radical ideal of D. Now let P be a minimal prime of I in D. Then P is a quasi- \star_f -prime of D. By Lemma 1.2(2b) $PNa(D, \star)$ is minimal over $INa(D, \star)$, whence $PNa(D, \star)$ is idempotent, again by Theorem 2.9. The \star_f -idempotence of P now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and Lemma 2.2. \Box

Recall that a Prüfer domain is said to be *strongly discrete (discrete)* if it has no nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer domain must be idempotent [12, Theorem 23.3(b)], a Prüfer domain is strongly discrete if and only if it is discrete and has no unbranched prime ideals. We have the following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Prüfer domain.

- (1) If D is discrete, then an ideal I of D is idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
- (2) If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a P*MD \star_f -strongly discrete (\star_f -discrete) if it has no (branched) \star_f -idempotent quasi- \star_f -prime ideals. From Lemma 2.2(1,2), we have the usual connection between a property of a P*MD and the corresponding property of its \star -Nagata ring:

Proposition 2.12. Let \star be a semistar operation on D. Then D is \star_f -(strongly) discrete $P\star MD$ if and only if $\operatorname{Na}(D,\star)$ is a (strongly) discrete Prüfer domain.

Applying Corollary 2.10 and Lemma 2.2(1,2), we have the following extension of Corollary 2.11.

Corollary 2.13. Let D be a domain.

- (1) Assume that D is a $P \star MD$ for some semistar operation \star on D.
 - (a) If D is ⋆_f-discrete, then a nonzero quasi-⋆_f-ideal I of D is ⋆_f-idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
 - (b) If D is \star_f -strongly discrete, then D has no \star_f -proper \star_f -idempotent ideals.
- (2) Assume that D is a PvMD.
 - (a) If D is t-discrete, then a t-ideal I of D is t-idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
 - (b) If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3. Divisoriality

According to [7, Corollary 4.1.14], if D is a doublesharp Prüfer domain and P is a nonzero, nonmaximal ideal of D, then P is divisorial. The natural question arises: If D is a \star_f -doublesharp P \star MD and $P \in \operatorname{QSpec}^{\star_f}(D) \setminus \operatorname{QMax}^{\star_f}(D)$, is P necessarily divisorial? Since \star is an arbitrary semistar operation and divisoriality specifically involves the v-operation, one might expect the answer to be negative. Indeed, we give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a general result, a corollary of which does yield divisoriality in the "ordinary" PvMD case. First, we need a lemma, the first part of which may be regarded as an extension of [14, Proposition 2.2(2)].

Lemma 3.1. Let \star be a semistar operation on D. Then

(1) $(D^{\widetilde{\star}}:(D^{\widetilde{\star}}:E))\operatorname{Na}(D,\star) = (\operatorname{Na}(D,\star):(\operatorname{Na}(D,\star):E))$ for each $E \in \overline{F}(D)$, and

(2) if I is a nonzero ideal of D, then I[×] is a divisorial ideal of D[×] if and only if INa(D, ⋆) is a divisorial ideal of Na(D, ⋆).

In particular, if D is a $P \star MD$, then $(D^* : (D^* : E)) \operatorname{Na}(D, \star) = (\operatorname{Na}(D, \star) : (\operatorname{Na}(D, \star) : E))$ for each $E \in \overline{F}(D)$; and, for a nonzero ideal I of D, I^{\star_f} is divisorial in D^* if and only if $\operatorname{INa}(D, \star)$ is divisorial in $\operatorname{Na}(D, \star)$.

Proof. Set $\mathcal{N} = \operatorname{Na}(D, \star)$. For (1), applying Lemma 2.4, we have

 $(D^{\widetilde{\star}}: (D^{\widetilde{\star}}:E))\mathcal{N} = (\mathcal{N}: (D^{\widetilde{\star}}:E)) = (\mathcal{N}: (\mathcal{N}:E)).$

(2) Assume that I is a nonzero ideal of D. If $I^{\tilde{\star}}$ is divisorial in $D^{\tilde{\star}}$, then (using (1))

$$(\mathcal{N}:(\mathcal{N}:I\mathcal{N})) = (D^{\widetilde{\star}}:(D^{\widetilde{\star}}:I^{\widetilde{\star}}))\mathcal{N} = I^{\widetilde{\star}}\mathcal{N} = I\mathcal{N}.$$

Now suppose that $I\mathcal{N}$ is divisorial. Then

$$(D^{\widetilde{\star}}: (D^{\widetilde{\star}}: I^{\widetilde{\star}}))\mathcal{N} = (\mathcal{N}: (\mathcal{N}: I)) = I\mathcal{N},$$

whence

$$(D^{\widetilde{\star}}: (D^{\widetilde{\star}}: I^{\widetilde{\star}})) \subseteq I\mathcal{N} \cap K = I^{\widetilde{\star}}.$$

The "in particular" statement follows from standard considerations.

Theorem 3.2. Let \star be a semistar operation on D such that D is a \star_f -doublesharp $P \star MD$, and let $P \in \operatorname{QSpec}^{\star_f}(D) \setminus \operatorname{QMax}^{\star_f}(D)$. Then P^{\star_f} is a divisorial ideal of D^{\star} .

Proof. Since Na(D, \star) is a doublesharp Prüfer domain (Lemma 2.2(5)), PNa(D, \star) is divisorial by [7, Corollary 4.1.14]. Hence P^{\star_f} is divisorial in D^{\star} by Lemma 3.1. \Box

Corollary 3.3. If D is a t-doublesharp PvMD, and P is a non-t-maximal t-prime of D, then P is divisorial.

Proof. Take $\star = v$ in Theorem 3.2. (More precisely, take \star to be any extension of the star operation v on D to a semistar operation on D, so that \star_f (restricted to D) is the *t*-operation on D.) Then $P = P^t = P^{\star_f}$ is divisorial by Theorem 3.2. \Box

Example 3.4. Let p be a prime integer and let $D := \operatorname{Int}(\mathbb{Z}_{(p)})$. Then D is a 2dimensional Prüfer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a height 2 maximal ideal M of D, and let P be a height 1 prime ideal of D contained in M. Then $P = q\mathbb{Q}[X] \cap D$ for some irreducible polynomial $q \in \mathbb{Q}[X]$ [2, Proposition V.2.3]. By [2, Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of D. Set $E^* = ED_M$ for $E \in \overline{F}(D)$. Then, \star is a finite-type semistar operation on D. Clearly, M is the only quasi- \star -maximal ideal of D, and, since D_M is a valuation domain, D is a $P \star MD$ by Lemma 1.2. Moreover, $\operatorname{Na}(D, \star) = D_M(X)$ is also a valuation domain and hence a doublesharp Prüfer domain, which yields that D is a \star_f -doublesharp $P \star MD$ (Lemma 2.2). Finally, since $P = PD_M \cap D = P^* \cap D$, Pis a non- \star_f -maximal quasi- \star_f -prime of D.

In the remainder of the paper, we impose on Prüfer domains (P*MDs) the finite character (finite \star_f -character) condition. As we shall see, this allows improved versions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization for (quasi- \star_f -)ideals that are simultaneously (\star_f -)idempotent and (\star_f -)divisorial.

Theorem 3.5. Let D be a Prüfer domain with finite character, and let I be a nonzero ideal of D. Then:

- (1) I is idempotent if and only if I is a product of idempotent prime ideals.
- (2) The following statements are equivalent.
 - (a) I is idempotent and divisorial.
 - (b) I is a product of non-maximal idempotent prime ideals.
 - (c) I is a product of divisorial idempotent prime ideals.
 - (d) I has a unique representation as the product of incomparable divisorial idempotent primes.

Proof. (1) Suppose that I is idempotent. By Theorem 2.9, I is the intersection of its minimal primes, each of which is idempotent. Since D has finite character, I is contained in only finitely many maximal ideals, and, since no two distinct minimal primes of I can be contained in a single maximal ideal, I has only finitely many minimal primes and they are comaximal. Hence I is the product of its minimal primes (and each is idempotent). The converse is trivial.

(2) (a) \Rightarrow (b): Assume that *I* is idempotent and divisorial. By (1) and its proof, $I = P_1 \cdots P_n = P_1 \cap \cdots \cap P_n$, where the P_i are the minimal primes of *I*. We claim that each P_i is divisorial. To see this, observe that

$$(P_1)^v P_2 \cdots P_n \subseteq (P_1 \cdots P_n)^v = I^v = I \subseteq P_1.$$

Since the P_i are incomparable, this gives $(P_1)^v \subseteq P_1$, that is, P_1 is divisorial. By symmetry each P_i is divisorial. It is well known that in a Prüfer domain, a maximal ideal cannot be both idempotent and divisorial. Hence the P_i are non-maximal.

(b) \Rightarrow (c): Since *D* has finite character, it is a (*d*)-doublesharp Prüfer domain [13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7, Corollary 4.1.14].

(c) \Rightarrow (a): Write $I = Q_1 \cdots Q_m$, where each Q_j is a divisorial idempotent prime. Since I is idempotent (by (1)), we may also write $I = P_1 \cdots P_n$, where the P_i are the minimal primes of I. For each i, we have $Q_1 \cdots Q_m = I \subseteq P_i$, from which it follows that $Q_j \subseteq P_i$ for some j. By minimality, we must then have $Q_j = P_i$. Thus each P_i is divisorial, whence $I = P_1 \cap \cdots \cap P_n$ is divisorial.

Finally, we show that (d) follows from the other statements. We use the notation in the proof of (c) \Rightarrow (a). In the expression $I = P_1 \cdots P_n$, the P_i are (divisorial, idempotent, and) incomparable, and it is clear that no P_i can be omitted. To see that this is the only such expression, consider a representation $I = Q_1 \cdots Q_m$, where the Q_i are divisorial, idempotent, and incomparable. Fix a Q_k . Then $P_1 \cdots P_n =$ $I \subseteq Q_k$, and we have $P_i \subseteq Q_k$ for some *i*. However, as above, $Q_j \subseteq P_i$ for some *j*, whence, by incomparability, $Q_k = P_i$. The conclusion now follows easily. \Box

We note that incomparability is necessary for uniqueness above–for example, if D is a valuation domain and $P \subsetneq Q$ are non-maximal (necessarily divisorial) primes, then P = PQ.

We close by extending Theorem 3.5 to P*MDs and then to "ordinary" PvMDs. We omit the (by now) straightforward proofs.

Corollary 3.6. Let \star be a semistar operation on D such that D is a $P\star MD$ with finite \star_{f} -character, and let I be a quasi- \star_{f} -ideal of D. Then:

- I is ⋆_f-idempotent if and only if I^{*}_f is a ⋆_f-product of ⋆_f-idempotent quasi-⋆_f-prime ideals in D, that is, I^{*}_f = (P₁ ··· P_n)^{*}_f, where the P_i are ⋆_fidempotent quasi-⋆_f-primes of D.
- (2) The following statements are equivalent.
 - (a) I is \star_{f} -idempotent and \star_{f} -divisorial ($I^{\star_{f}}$ is divisorial in D^{\star}).
 - (b) I is a ★_f-product of non-quasi-★_f-maximal idempotent quasi-★_f-prime ideals.
 - (c) I is a \star_{f} -product of \star_{f} -divisorial \star_{f} -idempotent prime ideals.
 - (d) I has a unique representation as a ★_f-product of incomparable ★_f-divisorial ★_f-idempotent primes.

Corollary 3.7. Let D be a PvMD with finite t-character, and let I be a nonzero t-ideal of D. Then:

- (1) I is t-idempotent if and only if I is a t-product of t-idempotent t-prime ideals in D,
- (2) The following statements are equivalent.
 - (a) I is t-idempotent and divisorial.
 - (b) I is a t-product of non-t-maximal t-idempotent t-primes.
 - (c) I is a t-product of divisorial t-idempotent t-primes.
 - (d) I has a unique representation as a t-product of incomparable divisorial t-idempotent t-primes.

References

- J. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558-563.
- [2] P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Amer. Math. Soc. Surv. Monogr., Providence 48 (1997).
- [3] M. Fontana, E. Houston, and T. Lucas, Toward a classification of prime ideals in Prüfer domains, Forum Math. 22 (2010), 741–766.
- [4] M. Fontana, E. Houston, and T. Lucas, Factoring ideals in integral domains, Lectures Notes of U.M.I, Springer, Berlin and Heidelberg, 2013.
- [5] M. Fontana, E. Houston, and M.H. Park, Sharpness and semistar operations in Prüfer-like domains, Comm. Algebra, to appear.
- [6] M. Fontana and J.A. Huckaba, Localizing systems and semistar operations, in "Non-Noetherian Commutative Ring Theory" (S. T. Chapman and S. Glaz, eds.), Kluwer Academic Publishers, 2000, pp. 169–198.
- [7] M. Fontana, J.A. Huckaba, and I.J. Papick, Prüfer domains, Marcel Dekker Inc., New York, 1997.
- [8] M. Fontana, P. Jara, and E. Santos, Prüfer *-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21–50.
- [9] M. Fontana and K.A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4805.
- [10] R. Gilmer, Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813–818.
- [11] R. Gilmer, Overrings of Prüfer domains, J. Algebra 4 (1966), 331-340
- [12] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [13] R. Gilmer and W. Heinzer, Overrings of Prüfer domains, II, J. Algebra 7 (1967), 281–302.

- [14] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra **123** (1989), 151–170.
- [15] A. Okabe and R. Matsuda, Semistar operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1–21.
- [16] M. Zafrullah, Some polynomial characterizations of Prüfer v-multiplication domains, J. Pure Appl. Algebra 32 (1984), 231-237.

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy

E-mail address: fontana@mat.uniroma3.it

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 U.S.A.

E-mail address: eghousto@uncc.edu

Department of Mathematics, Chung-Ang University, Seoul 06974, Korea $E\text{-}mail\ address:\ mbpark@cau.ac.kr$