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CANCELLATION PROPERTIES IN IDEAL SYSTEMS:
AN e.a.b. NOT a.b. STAR OPERATION

MARCO FONTANA, K. ALAN LOPER AND RYÛKI MATSUDA

Abstract. We show that Krull’s a.b. cancellation condition is a properly stronger condition
than Gilmer’s e.a.b. cancellation condition for star operations.

1. Introduction

Let D be an integral domain with quotient field K . Let FðDÞ [respectively, f ðDÞ] be the set of all non-
zero fractional ideals [respectively, nonzero finitely generated fractional ideals] of D.

A star operation � on D is a mapping � : FðDÞ ! FðDÞ, E 7! E � such that the following properties
hold: ð*1Þ ðzDÞ� ¼ zD and ðzEÞ� ¼ zE �, ð*2Þ EJF ) E � JF �, ð*3Þ EJE � and E�� :¼ ðE �Þ� ¼ E �,
for all nonzero z A K , and for all E;F A FðDÞ.

Examples of star operations include the v-operation, defined by Ev :¼ ðD : ðD : EÞÞ, for each E A FðDÞ
[2, page 396]; the t-operation, defined by Et :¼ 6fF v jF A f ðDÞ;F JEg, for each E A FðDÞ [2, page
406]; the w-operation (with the notation proposed by Wang-McCasland) defined by Ew :¼ 7fEDQ jQ A
Max tðDÞg (where Max tðDÞ is the (nonempy) set of all maximal t-ideals of D) for all E A FðDÞ [4].

Let � be a star operation on D. If F is in f ðDÞ, we say that F is �-eab [respectively, �-ab], if the inclu-
sion ðFGÞ� J ðFHÞ� implies that G � JH �, with G;H A f ðDÞ, [respectively, with G;H A FðDÞ].

The operation � is said to be eab [respectively, ab] if each F A f ðDÞ is �-eab [respectively, �-ab]. An ab

operation is obviously an eab operation. Recall also that E A FðDÞ is called a ( fractional) �-ideal of D if
E ¼ E �.

In the classical (Krull’s) setting, the study of Kronecker function rings on an integral domain gen-
erally focusses on the collection of ‘‘arithmetisch brauchbar’’ (for short, a.b. or, simply, ab, as above)
�-operations [3]. Gilmer’s presentation of Kronecker function rings [2, Section 32] makes use of the
(presumably larger class of ) ‘‘endlich arithmetisch brauchbar’’ (for short, e.a.b. or, simply, eab, as above)
�-operations. In this paper, we show that the e.a.b. cancellation condition is really strictly weaker
than the a.b. cancellation condition. This goal is reached by modifying an example given in the recent
paper [1].

2. The example

In [1, Example 16], the authors consider the following example.
Let k be a field, X1;X2; . . . ;Xn; . . . an infinite set of indeterminates over k and N :¼ ðX1;X2; . . . ;

Xn; . . .Þk½X1;X2; . . . ;Xn; . . . �. Clearly, N is a maximal ideal in k½X1;X2; . . . ;Xn; . . . �. Set D :¼ k½X1;X2;
. . . ;Xn; . . . �N , M :¼ ND be the maximal ideal of the local domain D and K :¼ kðX1;X2; . . . ;Xn; . . .Þ the
quotient field of D. Note that D is a UFD and consider W the set of all the rank one essential valua-
tion overrings of D. Let5W be the star ab operation on D defined by W [2, page 398], i.e., for each
E A FðDÞ,

E5W :¼ 7fEW jW A W g:

It is well known that the t-operation on D is an ab star operation, since F t ¼ F5W for all F A f ðDÞ [2,
Proposition 44.13] (more precisely, in this case, we have v ¼ t ¼ w ¼5W ).
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Consider the following subset of fractional ideals of D:

J :¼ fxF t; yM; zM 2 j x; y; z A Knf0g;F A f ðDÞg:

Since each nonzero principal fractional ideal of D is in J and, for each ideal J A J and for each nonzero
a A K , the ideal aJ belongs to J, then, as above, [2, Proposition 32.4] guarantees that the set J defines on
D a star operation �, by setting:

E � :¼ 7fJ j J A J; JKEg; for each E A FðDÞ:

Since, for each F A f ðDÞ, F t A J, it was claimed in [1, Example 16] that �jf ðDÞ ¼ tjf ðDÞ. This would imply
that � was an eab operation on D, since the operation t—as observed above—is an ab star operation
on D.
Unfortunately, it is not true that F � ¼ F t for all F A f ðDÞ and, in particular, this equality does not

hold if F HD and F t ¼ D. For instance, if I :¼ ðX1;X2Þ, then clearly, in the Krull domain D, we have
I v ¼ I t ¼ D. On the other hand, I � JM � ¼ M, since M A J. More generally, and with a more careful
analysis, we claim that, if I :¼ Iij :¼ ðXi;XjÞ, with i0 jb 1, then I � ¼ M.
Case 1. For every G A f ðDÞ, if I JGt, then I J I � JM � ¼ MWD ¼ I t JGt. Note that the same

conclusion holds for every proper ideal A of D such that At ¼ D, i.e., for every G A f ðDÞ if AJGt,
then AJM � ¼ MWGt.
Case 2. If I J yM, for some 00 y A K , then in particular I J yD and so D ¼ I t J yD, hence,

y�1 A D. There are two possibilities here: either y�1 A M or y�1 A DnM. In the first case, i.e., if
y�1 A M, then 1 A yM and so DJ yM. In the second case, i.e., if y�1 A DnM, then y�1 is invertible in
D, and so y; y�1 A D. Thus, yM ¼ M.
Note that the same conclusion holds for every proper ideal A of D such that At ¼ D, i.e., if AJ yM,

for some 00 y A K and At ¼ D, then either DJ yM or M ¼ yM.
Case 3. If I J zM 2 J zM, for some 00 z A K , then as above z�1 A D. Two cases are possible: either

z�1 A M or z�1 A DnM. If z�1 A DnM, then z�1 is invertible in D and so z; z�1 A D. Thus, zM 2 ¼ M 2.
However, this is impossible, since I UM 2. If z�1 A M, then MJ zM 2.
Note that a variation of the previous conclusion holds for every proper ideal A of D such that At ¼ D

and AJM 2 (for instance, for A ¼ I 3), i.e., if AJ zM 2, for some 00 z A K, At ¼ D and AJM 2, then
either AJ zM 2 ¼ M 2 or AJM 2 HMJ zM 2.
By the previous analysis, we conclude in particular that I � ¼ 7fJ A J j JK Ig ¼ M. Moreover, since

I � ¼ M, we obtain ðI 2Þ� ¼ ðI � IÞ� ¼ ðI � � I �Þ� ¼ ðM 2Þ� ¼ M 2. Furthermore, by the more general anal-
ysis for a proper ideal A of D such that At ¼ D, in case A ¼ I 3 we deduce in particular that ðI 3Þ� also
coincides with M 2. Therefore,

ðI 3Þ� ¼ M 2 ¼ ðI 2Þ� but ðI 2Þ� ¼ M 2 W I � ¼ M;

and so � is not an eab star operation on D.

Remark 1. Let J 0 :¼ fxD; yM; zM 2 j x; y; z A Knf0gg. It is easy to see that [2, Proposition 32.4] guaran-
tees that the set J 0 defines on D a star operation that coincides with the star operation � defined above by
the set J, since F t ¼ F v ¼ 7fxD j x A K ;F J xDg, for each F A f ðDÞ [2, Theorem 34.1 (1)].

We provide next a variation of the previous example in order to construct an eab star operation that is
not ab.

Example 2. (Example of an eab star operation that is not an ab star operation) Let D, M and K be as
above. Consider the following subset of fractional ideals of D:

S :¼ fxF b; yM j x; y A Knf0g;F A f ðDÞg;

where b is the standard ab operation on D defined by the set V of all valuation overrings of D, i.e., for
each E A FðDÞ,

Eb :¼ E5V :¼ 7fEV jV A Vg:

Since each nonzero principal fractional ideal of D is in S and, for each (fractional) ideal J A S and for
each nonzero a A K , the (fractional) ideal aJ belongs to S, as above, [2, Proposition 32.4] guarantees that
the set S defines on D a star operation �.
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We claim that � is an eab operation. Since the b-operation is an ab operation, it is su‰cient to prove
that �jf ðDÞ ¼ bjf ðDÞ. Suppose then that F A f ðDÞ. Since F b A S, it is clear that F � JF b. Note also that it
is well-known that each prime ideal P of an integrally closed domain D is a b-ideal, since there always
exists a valuation overring of D centered on P [2, Theorem 19.6]. It follows that each ideal of the form
yM is a b-ideal and, hence, each ideal of S is a b-ideal. Since F b is the intersection of all b-ideals which
contain F , this implies that F b JF � (the same conclusion follows also from [2, Proposition 32.2 (b)]). It
follows that �jf ðDÞ ¼ bjf ðDÞ and, hence, � is an eab operation.

Now, we claim that � is not an ab operation on D.
To show this, we let I :¼ ðX1;X2Þ and we prove that ðIMÞ� ¼ I � ¼ I . This will show that � is not ab,

because we clearly cannot cancel I in the previous equation, i.e., ðIMÞ� ¼ ðIDÞ� but M � ¼ M0D ¼ D�.
Therefore, we try to determine which (fractional) ideals in S contain IM. We know that I is in S

(since I A f ðDÞ and I is a prime ideal of D. Thus, I ¼ I b) and I contains IM. What we really want to
prove is that any (fractional) ideal in S which contains IM also contains I .

(1) First, suppose that IMJ yM for some nonzero element y A K . This causes no problems if it also
implies that DJ yM, since then, in particular, we have I J yM, which is what we want.

Assume that y is a nonzero element of K and that DU yM. There are four possibilities here.

– (1, a) If y is not in D and y�1 is not in D, then yMXDJ yDXD0D. Hence, yDXD is a
proper divisorial ideal of D containing IM. This contradicts the fact that ðIMÞv ¼ D.

– (1, b) If y is not in D and y�1 is in D, then y�1 is in M (since D is local) and so DJ yM, which
is a contradiction.

– (1, c) If y is in D and y is invertible in D, then yM ¼ M, and so in this case I J yM, which is
what we want.

– (1, d) If y is in D and y is not invertible in D, then IMJ yMJ yDJM0D. Again, this
contradicts ðIMÞv ¼ D.

(2) Now suppose that G A f ðDÞ is such that IMJG � ¼ Gb. We extend everything to the b-Kronecker
function ring of D, which is the following subring of the field of rational functions in one indeterminate,
denoted by T , over K , i.e.:

KrðD; bÞ :¼ f f =g A KðTÞ j f ; g A D½T �; 00 g; cð f ÞJ cðgÞbg ¼ 7fVðTÞ jV A Vg;
where cðhÞ is the content of a polynomial h A D½X � and VðTÞ :¼ f f =g A KðTÞ j f ; g A V ½T �; 00 g

and cðgÞ ¼ Vg is the trivial valuation extension of V to KðTÞ [2, definitions at pages 218 and 401, Theo-
rems 32.7 and 32.11, Proposition 33.1]. Then, we should have I KrðD; bÞMKrðD; bÞJGb KrðD; bÞ ¼
GKrðD; bÞ. Recall that KrðD; bÞ is a Bézout domain and so both I KrðD; bÞ and GKrðD; bÞ are principal
ideals. This means that we actually have MKrðD; bÞJGKrðD; bÞðI KrðD; bÞÞ�1, the latter (fractional)
ideal being principal.

There are two possibilities here.

– (2, a) KrðD; bÞJGKrðD; bÞðI KrðD; bÞÞ�1. This would imply that I KrðD; bÞJGKrðD; bÞ.
This would in turn imply that I ¼ I b JGb ¼ G �, which was our goal.

– (2, b) KrðD; bÞUGKrðD; bÞðI KrðD; bÞÞ�1. Rename the principal (fractional) ideal GKrðD; bÞ �
ðI KrðD; bÞÞ�1 as H. We know that MKrðD; bÞJH.

If H is an integral ideal of KrðD; bÞ, then obviously MKrðD; bÞ is contained in a proper principal ideal
of KrðD; bÞ. On the other hand, if H is not an integral ideal, then HXKrðD; bÞ is a proper integral
ideal of KrðD; bÞ. Moreover, it is also finitely generated [2, Proposition 25.4 (1)] (hence, principal) in
the Bézout domain KrðD; bÞ.

Therefore, in either case MKrðD; bÞ is contained in a proper principal ideal of KrðD; bÞ. This will
lead to a contradiction. As a matter of fact, suppose that j A KrðD; bÞ is a nonzero nonunit rational
function and that MKrðD; bÞJ jKrðD; bÞ. This means that, for any natural number nb 1, we have
Xn A jKrðD; bÞ. On the other hand, there are only a finite number of Xn that are part of the reduced rep-
resentation of j. Without loss of generality, suppose that these finitely many indices are 1; 2; . . . ; r, i.e.,
j A kðX1;X2; . . . ;Xr;TÞ ðHKðTÞÞ. Since j is a nonunit in KrðD; bÞ, there must be a valuation overring V

of D such that j is a nonunit in the valuation overring VðTÞ of KrðD; bÞ. Contract V to the subfield
kðX1;X2; . . . ;XrÞ of K . Call this valuation domain Vr. Then, extend Vr trivially to K . Call this valuation
domain W , i.e., W :¼ VrðXrþ1;Xrþ2; . . . :Þ. Clearly, W is a valuation overring of D. Then we have a con-
tradiction, because j is still a nonunit in the valuation overring WðTÞ of KrðD; bÞ and each Xn with n > r

is a unit in WðTÞ. This contradicts the fact that each Xn lies in the principal ideal jKrðD; bÞ.
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Therefore, Possibility (2, b) does not occur. Therefore, we have to fall back on Possibility (2, a) which
implies that I JGb ¼ G �, which was what we needed.
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