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Abstract. Let D be an integral domain with quotient field K. The Nagata ring DðX Þ and the
Kronecker function ring KrðDÞ are both subrings of the field of rational functions KðXÞ con-
taining as a subring the ring D½X � of polynomials in the variable X . Both of these function
rings have been extensively studied and generalized. The principal interest in these two ex-
tensions of D lies in the reflection of various algebraic and spectral properties of D and SpecðDÞ
in algebraic and spectral properties of the function rings. Despite the obvious similarities in
definitions and properties, these two kinds of domains of rational functions have been classi-
cally treated independently, when D is not a Prüfer domain. The purpose of this note is to
study two di¤erent unified approaches to the Nagata rings and the Kronecker function rings,
which yield these rings and their classical generalizations as special cases.
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1 Introduction

Let D be a commutative integral domain with quotient field K . Let X be an indeter-
minate over D and let f A D½X �. We denote by cð f Þ the content of the polynomial f ,
i.e. cð f Þ is the ideal of D generated by the coe‰cients of f . Moreover, if VðDÞ is
the set of all the valuation overrings of D, for each ideal I of D, we set I b :¼T
fIV jV A VðDÞg (cf. [14, page 398] and [30, Appendix 4]).
Two classical rings related to D which have both been well studied are the Nagata

ring DðXÞ and the Kronecker function ring KrðDÞ defined as follows.

NaðDÞ :¼ DðXÞ :¼ f

g

���� f ; g A D½X �; cð f ÞJ cðgÞ; cðgÞ is invertible

� �

is the Nagata ring of D. (Note that this is not the most common definition: DðXÞ is
usually defined by designating that f ; g A D½X � and that cðgÞ ¼ D, [14, Section 33].
The definition above is equivalent to this one and fits our program better.)

On the other hand, if D is integrally closed, then:



KrðDÞ :¼ f

g

���� f ; g A D½X �; g0 0; cð f Þb J cðgÞb

� �
is the Kronecker function ring of D, [14, Section 32].

These two rings of rational functions are the same if and only if D is a Prüfer do-
main [14, Theorem 33.4]. In fact, both rings arose as generalizations of Kronecker’s
original function rings which specified that D should be a ring of algebraic numbers
or, more generally, a Dedekind domain (and, hence, a Prüfer domain), (cf. [21], [29]
and [6]). When D is any arbitrary integrally closed domain it is easy to see that
NaðDÞJKrðDÞ, [14, Theorem 33.3].

There are obvious similarities in the two definitions in spite of the fact that they
generally yield di¤erent rings. Next we give equivalent definitions (or, characteriza-
tions) for each type of ring in which there are also obvious similarities, i.e. both these
rings can be constructed by intersection of families of Nagata rings of quasilocal
overrings. (Note: We do assume for both of these results that we know how to con-
struct the Nagata ring RðX Þ for a quasilocal domain R; in this situation, the condi-
tion ‘‘cðgÞ is invertible’’ becomes ‘‘cðgÞ is principal’’, [14, Proposition 7.4].)

Theorem/Definition 1.1 [14, Theorem 33.3, Theorem 32.10 and the proof of Corollary
32.14]. Let D be an integral domain, let MaxðDÞ [respectively, SpecðDÞ] represent

the set of all maximal [respectively, prime] ideals of D and let VðDÞ [respectively,

VminðDÞ] denote the set of all the valuation [respectively, minimal valuation] overrings

of D.

(1) NaðDÞ ¼
T
fDMðXÞ jM A MaxðDÞg ¼

T
fDPðXÞ jP A SpecðDÞg.

(2) If D is integrally closed, KrðDÞ ¼
T
fVðXÞ jV A VðDÞg ¼

T
fWðXÞ jW A

VminðDÞg.

Both the Kronecker function ring and the Nagata ring have been generalized and
intensively studied (cf. for instance [22], [3], [4], [1], [19], [27], [9], [11] and [17]).
However, in spite of their common origin, they have been studied separately. There
are generalized Nagata rings and generalized Kronecker function rings which are
distinct objects of study. A major goal of this paper is to define and study a single
construction for a class of function rings which includes the Kronecker function ring,
the Nagata ring and their generalizations as special cases.

Following the double characterization of the Kronecker function rings and Nagata
rings above, we approach our generalized function rings from two separate direc-
tions, as rings of individually chosen rational functions and as intersections of
Nagata rings of quasilocal overrings.

In generalizing the rational function approach, we note that the standard general-
ization of Kronecker function rings, introduced by Krull [22], involves replacing the
b-operation with a more general ‘‘star-operation’’ (for short, ?-operation) belonging
to a special class of star operations known as the ‘‘e.a.b. star operations’’ (the explicit
definitions are recalled in Section 2). The point is that e.a.b. operations have some
nice properties in common with the b-operation which make possible the proof that
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the Kronecker function ring, as defined by Krull (cf. the definition after Remark 3.4),
is actually a ring for any arbitrary integrally closed domain.

Note that in the definition of the Kronecker function ring, any nonzero polynomial
is eligible to be the denominator of a rational function. Note further that we do not
allow arbitrary nonzero polynomials in the denominators for the Nagata ring.
Rather, we only allow a very restricted class of polynomials, those with invertible
content. Finally note that the definition of the Nagata ring given is formally compa-
rable to the Kronecker definition except that the b-operation is replaced by ‘‘the
trivial star-operation’’, called the identity operation (for short, d-operation), acting as
the identity map, i.e.

NaðDÞ ¼ f

g

���� f ; g A D½X �; cð f Þd J cðgÞd ; cðgÞ is invertible

� �
:

A way to combine the ideas of the previous two paragraphs is to view the e.a.b.
property not as a property of a ?-operation, as has been done classically, but to view
it as a property of a certain class of ideals. The e.a.b. ?-operations should be those for
which every nonzero finitely generated ideal is an ‘‘e.a.b.-ideal’’ (Definition 3.6). On
the other hand, the invertible ideals should be the only e.a.b.-ideals associated with
the identity operation. So given any ?-operation, we can combine the two definitions
by specifying that the content ideals of denominators must be e.a.b.-ideals associated
to the given ?-operation.

Note that, from the beginning of the present paper, we move from just ‘‘star-
operations’’ to the more general setting of ‘‘semistar-operations’’ introduced by
Okabe-Matsuda in 1994 [26] (the definition is recalled in Section 2). In fact, our
generalizations work directly, and more naturally, in this setting.

We also want to define our generalized function rings using the method of inter-
secting Nagata rings of quasilocal overrings as is done above. Suppose then that we
are given a domain D and a semistar operation on D. For the b-operation we chose
the class of all valuation overrings of D to define the Kronecker function ring and
we chose the class of all localizations of D to define the Nagata ring of D. When we
consider our discussion of e.a.b.-ideals above, we note that all finitely generated
ideals of D extend to principal ideals in any valuation overring. On the other hand,
invertible ideals are the only finitely generated ideals which extend to principal ideals
in every localization of D. So the way to proceed seems to be to combine the overring
characterizations of the Kronecker and Nagata rings by choosing the overrings in
which the e.a.b.-ideals extend to principal ideals.

Let D be a domain and ? a semistar operation on D. Given either a collection of
overrings of D or a ring of rational functions (overring of D½X �) it is easy to define a
new semistar operation on D by either extending to all of the overrings of the col-
lection and intersecting, or by extending to the ring of rational functions and con-
tracting back to the quotient field of D. We explore both of these mechanisms for
defining new semistar operations associated with the given ? and compare the prop-
erties we obtain with those proven in the classical Kronecker and Nagata settings. In
particular, we deepen the study of the ring of rational functions called the ?-Nagata
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ring NaðD; ?Þ (Definition 3.5) and the ?-Kronecker function ring KrðD; ?Þ (Definition
3.2) and we give a complete positive answer to the following question: Is it possible
to find a ‘‘new’’ integral domain of rational functions denoted by KNðD; ?Þ (‘‘?-

Kronecker-Nagata ring’’, obtained as an intersection of Nagata domains of quasilocal
domains associated to a given arbitrary semistar operation ?) such that:

� NaðD; ?ÞJKNðD; ?ÞJKrðD; ?Þ;
� KNðD; ?Þ ‘‘generalizes’’ at the same time NaðD; ?Þ and KrðD; ?Þ and coincides with
NaðD; ?Þ or KrðD; ?Þ, when the semistar operation ? assumes the ‘‘extreme values’’ of
an interval ? 0 a ? a ? 00 (i.e. KNðD; ? 0Þ ¼ NaðD; ? 0Þ ¼ NaðD; ?Þ and KNðD; ? 00Þ ¼
KrðD; ? 00Þ ¼ KrðD; ?Þ)?

2 Background

In this section we give some definitions and some basic results, some new and some
not.

We begin by designating the following terms.

� f ðDÞ is the set of all nonzero finitely generated fractional ideals of D.

� FðDÞ is the set of all nonzero fractional ideals of D.

� FðDÞ is the set of all nonzero D submodules of K .

In 1994 A. Okabe and R. Matsuda [26] introduced the notion of a semistar opera-
tion. A semistar operation is a map ? : FðDÞ ! FðDÞ, E 7! E ? which obeys the fol-
lowing axioms, for all z A K , z0 0 and for all E;F A FðDÞ.

ð?1Þ ðzEÞ? ¼ zE ?;

ð?2Þ E JF ) E ? JF ?;

ð?3Þ E JE ? and E ?? :¼ ðE ?Þ? ¼ E ?.

The classical notion of a star operation [14] involves a map from FðDÞ to FðDÞ which
requires, in addition to the semistar axioms, that ðaDÞ? ¼ aD, for each nonzero
principal ideal aD of D.

The key di¤erence here is that if ? is a star operation then D? ¼ D, whereas D?

may be properly larger than D (possibly, D? A FðDÞnFðDÞ) if ? is a semistar opera-
tion. Note that if ? is a semistar operation on a domain D then we obtain a classical
star operation on D? when we restrict ? to FðD?Þ.

Now we give some basic information concerning definitions/terminology, general
properties of semistar operations, and concerning the construction of specific semistar
operations on integral domains.

� As in the classical star operation setting, we associate to a semistar operation ? of D

a new semistar operation ?f as follows. Let ? be a semistar operation of a domain D.
If E A FðDÞ we set:
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E ?f :¼
S
fF ? jF JE;F A f ðDÞg:

We call ?f the semistar operation of finite type of D associated to ?. If ? ¼ ?f , we say
that ? is a semistar operation of finite type of D. Note that ?f a ? and ð?f Þf ¼ ?f , so
?f is a semistar operation of finite type of D.

� A (semi)star operation ? on D is a semistar operation on D such that D? ¼ D; i.e. a
semistar operation such that:

?jFðDÞ : FðDÞ ! FðDÞ

is a ‘‘classical’’ star operation [14, Section 32].

� dD denotes the identity (semi)star operation on D.

� If i : D ,! T is the canonical embedding of D in the overring T of D and if ? is
a semistar operation on D, then ?i is the semistar operation on T defined, for each
E A FðTÞ ðJFðDÞÞ, by

E ?i :¼ E ?:

� If T is an overring of D, we denote by ?fTg the semistar operation on D defined as
follows: for each E A FðDÞ:

E ?fTg :¼ ET :

Obviously, ð?fTgÞi ¼ dT (where dT denotes the identity semistar operation on T).

� If f?l j l A Lg is a family of semistar operations on D then
V
f?l j l A Lg is the

semistar operation on D defined as follows: for each E A FðDÞ:

E5f?ljl ALg :¼
T
fE ?l j l A Lg:

In particular, if T :¼ fTl jTl A Lg is a given family of overrings of D, then
V

T

denotes the semistar operation
V
f?fTlg j l A Lg.

� bD is the b-semistar operation on D, i.e.

bD :¼
V
f?fVg jV is a valuation overring of Dg:

It seems natural in the context of the ‘‘
V

-construction’’ above, i.e.
V

T, to
view semistar operations ‘‘extensions to the overrings’’, i.e. ?fTlg, as canonical com-
ponents of the semistar operation on D. We have defined the b-operation as a

V
-

construction using the valuation overrings. In that setting we can think of the b-
operation as being decomposed into component semistar operations, each defined by
extension to a valuation overring.

A question that seems not to have been dealt with in the literature (in either the
star or semistar setting) is the extent to which a given star (or semistar) operation on
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D can be approximated by one built from component parts of the type ‘‘extensions to
the overrings’’ of D in the above manner. One use for our generalized Kronecker-
Nagata theory is to associate in a natural way a semistar operation defined by aV

-construction to a given semistar operation.

In the setting of star operations, the class of ?-ideals (i.e. those ideals I such that
I ? ¼ I ) assume a role of great importance. When ? is a semistar operation there fre-
quently are no integral ideals of D which are ?-ideals. Instead we use the following
more general concept.

Definition 2.1. Let I JD be a nonzero ideal of D and let ? be a semistar operation
on D. We say that I is a quasi-?-ideal of D if I ? XD ¼ I . Similarly, we designate by
quasi-?-prime [respectively, ?-prime] of D a quasi-?-ideal [respectively, an integral ?-
ideal] of D which is also a prime ideal. We designate by quasi-?-maximal [respec-
tively, ?-maximal ] of D a maximal element in the set of all proper quasi-?-ideals [re-
spectively, integral ?-ideals] of D.

Note that if I JD is a ?-ideal, it is also a quasi-?-ideal and, when D ¼ D? the no-
tions of quasi-?-ideal and integral ?-ideal coincide.

We then give the following designations related to quasi-star ideals.

� QSpec?ðDÞ is the set of all the quasi-?-prime ideals of D.

� Mð?Þ is the set of all the maximal quasi-?-ideals of D.

It is well known that if ? is a semistar operation of finite type then Mð?Þ is nonempty

[11, Lemma 2.3 (1)].
A particular important semistar operation (of finite type) on D is the following:

� ~?? :¼
V
f?fDQg jQ A Mð?f Þg ð¼

V
S , where S :¼ fDQ jQ A Mð?f ÞgÞ.

For the motivations, examples and the basic properties of this type of semistar oper-
ation cf. for instance [11, Corollary 2.7 and Remark 2.8].

3 e.a.b.-ideals

In this section we give the promised modification of the e.a.b. condition motivated by
the definitions of the Nagata rings and Kronecker function rings.

We begin by giving more general definitions of the Kronecker function ring and
the Nagata ring.

Recall that, for general semistar operations, we can consider the notion of semistar
invertible ideals.

Definition 3.1. A fractional ideal I A FðDÞ is called ?-invertible if ðII�1Þ? ¼ D?.

For the motivations, examples and the basic properties of this type of invertibility see
[13].
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Definition 3.2. Let D be a domain with quotient field K and let ? be a semistar oper-
ation on D. Set

NaðD; ?Þ :¼ f

g

���� f ; g A D½X �; cð f Þ? J cðgÞ?; cðgÞ is a ?f -invertible ideal of D

� �
:

This is called the ?-Nagata ring of D. If the semistar operation is the identity opera-
tion, i.e. ? ¼ dD, then NaðD; dDÞ coincides with the ‘‘classical’’ Nagata ring DðX Þ
of D.

It is known that, for each E A FðDÞ,

E ~?? ¼ E NaðD; ?ÞXK ; ½11; Proposition 3:4 ð3Þ�:

The definition of an e.a.b. semistar operation is as follows.

Definition 3.3. Let D be a domain and let ? be a semistar operation on D. Then we
say that ? is an e.a.b. semistar operation provided ðIJÞ? J ðIHÞ? implies J ? JH ?

whenever I ; J;H A f ðDÞ. (We say that ? is an a.b. semistar operation if we weaken the
hypotheses to only require that J, H lie in FðDÞ.)

Remark 3.4. (1) The paper [12, in preparation] is devoted to a deeper study on the
relations between the e.a.b. and the a.b. semistar operations.

(2) Recall that the e.a.b. semistar operation on D of finite type ?a associated to a

semistar operation ? is defined on D by setting for each G A f ðDÞ:

G ?a :¼
S
fððGHÞ? : H ?Þ jH A f ðDÞg

[18], [15] and [16]. It is known that a semistar operation of finite type is e.a.b. if and
only if ? ¼ ?a (cf., for instance, [9, Proposition 4.5]).

Let D be an integrally closed domain with quotient field K and let ? be an e.a.b.
semistar operation on D. Set

KrðD; ?Þ :¼ f

g

���� f ; g A D½X �; g0 0; cð f ÞJ cðgÞ?
� �

:

In the case where ? is an e.a.b. star operation on (an integrally closed domain) D this
definition yields the classical Krull’s extension of the Kronecker function ring of D

associated with ? [14, Section 32].

This is not the most general definition of the Kronecker function ring, but it is the
one most suited to our program. Recall that the reason customarily given for the
assumption that ? be e.a.b. in Krull’s definition of the Kronecker function ring is
that the classical proof that KrðDÞ is a ring does not work unless ? is assumed to be
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e.a.b. The use that the e.a.b. property is put to in this context is to show that an
equation of the form ðcðgÞJÞ? ¼ ðcðgÞHÞ? implies that J ? ¼ H ? where J;H A f ðDÞ
and g is a nonzero polynomial in D½X � and the denominator of a rational function

f

g

in KrðD; ?Þ.

A general definition for the Kronecker function ring, without restrictions on D and ?,
is recalled next.

Definition 3.5. Let D be any integral domain (not necessarily integrally closed) with
quotient field K and let ? be any semistar operation on D (not necessarily e.a.b.). Set

KrðD; ?Þ :¼ f

g

���� f ; g A D½X �; g0 0; such that there exists h A D½X �;
h0 0; with cð f hÞJ cðghÞ?

( )
:

This is called the ?-Kronecker function ring of D, [9, Theorem 5.1]. Obviously if ? is
an e.a.b. semistar operation on D, then this definition coincides with the previous
one.

It is known that, for each E A FðDÞ,

E ?a ¼ E KrðD; ?ÞXK; ½11; Proposition 4:1 ð5Þ�:

Since invertible ideals can be cancelled in any conceivable context, it is clear that the
‘‘modified’’ e.a.b. property, that we want to introduce for generalizing semistar Na-
gata rings and Kronecker function rings, should be a ‘‘cancellation-type’’ property.

The definition is actually quite straightforward.

Definition 3.6. Let D be an integral domain and let ? be a semistar operation on D.
If F is in f ðDÞ, we say that F is a ?-e.a.b.-ideal if ðFGÞ? J ðFHÞ?, with G;H A f ðDÞ,
implies that G ? JH ?. As with the semistar operations, we say that F is an a.b.-ideal

if the conclusion holds with the requirement weakened to say that G;H A FðDÞ.

It is clear that a semistar operation ? on a domain D is e.a.b. if and only if every finitely

generated ideal of D is a ?-e.a.b. ideal.

Remark 3.7. It is clear that invertible ideals are ?-e.a.b. for any semistar operation ?.

In fact, if the semistar operation in question is the identity operation d, the d-e.a.b.
ideals of a domain D correspond to what D. D. Anderson and D. F. Anderson called
quasi-cancellation ideals. They proved that, in the finitely generated setting, the d-
e.a.b. ideals are exactly the invertible ideals [2, Lemma 1 and Theorem 1].

It is easy to see that, in general, a finitely generated ?-invertible ideal is also ?-e.a.b.

Unlike the case for the identity operation though (Remark 3.7), it is not true in gen-
eral that all (possibly, finitely generated) ?-e.a.b. ideals are ?-invertible. For instance,
let D be a Noetherian domain of dimension greater than one and let M be a maximal
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ideal of D of height greater than one. Since the b-operation is an e.a.b. star operation
on D, then M (which is finitely generated) is a b-e.a.b. ideal, by the observation pre-
ceding Remark 3.7. However, since M has height greater than one, it is not an
invertible ideal of D. Hence MM�1 ¼ M. Then ðMM�1Þb ¼ M b ¼ M. Hence, M is
not b-invertible.

We close this section with a collection of basic results concerning ?-e.a.b. ideals, in-
vertible ideals, and ?-invertible ideals.

It is known that if ? is an e.a.b. star operation on an integral domain D, then there

exists an a.b. star operation � on D such that ?jf ðDÞ ¼ �jf ðDÞ [14, Corollary 32.13]. This
motivates our next statement proven in [12].

Lemma 3.8. Let D be an integral domain and let ? be a semistar operation on D.

(1) If ? ¼ ?f , then: ? is an e.a.b. semistar operation if and only if ? is an a.b. semistar

operation.

(2) Let F A f ðDÞ, then: F is ?-e.a.b. if and only if F is ?f -a.b. r

The following result is known [13, Theorem 2.23].

Lemma 3.9. Let ? be a semistar operation on an integral domain D. Let F A f ðDÞ, then

the following are equivalent:

(i) F is ?f -invertible;

(ii) FDQ is invertible as a fractional ideal of DQ, for each Q A Mð?f Þ;
(iii) F NaðD; ?Þ is invertible as a fractional ideal of NaðD; ?Þ. r

Remark 3.10. (1) Let F A f ðDÞ. As a consequence of Lemma 3.9, note that, since
Mð?f Þ ¼ Mð~??Þ [11, Corollary 3.5] (2), then: F is ?f -invertible if and only if F is
~??-invertible, cf. [13, Proposition 2.18].

(2) Let F A f ðDÞ. From [12] recall that F is ?-e.a.b. [respectively, ?-a.b.] if and only if

ððFHÞ? : F ?Þ ¼ H ?, for each H A f ðDÞ [respectively, for each H A FðDÞ]. (Note that
ððFHÞ? : F ?Þ ¼ ððFHÞ? : FÞ, and so the previous equivalences can be stated in a for-
mally slightly di¤erent way.)

4 Some distinguished classes of overrings

We begin by considering a class of overrings of a domain D associated with a semi-
star operation ? which have already been well studied.

Definition 4.1. Let ? be a semistar operation on an integral domain D. We say that an
overring T of D is a ?-overring of D provided for each F A f ðDÞ we have F ? JFT

(or equivalently F ?T ¼ FT).

The following lemma gives some basic results concerning ?-overrings.
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Lemma 4.2. Let D be an integral domain with quotient field K and let ? be a semistar

operation on D.

(1) The following are equivalent:

(i) T is a ?-overring of D;

(ii) T is a ?f -overring of D;

(iii) ?f a ?fTg, (i.e. E ?f JET, EE A FðDÞ);

(iv) ð?f Þi ¼ dT .
In particular, if T is a ?-overring of D, then D? JT ?f ¼ T.

(2) Every overring of a ?-overring is a ?-overring.

(3) K is a ?-overring of D, for each semistar operation ? on D.

(4) D? is a ?-overring of D if and only if ?f ¼ ?fD ?g. More generally, T is a ?-overring

of D and T ¼ D? if and only if ?f ¼ ?fTg.

(5) If ?1 a ?2 are two semistar operations on D, then: T is a ?2-overring of D implies T

is a ?1-overring of D.

(6) A Bézout overring B of D is a ?-overring of D if and only if B ¼ B?f . In particular, a

valuation overring V of D is a ?-overring of D if and only if V ¼ V?f (in this situation,

V is called a ?-valuation overring of D).

(7) The valuation overrings of a ?-overring T of an integral domain D coincide with the

?-valuation overrings of D containing T.

(8) Let T be a ?-overring of D and let i : D ,! T be the canonical inclusion. Then:

KrðD; ?fTgÞ ¼ KrðT ; dTÞ ¼ KrðT ; ð?f ÞiÞ ¼ KrðT ; bTÞ.

(9) If N is a prime ideal of a ?-overring T of D and if N XD0 0, then N XD is a

quasi-?f -prime of D.

(10) Let T :¼ fTl j l A Lg be a family of overrings of D. The semistar operation
V

T

(defined in Section 2) is such that: ETl ¼ E5TTl ¼ ðETlÞ5T , for each E A FðDÞ. In

particular, each Tl is a
V

T-overring of D.

Proof. (1) (i) , (ii) , (iii) are obvious consequences of the definition.

(iii) ) (iv): dT a ð?f Þi a ð?fTgÞi ¼ dT .

(iv) ) (iii): For each E A FðDÞ, ET ¼ ðETÞð?f Þi ¼ ðETÞ?f KE ?f .
(2) is an easy consequence of (1).
(3) and (5) are obvious.
(4) follows from (1) and from the fact that, in general, ?fD ?g a ?f .
(6) The ‘‘only if ’’ part is obvious from (1). For the ‘‘if ’’ part recall that, for

each F A f ðDÞ, there exists a nonzero element x A K such that FB ¼ xB, thus
F ? J ðFBÞ?f ¼ ðxBÞ?f ¼ xB?f ¼ xB ¼ FB.

(7) follows from (2) and (6).
(8) Since T is a ?-overring of D, then, by (1), ð?f Þi ¼ dT . Therefore, by (7), V is

a (dT -)valuation overring of T if and only if V is a ?-valuation overring of D
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containing T if and only if V is a ?fTg-valuation overring of D. The conclusion is a
straightforward consequence of the fact that, if � is a semistar operation on an inte-
gral domain R, then KrðR; �Þ ¼

T
fWðX Þ jW is a �-valuation overring of Rg [10,

Theorem 3.5].
(9) ðN XDÞ?f J ðN XDÞT JN, hence N XDJ ðN XDÞ?f XDJN XD.
(10) Note that ðETlÞ5T ¼

T
fETlTm j m A Lg ¼ ETl X ð

T
fETlTm j m A L; m0 lgÞ

¼ ETl. r

Corollary 4.3. Let ? be a semistar operation on an integral domain D, let F A f ðDÞ be

?f -invertible and let ðL;NÞ be a local ?-overring of D. Then FL is a principal fractional

ideal of L.

Proof. Recall that an invertible ideal in a local domain is principal [20, Theorem 59].
By Lemma 3.9, we know that FDQ is principal in DQ, for each Q A Mð?f Þ. Hence,
FDNXD is principal in DNXD, because N XD is a quasi-?f -prime ideal of D (Lemma
4.2 (9)), hence N XDJQ, for some Q A Mð?f Þ. The conclusion follows immedi-
ately, since ðL;NÞ dominates ðDNXD;N XDÞ. r

Remark 4.4. Let D be an integral domain and let ? be a semistar operation on D.

(1) An overring T of D such that T ¼ T ?f is not necessarily a ?-overring of D. For
instance, let F be a localizing system of D, and let ? :¼ ?F be the semistar oper-
ation on D, defined by E ?F :¼ EF :¼

S
fðE : IÞ j I A Fg, for each E A FðDÞ (cf. [7,

Proposition 2.4]). Set T :¼ D?F ¼ DF, then in general, EDF WEF. More precisely,
?fD ?Fg ¼ ?F if and only if D?F is D-flat and F ¼ fI ideal of D j ID?F ¼ D?Fg (cf. [7,
Proposition 2.6]).

(2) We have mentioned in the proof of Lemma 4.2 (8) that:

KrðD; ?Þ ¼
T
fVðXÞ jV is a ?-valuation overring of Dg ½10; Theorem 3:5�:

From this property and from the observation following Definition 3.5 it is possible to
prove that:

?a ¼
V

VðD; ?Þ; where VðD; ?Þ :¼ fV jV is a ?-valuation overring of Dg:

In the introduction we alluded to classes of quasilocal overrings of a domain D that
are associated with a given semistar operation on D. The two classes of quasilocal
overrings that arise in the Kronecker and Nagata settings are localizations and val-
uation overrings. Note first that a finitely generated ideal of a domain D is invertible
if and only if it is locally principal. Also note that every finitely generated ideal of D

extends to a principal ideal in any valuation overring of D. Since the collection of
ideals we have been concerned with are the ?-e.a.b. ideals it seems reasonable that
what we need are quasilocal overrings of D in which each ?-e.a.b. ideal extends to a
principal ideal. It turns out that assuming just this property is not quite su‰cient. We
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give two refinements, each of which we will use to create separate generalized func-
tion rings.

Definition 4.5. Let ? be a semistar operation on an integral domain D and let T be a
quasilocal overring of D.

We say that T is a ?-monolocality of D provided T ?f ¼ T and every ?-e.a.b. ideal
of D extends to a principal ideal in T .

We say that T is a strong ?-monolocality of D provided T is a ?-overring of D and
every ?-e.a.b. ideal of D extends to a principal ideal in T .

Let ? be a semistar operation on a domain D and let T be a ?-overring of D. Then
T ?f ¼ T . It follows then that a strong ?-monolocality is a ?-monolocality.

Also note that if ? is the identity semistar operation on a domain D then every
quasilocal overring of D is a strong ?-monolocality (and hence they are all ?-
monolocalities). At the opposite extreme, if ? is the b-operation on a domain D,
then the collection of all strong ?-monolocalities and the collection of all ?-
monolocalities are both equal to the collection of all valuation overrings of D.

Our goal for this concept then is to identify semistar operations such that the col-
lection of ?-monolocalities (strong or not) is not all quasilocal overrings and does
not consist entirely of valuation domains. Or, conversely, to identify collections of
overrings and associate semistar operations, using the

V
-constructions, which will

give the collection of overrings back as (strong) ?-monolocalities.

We adopt the following notation. Set:

L :¼ Lð?Þ :¼ LðD; ?Þ :¼ fL jL is a ?-monolocality of Dg;

L 0 :¼ L 0ð?Þ :¼ L 0ðD; ?Þ :¼ fL 0 jL 0 is a strong-?-monolocality of Dg:

Note that the set: V :¼ Vð?Þ :¼ VðD; ?Þ ð¼ fV jV is a ?-valuation overring of DgÞ
is obviously a subset of L 0.

Lemma 4.6. Let ? be a semistar operation on an integral domain D.

(1) Lð?Þ ¼ Lð?f Þ and L 0ð?Þ ¼ L 0ð?f Þ.

(2) A quasilocal overring T of a ?-monolocality of D is also a ?-monolocality of D if

and only if T ¼ T ?f .

(3) A quasilocal overring S of a strong-?-monolocality of D is always a strong-?-

monolocality of D.

(4) Let F :¼ ða1; a2; . . . ; anÞD A f ðDÞ be ?-e.a.b. and let L be a ?-monolocality of D.

Then FL ¼ F ?L ¼ ðFLÞ?f ¼ aiL, for some i, with 1a i a n.

Proof. (1) is obvious and (2) and (3) follow from Lemma 4.2 (1) and (2).
(4) We start by recalling the following well known fact:
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Claim. Let F ¼ ða1; a2; . . . ; anÞD A f ðDÞ and let L be a quasilocal overring of D. If FL

is principal in L, then, for some i, with 1a ia n, FL ¼ aiL.

If FL ¼ ða1; a2; . . . ; anÞL ¼ zL, for some z A L then, for each i, with 1a ia n, we
can find a nonzero xi A L, such that xiz ¼ ai. Therefore, zL ¼ ða1; a2; . . . ; anÞL ¼
ðx1; x2; . . . ; xnÞL � zL, hence ðx1; x2; . . . ; xnÞL ¼ L. Since L is quasilocal then, for some
i, with 1a ia n, we have that xi is a unit in L, thus zL ¼ xizL ¼ aiL.

Now we conclude the proof of (4). Since F is ?-e.a.b. and L A L, then FL is prin-
cipal, and thus, for some i, with 1a ia n, ðFLÞ?f ¼ ðaiLÞ?f ¼ aiL

?f ¼ aiL (since
L ¼ L?f ). Therefore aiLJFLJF ?LJ ðFLÞ?f ¼ ðaiLÞ?f ¼ aiL. r

5 Generalized Kronecker-Nagata rings

Now we turn to the construction of the generalized Kronecker and Nagata rings.
We define two classes of rings which we refer to as Kronecker-Nagata ring (for short,
KN) and Strong Kronecker-Nagata ring (for short, KN 0) according to whether we
use monolocalities or strong monolocalities.

Proposition 5.1. Let ? be a semistar operation on an integral domain D. Set:

KNðD; ?Þ :¼
T
fLðX Þ jL A LðD; ?Þg;

KN 0ðD; ?Þ :¼
T
fL 0ðXÞ jL 0 A L 0ðD; ?Þg;

then:

NaðD; ?ÞJKN 0ðD; ?ÞJKrðD; ?Þ;

KNðD; ?ÞJKN 0ðD; ?Þ:

Proof. By Lemma 4.2 (9) and [11, Proposition 3.1 (4)], we know that NaðD; ?Þ ¼T
fDQðXÞ jQ A QSpec?f ðDÞgJ

T
fDN 0XDðXÞ j ðL 0;N 0Þ A L 0gJKN 0ðD; ?Þ. The in-

clusions KNðD; ?ÞJKN 0ðD; ?ÞJKrðD; ?Þ follow from the fact that VðD; ?ÞJ
L 0ðD; ?ÞJLðD; ?Þ. r

We have shown that the Strong ?-Kronecker-Nagata ring KN 0ðD; ?Þ lies properly in
between the ?-Nagata ring and the ?-Kronecker function ring. We have also shown
that the ?-Kronecker-Nagata ring KNðD; ?Þ lies inside the ?-Kronecker function
ring. We will show later (Theorem 5.11 (7)) that, in general, NaðD; ?ÞJKNðD; ?Þ.

Proposition 5.1 gives a positive result concerning containment relations for KN and
KN 0. The containment/inequality relations between these concepts is not always as
clean as we would like however. For example, it seems reasonable that if ?1 a ?2 are
semistar operations on a domain D then we would have KNðD; ?1ÞJKNðD; ?2Þ and
KN 0ðD; ?1ÞJKN 0ðD; ?2Þ. In Example 7.7 we give an example of a star operation ?
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on a two-dimensional Noetherian local integrally closed domain D such that b < ?
and yet KNðD; ?Þ ¼ NaðD; ?Þ ¼ DðZÞWKNðD; bÞ ¼ KrðD; bÞ. Hence, in general,
we do not get the containment we wish for KN. We do not know whether KN 0 be-
haves well with regard to containment and inequality or not. We can give a positive
result in this direction when ?2 is a stable semistar operation.

Recall that a semistar operation ? is stable on D provided

ðE XFÞ? ¼ E ? XF ?; for all E;F A FðDÞ:

Corollary 5.2. Let ?1 a ?2 be two semistar operations on an integral domain D. For

i ¼ 1; 2, set:

Li :¼ LðD; ?iÞ; L 0
i :¼ L 0ðD; ?iÞ:

Assume that ?2 is stable.

(1) Let F A f ðDÞ. If F is ?1-e.a.b. then F is also ?2-e.a.b.

(2) L1 KL2 and L 0
1 KL 0

2 .

(3) KNðD; ?1ÞJKNðD; ?2Þ and KN 0ðD; ?1ÞJKN 0ðD; ?2Þ.

Proof. (1) is a consequence of Remark 3.10 (2), since:

ððFHÞ?1 : F Þ ¼ H ?1 ) ððFHÞ?1 : F Þ?2 ¼ ðH ?1Þ?2 ;

therefore, by the stability of ?2 [7, Theorem 2.10 (B)]:

H ?2 J ððFHÞ?2 : F Þ ¼ ðððFHÞ?1Þ?2 : FÞ ¼ ðððFHÞ?1 : FÞÞ?2 ¼ H ?2 ;

for each H A f ðDÞ.
(2) follows from (1), from Lemma 4.2 (5) and from the fact that, if T is a quasilocal

overring of D such that T ¼ T ð?2Þf , then necessarily T ¼ T ð?1Þf .
(3) is a trivial consequence of (2). r

We have noted that the KN and KN 0 constructions are not always well behaved in
terms of preserving relationships between distinct semistar operations. Nonetheless, it
seems worthwhile to pursue this idea with regards to the operations ?a and ~?? asso-
ciated to the semistar operations ? on a domain D. The semistar operations ?a and ~??
are generally well behaved and the results work out as we would hope.

We need a preparatory lemma first.

Proposition 5.3. Let ? be a semistar operation on an integral domain D. Then:

(1) For each Q A Mð?f Þ, DQ is strong-~??-monolocality of D.

(2) If F A f ðDÞ, then F is ~??-e.a.b. if and only if F is ~??-invertible.

984 M. Fontana, A. Loper



Proof. (1) It is clear from the definition of the semistar operation ~?? that, for each
Q A Mð?f Þ ð¼ Mð~??Þ, [11, Corollary 3.5]), DQ is a quasilocal ~??-overring of D since,
for each F A f ðDÞ, F ~?? JFDQ.

Note, more generally, that for each Q A Mð?f Þ and for each E A FðDÞ:

EDQ ¼ E ~??DQ ¼ ðEDQÞ~??;

(Lemma 4.2 (10), since ~?? ¼
V

S, with S :¼ fDQ jQ A Mð?f Þg).

(2) Let F A f ðDÞ be ~??-e.a.b., thus ððFHÞ~?? : FÞ ¼ H ~?? and so:

HDQ ¼ H ~??DQ ¼ ððFHÞ~?? : FÞDQ ¼ ððFHÞ~??DQ : FDQÞ ¼ ðFHDQ : FDQÞ;

for each H A f ðDÞ, i.e. FDQ is a quasi-cancellation ideal of DQ or, equivalently, it is a
principal fractional ideal of DQ, for each Q A Mð?f Þ (Remark 3.7).

From Lemma 3.9 and Remarks 3.10 (1) and 3.7, we deduce that if F A f ðDÞ, then
F is ~??-e.a.b. if and only if F is ~??-invertible. r

Proposition 5.4. Let ? be a semistar operation on an integral domain D, then:

(1) NaðD; ?Þ ¼ NaðD; ~??Þ ¼ KN 0ðD; ~??Þ.

(2) KN 0ðD; ?aÞ ¼ KrðD; ?aÞ ¼ KrðD; ?Þ.

Proof. (1) By Proposition 5.3 we know that L 0ðD; ~??ÞK fDQ jQ A Mð?f Þg and
if ðL 0;N 0Þ A L 0ðD; ~??Þ then L 0 KDN 0XD KDQ, where Q is any prime ideal in
Mð?f Þ ð¼ Mð~??ÞÞ which contains the quasi-~??-prime ideal N 0 XD.

(2) If ? ¼ ?f is e.a.b., then each F A f ðDÞ is ?-e.a.b., thus every quasilocal ?-
overring (in particular, a strong-?-monolocality) is necessarily a valuation domain,
hence L 0ðD; ?Þ ¼ VðD; ?Þ. Therefore, in this situation, KN 0ðD; ?Þ ¼ KrðD; ?Þ. Us-
ing the previous argument (and [11, Proposition 4.1 (2)]), for each semistar operation
?, passing to the e.a.b. semistar operation of finite type ?a, we have:

KN 0ðD; ?aÞ ¼ KrðD; ?aÞ ¼ KrðD; ?Þ: r

Corollary 5.5. Let ? be a semistar operation on an integral domain D. Then D is a

P?MD if and only if KN 0ðD; ~??Þ ¼ KN 0ðD; ?aÞ.

Proof. This statement is a straightforward consequence of Proposition 5.4 and [8,
Theorem 3.1 and Remark 3.1]. r

We have defined and done some analysis on the generalized Kronecker-Nagata rings
using the (strong) monolocalities. This was motivated by characterizations of the
classical Kronecker and Nagata rings. Both the Kronecker and Nagata rings have
definitions involving rational functions, content ideals, and semistar operations. We
turn toward generalizing along these lines now.
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Proposition 5.6. Let ? be a semistar operation on an integral domain D with quotient

field K and let L 0 ¼ L 0ðD; ?Þ be the set of all the strong-?-monolocalities of D. Set:

KN 0
aðD; ?Þ :¼ fz A KðXÞ j EL 0 A L 0; bgL 0 A D½X �; gL 0 0 0; with

zgL 0 A D½X �; cðzgL 0 ÞJ cðgL 0 ÞL 0 and

cðgL 0 ÞL 0 is principal in L 0g:

Then KN 0ðD; ?Þ ¼ KN 0
aðD; ?Þ.

Proof. Let z A KN 0
aðD; ?Þ, let L 0 A L 0 and let gL 0 A D½X � be such that cðgL 0 ÞL 0 is

a nonzero principal ideal of L 0 and cðzgL 0 ÞJ cðgL 0 ÞL 0. Set fL 0 :¼ zgL 0 . Write
gL 0 :¼ a0 þ a1X þ � � � þ anX n A D½X �. Since L 0 is a (strong-)?-monolocality of D and
cðgL 0 ÞL 0 is principal then, by the Claim in the proof of Lemma 4.6 (4), we have
cðgL 0 ÞL 0 ¼ aiL

0 for some ai. Hence,
fL 0
ai

A L 0½X � and
gL 0
ai

A L 0½X �. Moreover,
gL 0
ai

is a
primitive polynomial of L 0½X � (since one of its coe‰cients is a unit in L 0), hence:

z ¼ fL 0

gL 0
¼

fL 0
ai

gL 0
ai

A L 0ðX Þ:

Therefore, we have proven that KN 0
aðD; ?ÞJKN 0ðD; ?Þ.

In order to complete the proof, we need to show that KN 0ðD; ?ÞJKN 0
aðD; ?Þ.

If z A KN 0ðD; ?Þ, then, for each strong-?-monolocality L 0 of D, there exist
jL 0 ;cL 0 A L 0½X �, with cL 0 0 0, such that z ¼ jL 0

cL 0
and cðcL 0 Þ ¼ L 0. Therefore, we can

find fL 0 ; gL 0 A D½X � and two nonzero elements aL 0 ; bL 0 A D such that fL 0 ¼ aL 0jL 0 ,
gL 0 ¼ bL 0cL 0 and thus:

z ¼ jL 0

cL 0
¼

fL 0
aL 0
gL 0
bL 0

¼ bL 0 fL 0

aL 0gL 0

with cð fL 0 ÞL 0 J aL 0L 0 and cðgL 0 ÞL 0 ¼ bL 0L 0. Therefore, z A KN 0
aðD; ?Þ, since

cðbL 0 fL 0 ÞL 0 ¼ bL 0cð fL 0 ÞL 0 J bL 0aL 0L 0 ¼ aL 0cðgL 0 ÞL 0 ¼ cðaL 0gL 0 ÞL 0 and cðaL 0gL 0 ÞL 0 is
principal in L 0, for each L 0 A L 0. r

Note that it follows immediately from the definition that D½X �JKN 0
aðD; ?ÞJ

KðX Þ. Hence the quotient field of KN 0
aðD; ?Þ ¼ KN 0ðD; ?Þ is KðX Þ.

Our next result gives a basic property of KN 0ðD; ?Þ reminiscent of Kronecker
function ring and Nagata ring properties.

Proposition 5.7. Let ? be a semistar operation on an integral domain D. For each

J :¼ ða0; a1; . . . ; anÞD A f ðDÞ, with J JD and J ?-e.a.b., let g :¼ a0 þ a1X þ � � � þ
anX n A D½X �, then:

J KN 0ðD; ?Þ ¼ J ? KN 0ðD; ?Þ ¼ g KN 0ðD; ?Þ:
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Proof. First note that, by definition, J ¼ cðgÞD. Moreover, for each k, with
0a k a n, we have ak=g A KN 0

aðD; ?Þ ð¼ KN 0ðD; ?ÞÞ, since cðgÞL 0 is principal in L 0,
for each L 0 A L 0. Hence J KN 0ðD; ?ÞJ g KN 0ðD; ?Þ. Clearly, g A J KN 0ðD; ?Þ ¼
cðgÞKN 0ðD; ?Þ. It follows that J KN 0ðD; ?Þ ¼ g KN 0ðD; ?Þ.

On the other hand, let a ¼ d=d 0 A J ?, with d; d 0 A D and d 0 0 0. Then, by Lemma
4.6 (4), for each (strong-)?-monolocality L 0 of D we have dD ¼ d 0aDJ d 0aL 0 J
d 0J ?L 0 ¼ d 0JL 0 ¼ d 0cðgÞL 0, thus a=g ¼ d 0a=d 0g A KN 0

aðD; ?Þ ð¼ KN 0ðD; ?ÞÞ, since
cðgÞL 0 ¼ JL 0 is principal in L 0, for each L 0 A L 0. Hence, we have that J ? J
g KN 0ðD; ?Þ ¼ J KN 0ðD; ?Þ, thus J ? KN 0ðD; ?Þ ¼ J KN 0ðD; ?Þ. r

The rational function definition of the strong Kronecker-Nagata ring is somewhat
cumbersome. We introduce now the notion of an ‘‘almost e.a.b.-ideal’’ in an e¤ort to
make the definition cleaner.

Definition 5.8. Let ? be a semistar operation on an integral domain D and
let F A f ðDÞ, we say that F is an almost-?-e.a.b.-ideal if, for each strong-?-
monolocality L 0 of D, FL 0 is a principal fractional ideal of L 0.

We collect in the following statement some of the basic properties of the almost-?-
e.a.b. ideals.

Proposition 5.9. Let ? be a semistar operation on an integral domain D and let

F A f ðDÞ

(1) If F is ?-e.a.b. then F is almost-?-e.a.b.

(2) F is almost-?-e.a.b. if and only if F is almost-?f -e.a.b.

(3) If F is almost-?-e.a.b. then FL 0 is ?i-e.a.b., for each strong-?-monolocality L 0 of D,

with i ð¼ iL 0 Þ : D ,! L 0 being the canonical embedding.

(4) Let F :¼ ða1; a2; . . . ; anÞD be an almost-?-e.a.b.-ideal, then, for each strong-?-

monolocality L 0 of D, FL 0 ¼ F ?L 0 ¼ ðFL 0Þ?f ¼ aiL
0, for some i, with 1a i a n.

(1) and (2) are obvious since if F is ?-e.a.b., then FL 0 is principal, for each strong-
?-monolocality L 0 of D, and since the strong-?-monolocalities coincide with the
strong-?f -monolocalities.

(3) If G;H A f ðL 0Þ and F A f ðDÞ is an almost-?-e.a.b., then FL 0 ¼ zL 0, for
some nonzero element z, and thus ðFGÞ?i ¼ ðFL 0GÞ? J ðFL 0HÞ? ¼ ðFHÞ?i , then
ðzL 0GÞ? J ðzL 0HÞ?. Hence, G ?i ¼ G ? JH ? ¼ H ?i .

(4) This statement is a consequence of the Claim in the proof of Lemma 4.6 (4).
r

This allows us to state a new definition.

Definition 5.10. Let ? be a semistar operation on an integral domain D with quotient
field K . Then we define
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KN 0
cðD; ?Þ :¼ fz A KðXÞ j bg A D½X �; g0 0; with zg A D½X �; cðzgÞJ cðgÞ?

and cðgÞ is an almost-?-e:a:b: ideal of Dg;

KNcðD; ?Þ :¼ fz A KðXÞ j bg A D½X �; g0 0; such that zg A D½X �; and

cðzgÞJ cðgÞ?; cðgÞ is a ?-e:a:b: idealg:

It is clear that, in general, we have KN 0
cðD; ?ÞJKN 0ðD; ?Þ ð¼ KN 0

aðD; ?ÞÞ.
In fact, note that, for each g A D½X �, g0 0, and for each L 0 A L 0, cðgÞ?L 0 ¼

cðgÞL 0; moreover, cðgÞ is an almost-?-e.a.b. ideal of D if and only if (by definition) it
is a principal ideal of L 0, for each L 0 A L 0.

We suspect that in fact KN 0
cðD; ?Þ ¼ KN 0ðD; ?Þ, but we do not have a proof. We do

demonstrate below that KNcðD; ?Þ ¼ KNðD; ?Þ.

We turn now to investigating the properties of KNðD; ?Þ. With this ring we will have
more luck demonstrating properties that reflect the classical properties of the Kro-
necker function rings and Nagata rings. In particular, when we localize a Kronecker
function ring KrðD; ?Þ at a maximal ideal we obtain VðXÞ for some (?-)valuation
overring V of D. Similarly, when we localize a Nagata ring NaðD; ?Þ at a maximal
ideal we obtain DQðXÞ for some (quasi-?-)prime ideal Q of D. We obtain similar re-
sults with KNðD; ?Þ.

Theorem 5.11. Let ? be a semistar operation on an integral domain D with quotient

field K.

(1) KNcðD; ?Þ is an integral domain with quotient field KðXÞ.

(2) NaðD; ?ÞJKNcðD; ?ÞJKN 0
cðD; ?Þ ðJKN 0

aðD; ?Þ ¼ KN 0ðD; ?ÞÞ.

(3) For each J :¼ ða0; a1; . . . ; anÞD A f ðDÞ, with J JD and J ?-e.a.b., let g :¼
a0 þ a1X þ � � � þ anX n A D½X �, then:

J KNcðD; ?Þ ¼ J ? KNcðD; ?Þ ¼ g KNcðD; ?Þ:

(4) For each prime ideal p of KNcðD; ?Þ and for each J :¼ ða0; a1; . . . ; anÞD A f ðDÞ,
with J JD and J?-e.a.b., let g :¼ a0 þ a1X þ � � � þ anX n A D½X �, then there exists an

index i, with 0a ia n, such that:

J KNcðD; ?Þp ¼ J ? KNcðD; ?Þp ¼ g KNcðD; ?Þp ¼ ai KNcðD; ?Þp:

For each prime ideal p of KNcðD; ?Þ, set LðpÞ :¼ KNcðD; ?Þp XK.

(5) For each prime ideal p of KNcðD; ?Þ, LðpÞ is a ?-monolocality of D (with maximal

ideal P :¼ pKNcðD; ?Þp XLðpÞ).
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(6) For each prime ideal p of KNcðD; ?Þ, the localization KNcðD; ?Þp coincides with the

Nagata ring LðpÞðXÞ (with maximal ideal PðXÞ :¼ PLðpÞðXÞ) and p coincides with

PðX ÞXKNcðD; ?Þ.

(7) Every ?-monolocality of an integral domain D contains a minimal ?-monolocality of

D. If we denote by LðD; ?Þmin, or simply by Lmin, the set of all the minimal ?-

monolocalities of D, then LðD; ?Þmin ¼ fLðmÞ jm A MaxðKNcðD; ?ÞÞg and

KNcðD; ?Þ ¼ KNðD; ?Þ ¼
T
fLðXÞ jL A Lming:

In particular, NaðD; ?ÞJKNðD; ?Þ ðJKN 0ðD; ?ÞJKrðD; ?ÞÞ.

Proof. (1) Note that:

Claim 1. If g and h are two nonzero polynomials of D½X � and cðgÞ is a ?-e.a.b. ideal of

D then ðcðgÞcðhÞÞ? ¼ cðghÞ?. Furthermore, if cðhÞ is also a ?-e.a.b. ideal of D, then

cðghÞ is a ?-e.a.b. ideal of D.

The previous claim is a straightforward consequence of the Dedekind-Mertens
Lemma [14, Theorem 28.1] and of the definition of ?-e.a.b. ideal.

Let z :¼ f =g, z 0 :¼ f 0=g 0 A KNcðD; ?Þ, with cð f ÞJ cðgÞ?, cð f 0ÞJ cðg 0Þ? and cðgÞ
and cðg 0Þ ?-e.a.b. ideals of D. From Claim 1, we deduce immediately that zz 0 ¼
ff 0=gg 0 A KNcðD; ?Þ.

In order to see that z � z 0 belongs to KNcðD; ?Þ, it is su‰cient to observe that
z � z 0 ¼ ð fg 0 � f 0gÞ=gg 0 and

cð fg 0 � f 0gÞJ cð fg 0 � f 0gÞ? J ðcð fg 0Þ? þ cð f 0gÞ?Þ? J cðgg 0Þ?:

Clearly, D½X �JKNcðD; ?ÞJKðX Þ, hence the quotient field of KNcðD; ?Þ is KðXÞ.
(2) To prove that NaðD; ?ÞJKNcðD; ?Þ, note that the definition of KNcðD; ?Þ

generalizes the definition of NaðD; ?Þ (Definition 3.2) by replacing ?f -invertible ideals
with the larger class of ?-e.a.b. ideals. The result is then clear. The second inclusion
is an easy consequence of the fact that, if cðzgÞJ cðgÞ? and cðgÞ is ?-e.a.b. then, for
each L A L, cðgÞ?L ¼ cðgÞL is a principal ideal of L (Lemma 4.6 (4)). Therefore we
have KNcðD; ?ÞJKN 0

cðD; ?Þ (Definition 5.8).
(3) Mutatis mutandis the proof ot the equality J KNcðD; ?Þ ¼ cðgÞKNcðD; ?Þ ¼

g KNcðD; ?Þ is analogous to the proof of Proposition 5.7.
More precisely, first, note that by definition J ¼ cðgÞD. Moreover, for each k, with

0a k a n, we have ak=g A KNcðD; ?Þ. Hence J KNcðD; ?ÞJ g KNcðD; ?Þ. Clearly,
g A cðgÞKNcðD; ?Þ ¼ J KNcðD; ?Þ, and so J KNcðD; ?Þ ¼ g KNcðD; ?Þ.

On the other hand, let a :¼ d=d 0 A J ?, with d; d 0 A D, d 0 0 0. Then a=g ¼
d 0a=d 0g ¼ d=d 0g A KNcðD; ?Þ, since dDJ d 0J ? ¼ d 0cðgÞ?. Hence, J ? J g KNcðD; ?Þ
¼ J KNcðD; ?Þ and so J KNcðD; ?Þ ¼ J ? KNcðD; ?Þ.

(4) All the equalities follow trivially from (3) except the last one, involving ai. This
equality holds because KNcðD; ?Þp is quasilocal and g KNcðD; ?Þp ¼ J KNcðD; ?Þp ¼
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ða0; a1; . . . ; anÞKNcðD; ?Þp is principal. By a standard technique (Claim in the proof
of Lemma 4.6 (4)), an invertible ideal of a quasilocal domain which is generated by a
finite list of elements is actually generated by one of those elements.

(5) It is clear that LðpÞ is a quasilocal overring of D, with maximal ideal P.
In order to show that LðpÞ is a ?-monolocality of D, take J :¼ ða0; a1; . . . ; anÞD
which is a nonzero ?-e.a.b. ideal of D. It is clear that akLðpÞJ J ?LðpÞ, for each
0a k a n. Let a A J ?. Since, by (4), J ? KNcðD; ?Þp ¼ ai KNcðD; ?Þp, for some i, then
a=ai A KNcðD; ?Þp XK ¼ LðpÞ. Therefore, J ? J aiLðpÞJ JLðpÞJ J ?LðpÞ and so
aiLðpÞ ¼ J ?LðpÞ.

(6) We start by proving the following:

Claim 2. Let L be a ?-monolocality of D, then KNcðD; ?ÞJLðX Þ. In particular,

KNcðD; ?ÞJKNðD; ?Þ.

Let f =g A KNcðD; ?Þ with cðgÞ a ?-e.a.b. ideal of D and cð f ÞJ cðgÞ?. Write g :¼
a0 þ a1X þ � � � þ anX n A D½X �. Since L is a ?-monolocality of D then, by Lemma 4.6
(4), we have:

cðgÞL ¼ cðgÞ?L ¼ ðcðgÞLÞ?f ¼ aiL

for some ai. Hence,
f

ai
A L½X � and

g

ai
A L½X �. Moreover,

g

ai
is a primitive polynomial in

L½X � (since one of its coe‰cients is a unit in L). Hence

f

g
¼

f

ai

g

ai

A LðX Þ;

and so Claim 2 is proven.
Note that, by (5) and Claim 2, we have LðpÞðX ÞKKNcðD; ?Þ. Note also

that, since LðpÞJKNcðD; ?Þp and X A KNcðD; ?Þ, then LðpÞ½X �JKNcðD; ?Þp and
hence P½X � ¼ ðpKNcðD; ?Þp XLðpÞÞ½X � ¼ pKNcðD; ?Þp X ðLðpÞ½X �Þ, recalling that

P ¼ pKNcðD; ?Þp XLðpÞ. Clearly, PðXÞXKNcðD; ?Þ is a proper prime ideal of
KNcðD; ?Þ.

Claim 3. With the notation introduced above, PðX ÞXKNcðD; ?ÞJ p.

Let j A PðXÞXKNcðD; ?Þ. Then, we can write j ¼ h=k where h; k A LðpÞ½X �
and h A P½X � and k is primitive in LðpÞ½X �. We can also write j ¼ f =g where
f ; g A D½X �, g0 0, cð f ÞJ cðgÞ? and cðgÞ is a ?-e.a.b. ideal of D. Since LðpÞ is a ?-
monolocality of D (by (5)), it then follows from Lemma 4.6 (4) that g has a coe‰cient
ai such that cðgÞLðpÞ ¼ aiLðpÞ and, hence, cð f ÞJ aiLðpÞ. Then:

f

g
¼

f

ai

g

ai

¼ h

k
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with
f

ai
;

g

ai
A LðpÞ½X �. Therefore

k
f

ai

¼ h
g

ai

:

Since k and
g

ai
are primitive in LðpÞ½X � and h A P½X �, then we must have

f

ai
A P½X �J pKNcðD; ?Þp. Since

g

ai
is a unit in KNcðD; ?Þp this implies that f =g

ð¼ h=k ¼ jÞ belongs to pKNcðD; ?Þp XKNcðD; ?Þ ¼ p.
We conclude the proof of (6). By Claim 3, the prime ideal p 0 :¼ PðXÞX

KNcðD; ?Þ is contained in p, thus it is clear that:

LðpÞ½X �JKNcðD; ?Þp JKNcðD; ?Þp 0 JLðpÞðXÞ ¼ LðpÞ½X �P½X �:

Moreover, pKNcðD; ?Þp X ðLðpÞ½X �Þ ¼ P½X �. Therefore,

LðpÞ½X �P½X � ¼ KNcðD; ?Þp ¼ KNcðD; ?Þp 0 ¼ LðpÞðXÞ;

hence we deduce that p 0 ¼ p.
(7) is an easy consequence of (5) and (6). In fact, let L A LðD; ?Þ and let N be

the maximal ideal of L. We know by Claim 2 that LðXÞKKNcðD; ?Þ. Set n :¼
NðX ÞXKNcðD; ?Þ. Let m be a maximal ideal of KNcðD; ?Þ containing the prime
ideal n. Then, by (5) and (6), we know that:

LðmÞðXÞ ¼ KNcðD; ?Þm JKNcðD; ?Þn JLðX Þ:

This fact implies that LðD; ?Þmin ¼ fLðmÞ jm A MaxðKNcðD; ?ÞÞg, and so:

KNcðD; ?Þ ¼
T
fKNcðD; ?Þm jm A MaxðKNcðD; ?ÞÞg

¼
T
fLðmÞðXÞ jm A MaxðKNcðD; ?ÞÞg

¼
T
fLðX Þ jL A LðD; ?Þming

¼
T
fLðX Þ jL A LðD; ?Þg ¼ KNðD; ?Þ:

The last statement of (7) follows from (2). r

6 New semistar operations

Given a semistar operation ? on a domain D we have associated two collections of
overrings L ð¼ LðD; ?ÞÞ and L 0 ð¼ L 0ðD; ?ÞÞ and using these collections we have
constructed two rings of rational functions KNðD; ?Þ and KN 0ðD; ?Þ. We can use
these two collections of overrings and two rings of rational functions to construct
four new semistar operations associated to ?.
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Definition 6.1. Let D be a domain with quotient field K and ? a semistar operation on
D. We define new semistar operations on D as follows. For each E A FðDÞ,

(a)
V

L 0 defined by E5L 0 ¼:
T
fEL 0 jL 0 A L 0g;

(b)
V

L defined by E5L ¼:
T
fEL jL A Lg;

(c) ?l defined by E ?l :¼ E KNðD; ?ÞXK ;
(d) ?l 0 defined by E ?l 0 :¼ E KN 0ðD; ?ÞXK.

Next we give some simple relations between these operations.

Proposition 6.2. Let D be a domain and ? a semistar operation on D. Then ?l and ?l 0

are semistar operations of finite type of D and

V
L a

V
L 0 ; ?l a

V
L; ?l 0 a

V
L 0 ; ?l a ?l 0 ; ?f a

V
L 0 :

Proof. It is easy to verify that, for each integral domain R with quotient field KðXÞ,
such that DJRXK , the operation

m

R defined by E

m

R :¼ ERXK , for each
E A FðDÞ is a semistar operation of finite type on D. As a matter of fact, note that,
for each nonzero element x A K and for each E A FðDÞ, we have ðxERÞXK ¼
xðERXKÞ, ER ¼

S
fFR jF JE;F A f ðDÞg and ð

S
fFR jF JE;F A f ðDÞgÞXK ¼S

fFRXK jF JE;F A f ðDÞg. Therefore, in particular, ?l ð¼

m

KNðD; ?ÞÞ and
?l 0 ð¼

m

KN 0ðD; ?ÞÞ are semistar operations of finite type on D. For each strong-?-
monolocality L 0 of D, we have that F ? JFL 0, thus F ?L 0 ¼ FL 0, hence in particular
F5L 0 ¼ ðF ?Þ5L 0 . Therefore, ?f a

V
L 0 . Moreover,

F KN 0ðD; ?ÞXK ¼ ðFð
T
fL 0ðXÞ jL 0 A L 0gÞÞXK

J ð
T
fFL 0ðX Þ jL 0 A L 0gÞXK

¼
T
fFL 0ðXÞXK jL 0 A L 0g ¼

T
fFL 0 jL 0 A L 0g:

We conclude that ?l 0 a
V

L 0 . Similarly, it can be shown that ?l a
V

L. Finally, since
KNðD; ?ÞJKN 0ðD; ?Þ (Proposition 5.1), then ?l a ?l 0 . r

If we restrict to just ?l and
V

L we can prove more.

Proposition 6.3. Let D be a domain and ? a semistar operation on D. Then ?l of D

satisfies

~??a ?l ¼
V

L a ?f :

Proof. For each E A FðDÞ:
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E ?l ¼ E KNðD; ?ÞXK ¼ ð
T
fE KNðD; ?Þm jm A MaxðKNðD; ?ÞgÞXK

¼
T
fE KNðD; ?Þm XK jm A MaxðKNðD; ?Þg

¼
T
fELðmÞðX ÞXK jm A MaxðKNðD; ?Þg

¼
T
fELðmÞ jm A MaxðKNðD; ?Þg ¼ E5Lmin ¼ E5L :

Let J :¼ ða1; a2; . . . ; anÞD A f ðDÞ. Suppose that a A J?l . Since KNcðD; ?Þ ¼
KNðD; ?Þ, then in KNðD; ?Þ we can write:

a ¼ a1
f1

g1

� �
þ a2

f2

g2

� �
þ � � � þ an

fn

gn

� �
with cð fiÞJ cðgiÞ? and cðgiÞ a ?-e.a.b. ideal of D, for each i, 1a ia n.

Let g :¼ g1g2 � � � gn and, for each i, let �ggi :¼ g1g2 � � � gi�1giþ1 � � � gn ¼ g=gi. Then we
can write:

ga ¼ a1 f1�gg1 þ a2 f2�gg2 þ � � � þ an fn�ggn:

Therefore

cðgaÞ? ¼ cða1 f1�gg1 þ a2 f2�gg2 þ � � � þ an fn�ggnÞ?

J cða1 f1�gg1Þ? þ cða2 f2�gg2Þ? þ � � � þ cðan fn�ggnÞ?

J cða1g1g2 � � � gnÞ? þ cða2g1g2 � � � gnÞ? þ � � � þ cðang1g2 � � � gnÞ?

J ða1; a2; . . . ; anÞcðg1g2 � � � gnÞ? ¼ ða1; a2; . . . ; anÞcðgÞ?

J ðða1; a2; . . . ; anÞcðgÞÞ?:

Since each cðgiÞ is a ?-e.a.b. ideal of D, then we know that ðcðg1Þcðg2Þ � � � cðgnÞÞ? ¼
cðg1g2 � � � gnÞ? ¼ cðgÞ? and that cðgÞ is a ?-e.a.b. ideal of D (Claim 1 in the proof of
Theorem 5.11). It follows that:

ðcðgÞaÞ? J ðða1; a2; . . . ; anÞcðgÞÞ? ) a A ðða1; a2; . . . ; anÞDÞ? ¼ J ?:

Therefore J?l J J ?.

Finally, since NaðD; ?ÞJKNðD; ?Þ (Theorem 5.11 (7)) then, for each E A FðDÞ,
E ~?? ¼ E NaðD; ?ÞXK JE KNðD; ?ÞXK ¼ E ?l . r

The statements (1), (2) and (3) of our next result are essentially the ‘‘KN-analogues’’
of Proposition 5.4 and Corollary 5.5; statement (4) is an ‘‘L-analogue’’ of Lemma
4.2 (9).
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Corollary 6.4. Let ? be a semistar operation on an integral domain D and let

L ¼ LðD; ?Þ be the set of all ?-monolocalities of D. Then:

(1) NaðD; ?Þ ¼ NaðD; ~??Þ ¼ KNðD; ~??Þ, (in particular, ~?? ¼ ð~??Þl).

(2) KNðD; ?aÞ ¼ KrðD; ?aÞ ¼ KrðD; ?Þ, (in particular, ?a ¼ ð?aÞl).

(3) D is a P?MD if and only if KNðD; ~??Þ ¼ KNðD; ?aÞ.

(4) For each ðL;NÞ A L, N XD is a quasi-~??-prime of D.

Proof. (1) is an easy consequence of Theorem 5.11 (7) and Proposition 5.4 (1).
(2) follows from the fact that, for the e.a.b. semistar operation ?a, each F A f ðDÞ

is ?a-e.a.b., hence LðD; ?aÞ is the set of all the ?-valuation overrings of D (since
T A LðD; ?aÞ is necessarily a valuation overring of D and T ¼ T ?a , i.e. T is a ?a-
valuation overring (Lemma 4.2 (6)), or equivalently a ?-valuation overring, of D [10,
Proposition 3.3]).

(3) follows from (1), (2) and [8, Theorem 3.1 and Remark 3.1].
(4) Using Theorem 5.11 (6) and (7), we have ðN XDÞ~?? ¼ ðN XDÞNaðD; ?ÞXK J

ðN XDÞKNðD; ?ÞXK J ðNðX ÞXKNðD; ?ÞÞXK . Therefore ðN XDÞ~?? XDJ
ððNðX ÞXKNðD; ?ÞÞXKÞXD ¼ ððNðXÞXKNðD; ?ÞÞXLÞXD ¼ N XD. r

Remark 6.5. So far we have given no indication that KNðD; ?Þ and KN 0ðD; ?Þ are
ever di¤erent. In Example 7.7 we exhibit a (semi)star operation (of finite type) ? on
a Noetherian integrally closed integral domain D such that KNðD; ?ÞWKN 0ðD; ?Þ
and thus, in particular, LðD; ?ÞXL 0ðD; ?Þ (and so

V
L ¼ ?l Y ?l 0 a

V
L 0 ). More-

over in this example we will see that:

ð? ¼Þ ?f Y ?l 0 ð¼ ?a ¼ tDÞ;

ðdD ¼Þ ~?? ¼ ?l Y ?f :

Moreover, it is not di‰cult to give an example of a semistar operation ? such that
~??Y ?l (cf. the following Example 7.8).

Now that we have made note that L and L 0 are not always the same we investigate
the implications of assuming that they or the related rational function rings or the
related semistar operations are the same.

Corollary 6.6. Let ? be a semistar operation on an integral domain D. Then the fol-

lowing are equivalent.

(i) L ¼ L 0;
(ii)

V
L ¼

V
L 0 ;

(iii) ?f a ?l;

(iv) ?l ¼ ?f ;

(v) ?l ¼
V

L ¼
V

L 0 ¼ ?l 0 ¼ ?f .
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Proof. (v) ) (iv) ) (iii) and (i) ) (ii) are trivial.
(iii) ) (i) because (iii) implies that each L A LðD; ?Þ is a ?-overring of D, since

?l ¼
V

L.
(ii) ) (iv) because we know that, in general,

V
La ?f a

V
L 0 (Propositions 6.2

and 6.3).
(i) ) (v) is obvious, using the fact that we already know that (i) , (iv). r

Corollary 6.7. Let ? be a semistar operation on an integral domain D. If ?f is stable

(i.e. ~?? ¼ ?f [7, Corollary 3.9]) then KNðD; ?Þ ¼ KN 0ðD; ?Þ and ?l ¼
V

L ¼
V

L 0 ¼
?l 0 ð¼ ?f ¼ ~??Þ.

Proof. The result follows from Corollary 6.6 and the fact that, in general, ~??a ?l a ?f

(Proposition 6.3). r

7 Constructions and Examples

Thus far, we have focussed on the situation where we begin with a semistar operation
and investigate related overrings determined by the e.a.b.-ideals associated to the
semistar operation. Now we reverse that and begin with a collection of overrings and
use them to define a semistar operation. The major questions will concern how the
(strong) monolocalities relate to the defining collection of overrings.

Proposition 7.1. Let T :¼ fTl j l A Lg be a family of quasilocal overrings of an inte-

gral domain D and let F A f ðDÞ. Then F is
V

T-e.a.b. if and only if FTl is principal as

a fractional ideal of Tl, for each l A L.

Proof. The ‘‘only if ’’ part.

Claim. Let l A L and let F ;G;H A f ðDÞ. Assume that F is
V

T-e.a.b. and

FGTl JFHTl, then GTl JHTl.

Note that FGTl JFHTl implies that ðFGÞ5T J ðFGTlÞ5T J ðFHTlÞ5T . Since F

is
V

T-e.a.b., thus also ð
V

TÞf -a.b. (Lemma 3.8 (2)), then Gð5TÞf ¼ G5T J
ðHTlÞð5TÞf J ðHTlÞ5T . Therefore GTl ¼ ðG5TÞTl J ððHTlÞ5TÞTl ¼ HTl (Lemma
4.2 (10)).

The conclusion of the ‘‘only if ’’ part follows from the previous Claim and Remark
3.7, since Tl is quasilocal and each finitely generated Tl-submodule of K ,
Gl A f ðTlÞ, is of the type GTl, for some G A f ðDÞ.

For the ‘‘if ’’ part, assume that F ;G;H A f ðDÞ, ðFGÞ5T J ðFHÞ5T and FTl

is principal as a fractional ideal of Tl, for each l A L. Then, clearly, FGTl ¼
ðFGÞ5TTl J ðFHÞ5TTl ¼ FHTl. Since FTl is principal, then GTl JHTl, for each
l A L, and thus G5T JH5T . r

We digress momentarily to give a corollary to the last result which illustrates some
nice closure properties of the ð�Þl operation.
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Corollary 7.2. Let ? be a semistar operation on an integral domain D.

(1) Let F A f ðDÞ. If F is ?-e.a.b. then F is ?l-e.a.b.

(2) LðD; ?ÞJLðD; ?lÞ (more precisely, LðD; ?Þ ¼ fL A LðD; ?lÞ jL ¼ L?f g).

(3) KNðD; ?Þ ¼ KNðD; ?lÞ.

(4) ð?lÞl ¼ ?l.

Proof. Recall that ?l ¼
V

L, where L ¼ LðD; ?Þ (Proposition 6.3).
(1) Assume that F is ?-e.a.b. then, by definition of ?-monolocality, FL is principal

for each L A LðD; ?Þ. Therefore, by Proposition 7.1, F is
V

L-e.a.b. (¼ ?l-e.a.b.).
(2) Let L A LðD; ?Þ and let F be ?l-e.a.b. (¼

V
L-e.a.b.). As above, by Proposition

7.1, we know that FL is principal, thus L belongs also to LðD; ?lÞ, since L ¼ L?f and
?l a ?f (Proposition 6.3).

For the parenthetical statement, let L A LðD; ?lÞ and let F be ?-e.a.b. By (1) F is
?l-e.a.b. (¼

V
L-e.a.b.), thus FL is principal, for each L A LðD; ?Þ (Proposition 7.1).

We conclude that L A LðD; ?lÞ belongs to LðD; ?Þ if and only if L ¼ L?f .
(3) From (2) we deduce that KNðD; ?ÞKKNðD; ?lÞ. The opposite inclusion fol-

lows from Theorem 5.11 (1) and (7), since if g A D½X � is such that cðgÞ is ?-e.a.b. then
cðgÞ is also ?l-e.a.b. by (1).

(4) is a straightforward consequence of (3). r

We now turn back to the special case where we begin with a collection of overrings of
a domain D and use them to define a semistar operation.

Proposition 7.3. Let T :¼ fTl j l A Lg be a family of quasilocal overrings of an inte-

gral domain D and set � :¼
V

T. Then:

(1) TJL 0ðD; �ÞJLðD; �Þ.

(2)
V

L a
V

L 0 a � and ð
V

L 0 Þf ¼ �f .

(3) KNðD;
V

LÞ ¼ KNðD;
V

L 0 Þ ¼ KNðD; �Þ and KNðD; �Þ ¼ KN 0ðD; �Þ.

(4) �l ¼ �l 0 ¼
V

La ð
V

L 0 Þf ¼ �f and �l ¼ ð�l 0 Þl ¼ ð
V

LÞl ¼ ð
V

L 0 Þl.

Proof. (1) Each Tl is obviously a �-overring of D, since if F A f ðDÞ then FTl ¼
F �Tl ¼ ðFTlÞ� (Lemma 4.2 (10)). Furthermore, note that if F A f ðDÞ is �-e.a.b.
then FTl is principal in Tl, for each l A L. As a matter of fact, if G;H A f ðDÞ are
such that FGTl JFHTl, then ðFGTlÞ� ¼ FGTl JFHTl ¼ ðFHTlÞ�, thus ðGTlÞ� ¼
GTl JHTl ¼ ðHTlÞ�, because F is �-e.a.b. Therefore FTl is quasi-cancellative and
so it is principal in Tl (Remark 3.7).

(2) From (1), we deduce immediately that:V
L a

V
L 0 a

V
T ¼ �:

Moreover, �f ¼ ð
V

L 0 Þf , since for each F A f ðDÞ, we have:
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F5L 0 ¼ ð
T
fFTl j l A LgÞX ð

T
fFL 0 jL 0 A L 0nTgÞ

¼ F � X ð
T
fFL 0 jL 0 A L 0nTgÞ

¼ F � X ð
T
fF �L 0 jL 0 A L 0nTgÞ ¼ F �:

(3) Since KNðD; �Þ ¼ KNðD; �lÞ (Corollary 7.2 (3)), �l ¼
V

L (Proposition 6.3),

and �f ¼ ð
V

L 0 Þf by (b), then we easily deduce that KNðD;
V

LÞ ¼ KNðD; �lÞ ¼
KNðD; �Þ ¼ KNðD;

V
L 0 Þ.

From Lemma 4.2 (10) we deduce immediately:

Claim 1. Let g A D½X �, g0 0, then cðgÞ5T ¼ D5T if and only if cðgÞTl ¼ Tl, for each

l A L.

Claim 1 implies:

Claim 2. NaðD;
V

TÞ ¼
T
fNaðD; ?fTlgÞ j l A Lg ¼

T
fTlðXÞ j l A Lg.

From Claim 2 and from the fact that TJL 0ðD; �Þ we deduce that KN 0ðD; �Þ ¼T
fL 0ðXÞ jL 0 A L 0ðD; �Þg J

T
fTlðXÞ j l A Lg ¼ NaðD;

V
TÞ J KNðD;

V
TÞ ¼

KNðD; �Þ. Since in general, KNðD; �ÞJKN 0ðD; �Þ, we conclude that KNðD; �Þ ¼
KN 0ðD; �Þ.

(4) From (3) and from Proposition 6.3, we have that �l ¼
V

L ¼ �l 0 and so, by
Corollary 7.2 (4), �l ¼ ð

V
LÞl ¼ ð�l 0 Þl. From (b) we know that ð

V
L 0 Þf ¼ �f . SinceV

Lð¼ �lÞ is a semistar operation of finite type then, clearly,
V

L a ð
V

L 0 Þf . Finally,
note that ðð

V
L 0 Þf Þl ¼ ð

V
L 0 Þl and ð�f Þl ¼ �l. r

If we assume in addition to the hypotheses of Proposition 7.3 that each Tl is in-
tegrally closed we can prove a little more.

Corollary 7.4. Suppose in addition to the hypotheses of Proposition 7.3 that each Tl is

integrally closed. Then KNðD; �Þ ¼ KN 0ðD; �Þ ¼
T
fTlðXÞ j l A Lg.

Proof. We already know that KNðD; �Þ ¼ KN 0ðD; �Þ. Since each Tl is a strong
�-monolocality (Proposition 7.3 (1)), it follows immediately from the definitions
that KN 0ðD; ?ÞJ

T
fTlðXÞ j l A Lg. We will finish the proof by showing thatT

fTlðXÞ j l A LgJKNðD; �Þ. Let f =g A
T
fTlðX Þ j l A Lg and suppose that

f ; g A D½X �, with g0 0, and that they have no common factors over K ½X �. Choose a
particular Tl. We will consider content ideals of polynomials as ideals of Tl. By
definition, we know that f =g ¼ h=k where h; k A Tl½X � and cTl

ðkÞ ¼ Tl. Since f , g

have no common factors over K ½X �, by Euclid’s Lemma we know that g is a factor of
k in K ½X �. If we rewrite h=k as dh=dk for an appropriate nonzero constant d A Tl, we
have g being a factor over Tl½X � of dk and cTl

ðdkÞ ¼ dTl. Then since Tl is integrally
closed we know that g has invertible (hence principal) content [25, Theorem 1.5].
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Finally, since cTl
ðhÞJ cTl

ðkÞ ¼ Tl and f =g ¼ h=k it follows easily that cTl
ð f ÞJ

cTl
ðgÞ.

Since we have been working with an arbitrary Tl we have proven:

� cDð f Þ� J cDðgÞ� (with content ideals considered now as ideals of D).

� cDðgÞ is a �-e.a.b. ideal of D since its extension to each Tl is principal.

This proves that f =g A KNðD; �Þ which finishes the proof. r

In the setting where we begin with a collection of overrings of a domain D it can seem
that di¤erences between strong monolocalities and monolocalities and the associated
constructions should disappear. In particular, we could hope that the inequality in
part (4) of Proposition 7.3 should be an equality. We next give an example to dem-
onstrate that this inequality can be strict.

Example 7.5. Let k be a field and let fX ;Y ;W ;X 0
1;Y 0

1;X 0
2;Y 0

2 ; . . . ;Zg be an infinite
family of indeterminates over k. Set R :¼ k½X ;Y ;W ;X 0

1 ;Y 0
1;X 0

2;Y 0
2; . . .�. Let M be

the maximal ideal of R generated by fX ;Y ;W ;X 0
1;Y 0

1 ;X 0
2;Y 0

2; . . .g, let D :¼ RM and
let K be the quotient field of D. For each positive integer i define

Ti :¼ D
W

XX 0
i þ YY 0

i

� �
:

Let T :¼ fTi j i > 0g and set � :¼
V

T (i.e. E � :¼
T

ib1 ETi, for each E A FðDÞ).
Also, let PW be the prime ideal of D generated by W . Note that k :¼ DPW

=PW DPW
is

isomorphic to kðX ;Y ;X 0
1;Y 0

1;X 0
2 ;Y 0

2; . . .Þ. Let j be the canonical homomorphism
from DPW

to k ¼ DPW
=PW DPW

. Let V be a minimal valuation overring of D :¼
D=PW (in its quotient field isomorphic to k) and let V ¼ j�1ðVÞ. Then V is a mini-
mal valuation overring of D which has DPW

as an overring.

(1) V is a minimal valuation overring of each Ti.

(2) VðZÞ is a minimal valuation overring of each TiðZÞ.
(3) KNðD; �Þ ¼ KN 0ðD; �Þ ¼

T
ib1 TiðZÞ.

(4) Let MV be the contraction of the maximal ideal of VðZÞ to KNðD; �Þ. Then MV

is a maximal ideal of KNðD; �Þ.
(5) MV is the only maximal ideal of KNðD; �Þ.
(6) D� ¼ D.
(7) ðKNðD; �Þ ¼ KN 0ðD; �Þ ¼Þ

T
ib1 TiðZÞ ¼ DðZÞ.

(8) D is a �-monolocality but not a strong �-monolocality.

(9) The (semi)star operation � is such that the inequality in Proposition 7.3 (4) is

strict (i.e.,
V

Lð�ÞY ð
V

L 0ð�ÞÞf ).

Proof. (1) is a consequence of the fact that if W
XX 0

i
þYY 0

i
B V then

XX 0
i þYY 0

i

W
A V JDPW

,
which is a contradiction.

(2) follows from (1) and (3) is a consequence of Corollary 7.4, since each Ti is in-
tegrally closed. (The claim that each Ti is integrally closed follows easily from [28,
Theorem 2].)
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(4) Proposition 7.3 implies that each Ti is a �-monolocality. It follows then from
Theorem 5.11 that TiðZÞ is an overring of KNðD; �Þ for each i. Hence VðZÞ is an
overring of KNðD; �Þ. We assumed V to be a minimal valuation overring of D. It
follows that VðZÞ is a minimal valuation overing of DðZÞ. It is clear then that VðZÞ
is also a minimal valuation overring of any ring properly in between DðZÞ and VðZÞ.
In particular, VðZÞ is a minimal valuation overring of KNðD; �Þ. The result follows
immediately.

(5) Let d A MV . Then d A KNðD; �Þ. As we noted above, TiðZÞ is an overring of
KNðD; �Þ. Also recall that VðZÞ is a minimal valuation overring of each TiðZÞ. In
particular, d is a nonunit in each TiðZÞ. Hence, 1 þ d is a unit in each TiðZÞ and so,
by (3), it is a unit in KNðD; �Þ.

(6) It is easy to see that
T

ib1 Ti ¼ D, hence D� ¼
T

ib1 DTi ¼
T

ib1 Ti ¼ D.
(7) Combine Theorem 5.11 (6) and (7) with the fact that we already know that

KNðD; �Þ is quasilocal and that KNðD; �ÞXK ¼
T

ib1 TiðZÞXK ¼
T

ib1 Ti ¼ D.
(8) D being a �-monolocality follows from the fact that KNðD; �Þ ¼ DðZÞ (Theo-

rem 5.11 (5)). D is not a strong �-monolocality because it is not a �-overring: let
J ¼ ðX ;Y ÞD, then W A J � but W B JD ¼ J.

(9) Since D itself is a �-monolocality (by (8)), then
V

L is the identity function.
However, the proof of (8) above demonstrates that �f ð¼ ð

V
L 0 Þf by Proposition 7.3

(4)) is not the identity.

So we have an example of a semistar operation ? on a domain D of the form
V

T,
derived from a family T of overrings of D, such that KNðD; ?Þ ¼ KN 0ðD; ?Þ but
there exists a ?-monolocality which is not strong (Example 7.5).

We next give an example of a semistar operation, also defined by a
V

-construction,
in which things work exactly as one might hope.

Example 7.6. Let k be a field and let R :¼ k½X ;Y � be the ring of polynomials over k

in the two variables X and Y . Let P :¼ ðX ;Y Þ be the maximal ideal of R generated
by the variables and let D :¼ RP. Let M denote the maximal ideal of the local ring D.
Set

� D1 :¼ D½X=Y �, D2 :¼ D½Y=X �;
� T :¼ fTl jTl A Lg is the collection of all localizations of D1 and D2 at their max-
imal ideals.

Set � :¼
V

T. Then � is an example of a semistar operation on a integrally closed

Noetherian local domain D such that:

(1) �l ¼
V

L ¼
V

L 0 ¼ �l 0 ¼ �f ¼ � (i.e. L ¼ L 0, by Corollary 6.6).

(2) ~��Y � Y �a.

We know by Proposition 7.3 (1) that TJL 0ðD; �ÞJLðD; �Þ. Suppose then that
T is a �-monolocality of D. It is clear from Proposition 7.1 that the ideal I ¼ ðX ;Y Þ
is a �-e.a.b. ideal of D. Hence the ideal I must extend to a principal ideal in T . Since
T is quasilocal it follows that IT is generated by either X or Y . Hence either Y=X
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or X=Y lies in T . Hence Tl JT for some Tl A T. It follows that T consists exactly of
the minimal �-monolocalities of D. It follows from this then that the �-monolocalities
and the strong �-monolocalities coincide. This is su‰cient to prove that

�l ¼
V

L ¼
V

L 0 ¼ �l 0 ¼ �f ¼ �:

Now observe that the Tl’s are neither localizations of D nor valuation overrings of D.
This proves that ~��Y � Y �a. Suppose that, in fact, ~�� ¼ �. Then Corollary 6.4 in-
dicates that KNðD; �Þ ¼ NaðD; �Þ. Recall that the localizations of NaðD; �Þ at max-
imal ideals have the form DPðX Þ where P is a prime ideal of D. Similarly, if � ¼ �a

then Corollary 6.4 indicates that KNðD; �Þ ¼ KrðD; �Þ. Recall that the localizations
of KrðD; �Þ at maximal ideals have the form VðX Þ where V is a valuation overring of
D. In the present setting the localizations of KNðD; ?Þ are exactly the rings TiðXÞ.
The result follows immediately.

Example 7.6 is significant because we indicated that an important objective of this
article was to demonstrate that the Nagata ring construction and the Kronecker
function ring construction were at opposite ends of a spectrum. For the generaliza-
tion to have any real power we need to demonstrate that we can find something
which is properly in between these two extremes. We also indicated that we wanted to
give a method for approximating a given semistar operation by a semistar operation
which was constructed by means of extension to a collection of overrings. We have
given such a mechanism, but again we need to show that this is meaningful by dem-
onstrating that the semistar operation obtained can turn out to be associated with a
collection of overrings which consists neither of localizations nor of valuation over-
rings of the domain D. In this example we have a star operation � such that � is equal
to all four of the approximations developed in this work (Definition 6.1). And yet we
also have

~��Y �Y �a:

This indicates that � and all of its KN and KN 0 derivatives lie properly in between
‘‘the localization constructions’’ associated to ~�� and ‘‘the valuation domain con-
structions’’ associated to �a.

Example 7.7. Example of a (semi)star operation ? on a Noetherian integrally closed

domain D such that ?l Y ? ð¼ ?f ÞY ?l 0 and so KN 0ðD; ?ÞWKNðD; ?Þ, in particular

LðD; ?ÞWL 0ðD; ?Þ.

Let k be a field, D :¼ k½X ;Y �ðX ;YÞ M :¼ ðX ;Y ÞD and let K :¼ kðX ;YÞ. Using the
techniques of [14, (32.4)], we construct a new (semi)star operation ? on D as follows:

1. If dD is any nonzero principal ideal of D, then ðdDÞ? :¼ dD.

2. If J JD is a nonzero ideal of D which is not contained in any proper principal
ideal of D, then J ? :¼ M.
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3. If J JD is a nonzero ideal of D which is not principal, but is contained in a prin-
cipal ideal, then we factor J as J ¼ aI , where a is a GCD of a set of generators of J

and I :¼ ðJ :D aDÞ is not contained in any proper principal ideal of D by the choice
of a. Then J ? :¼ aM.

4. If J is a nonzero fractional ideal of D which is not contained in D, choose a non-
zero element b A D such that bJ JD. Then define J ? :¼ ð1=bÞðbJÞ?.

5. If J A FðDÞnFðDÞ we define J ? :¼ K.

Since D is Noetherian, then ? is a (semi)star operation of finite type on D. Hence-
forth, it is clear that Mð?f Þ ¼ fMg. Thus, ~?? coincides with the identity semistar op-
eration dD, i.e.:

dD ¼ ~??Y ?f ¼ ?:

Moreover, we have already proved in [11, Example 5.3] that gð?aÞð?aÞ ¼ ?a ¼ tD. There-
fore, if we denote by Z a (new) indeterminate over the field of quotients K of D, by
W the set of all rank one discrete valuation overrings of D, then tD ¼

V
W , thus:

NaðD; ?Þ ¼ NaðD; ~??Þ ¼ NaðD; dDÞ ¼ DðZÞ;

KrðD; ?Þ ¼ KrðD; ?aÞ ¼ KrðD; tDÞ ¼ KrðD;
V

W Þ ¼
T
fWðZÞ jW A W g:

Claim 1. Let J A f ðDÞ. If J is ?-e.a.b. then J is principal.

Without loss of generality we can assume that J JD. If J is not principal then either
J is not contained in any principal ideal of D or J is contained in a principal ideal of
D in both cases J ¼ dI , for some nonzero ideal I of D such that I ? ¼ M and for some
nonzero element d A D (eventually d ¼ 1). Therefore, J ? ¼ ðdIÞ? ¼ dI ? ¼ dM. On the
other hand, since by definition of ? we have that ðM 2Þ? ¼ M? ¼ M, then:

ðJIÞ? ¼ ðdI 2Þ? ¼ dðI ?I ?Þ? ¼ dðM 2Þ? ¼ dM ¼ J ? ¼ ðJDÞ?:

If J is ?-e.a.b. (since I is finitely generated) then I ? ¼ D? ¼ D, which is a
contradiction.

Claim 2. Let VðD; ?Þ be the set of all ?-valuation overrings of D. If L 0 is a strong-?-

monolocality of D then L 0 is a localization of D at a height-one prime ideal of D, thus

L 0ðD; ?Þ ¼ W ¼ VðD; ?Þ. In particular,

KN 0ðD; ?Þ ¼
T
fWðZÞ jW A W g ð¼ KrðD; ?ÞÞ:

As a matter of fact M ¼ ðM 2Þ? JM 2L 0 and, since M is finitely generated, by Na-
kayama’s Lemma we have ML 0 ¼ L 0. Therefore, for some element f A M, fL 0 ¼ L 0

and thus Df JL 0. Since Df is a one-dimensional Krull domain and L 0 is a quasilocal
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overring of Df , then necessarily L 0 is a localization of D at a height-one prime ideal
of D, hence L 0 A W , i.e. L 0 JW . Conversely, if Q is an height-one prime ideal of D,
then from the definition of ? it follows immediately that the discrete valuation
overring W :¼ DQ is a strong-?-monolocality of D. Note that in general L 0ðD; ?ÞK
VðD; ?Þ and, in this case, each W A W is a ?-valuation overring of D (by [10, The-
orem 3.5], since WðZÞKKrðD; ?Þ), that is VðD; ?ÞKW .

Claim 3. We have that bD Y ?a ð¼ gð?aÞð?aÞ ¼ tDÞ and L 0ðD; bDÞXL 0ðD; ?aÞ thus, in

particular,

ðKrðD; ?Þ ¼ KrðD; ?aÞ ¼Þ KN 0ðD; ?aÞXKN 0ðD; bDÞ ð¼ KrðD; bDÞ ¼ KrðD; dDÞÞ:

(cf. also Proposition 5.4 (2)).

We have observed above that ?a ¼ gð?aÞð?aÞ ¼ tD ¼
V

W and thus it is easy to see that
L 0ðD; ?aÞ ¼ LðD; ?aÞ ¼ W ¼ fDQ jQ is an height one prime ideal of Dg. On the
other hand, bD coincides by definition with

V
V, where (in the present Example) the

set V :¼ VðD; dDÞ ð¼ VðD; bDÞÞ is the set of all the valuation overrings of D and
thus it is easily seen that L 0ðD;

V
VÞ ¼ LðD;

V
VÞ ¼ V. Since there are plenty of

two dimensional valuation overrings of D, then clearly L 0ðD; bDÞXL 0ðD; ?aÞ.
Finally, by [11, Proposition 4.1 (5)], it is clear that bD Y ?a if and only if
KrðD; bDÞWKrðD; ?aÞ.

Claim 4. We have that ?Y ?a (more precisely, every nonprincipal ideal of D is

?a-e.a.b., but not ?-e.a.b.) and L 0ðD; ?Þ ¼ L 0ðD; ?aÞ. In particular, KN 0ðD; ?Þ ¼
KN 0ðD; ?aÞ.

Note that every nonzero ideal of D is clearly ?a-e.a.b. but from Claim 1 we know that
if an ideal of D is ?-e.a.b. then it is a principal ideal. We have observed in the Claims
2 and 3 above that L 0ðD; ?Þ ¼ W ¼ L 0ðD; ?aÞ.

Claim 5. LðD; ?ÞXL 0ðD; ?Þ and KNðD; ?ÞWKN 0ðD; ?Þ. More precisely:

KNðD; ?Þ ¼ DðZÞ ð¼ NaðD; ?ÞÞ

WKN 0ðD; ?Þ ¼
T
fDQðZÞ jQ A SpecðDÞ and htðQÞ ¼ 1g

ð¼ KrðD; ?ÞÞ:

By the previous considerations it is su‰cient to show that KNðD; ?Þ ¼ DðZÞ. This is
an easy consequence of Claim 1, since each J A f ðDÞ which is a ?-e.a.b. is a principal
fractional ideal of D and, by definition D is quasilocal and D ¼ D?, thus D is a ?-
monolocality of D. Therefore LðD; ?Þ ¼ fL jL is a quasilocal overring of D such
that L ¼ L?f g and D A LðD; ?ÞnL 0ðD; ?Þ.
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Claim 6. LðD; ?aÞ ¼ L 0ðD; ?aÞ ð¼ L 0ðD; ?Þ ¼ W Þ thus ðKNðD; tDÞ ¼ KNðD; ?aÞ ¼
KN 0ðD; ?aÞ ð¼ KN 0ðD; ?ÞÞ and so KNðD; ?ÞWKNðD; ?aÞ.

This is a consequence of Corollary 6.7 since in this case we know that ?a ¼ gð?aÞð?aÞ is a
stable (semi)star operation on D.

In conluding, in this example, we have:

dD ¼ ~?? ¼ ?l ¼
V

L Y ?f Y ?l 0 ¼
V

L 0 ¼ ?a ¼ tD:

We end with an easy example announced in Remark 6.5.

Example 7.8. An example of an Noetherian integrally closed domain D with a

(semi)star operation ? such that ~??Y ?l.

Let D be as in Example 7.7. Note that, in this case, tD ¼
V

W and bD ¼
V

V, where
W is the set of all the rank 1 valuation overrings of the Krull domain D [14, Propo-
sition 44.13] and V is the set of all the valuation overrings of D. Therefore tD and bD

are both (e.)a.b. (semi)star operations on D.
Let ? :¼ bD. Since it is easy to see that MðbDÞ ¼ MaxðDÞ [11, Theorem 4.3 (3)],

then fbDbD ¼ dD. Moreover, we have already seen (in the proof of Claim 3, Example
7.7) that LðD; bDÞ ¼ L 0ðD; bDÞ ¼ V, thus ðbDÞl ¼ ðbDÞl 0 ¼ bD.
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Reine Angew. Math. 92 (1882), 1–122; Werke 2, 237–387
[22] Krull W.: Beiträge zur Arithmetik kommutativer Integritätsbereiche, I–II. Math. Z. 41
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