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Let D be an integral domain with quotient field K . The b-operation
that associates to each nonzero D-submodule E of K , Eb := ⋂{EV |
V valuation overring of D}, is a semistar operation that plays an
important role in many questions of ring theory (e.g., if I is a
nonzero ideal in D , Ib coincides with its integral closure). In a
first part of the paper, we study the integral domains that are
b-Noetherian (i.e., such that, for each nonzero ideal I of D , Ib = J b

for some a finitely generated ideal J of D). For instance, we prove
that a b-Noetherian domain has Noetherian spectrum and, if it
is integrally closed, is a Mori domain, but integrally closed Mori
domains with Noetherian spectra are not necessarily b-Noetherian.
We also characterize several distinguished classes of b-Noetherian
domains. In a second part of the paper, we study more generally
the e.a.b. semistar operation of finite type !a canonically associated
to a given semistar operation ! (for instance, the b-operation is
the e.a.b. semistar operation of finite type canonically associated to
the identity operation). These operations, introduced and studied
by Krull, Jaffard, Gilmer and Halter-Koch, play a very important
role in the recent generalizations of the Kronecker function ring.
In particular, in the present paper, we classify several classes of
integral domains having some of the fundamental operations d,
t, w and v equal to some of the canonically associated e.a.b.
operations b, ta , wa and va .
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1. Introduction and background results

Let D be an integral domain with quotient field K . We denote by F (D) the set of all nonzero
D-submodules of K , by F (D) the set of nonzero fractional ideals of D and by f (D) the set of nonzero
finitely generated fractional ideals of D . Recall that a star operation on D is a map ∗ : F (D) → F (D),
I #→ I∗ , such that for all z ∈ K , z %= 0 and for all I, J ∈ F (D), the following properties hold:
(∗1) D∗ = D and (zI)∗ = zI!; (∗2) I ⊆ J ⇒ I∗ ⊆ J∗; (∗3) I ⊆ I∗ and I∗∗ := (I∗)∗ = I∗ [G-1972, Sec-
tion 32].

In [G-1972], it is shown that if D is an integrally closed domain, the completion of ideals, that
is the map which associates to a nonzero fractional ideal I the fractional ideal Ib := ⋂

I V , where
V varies over all valuations overrings of D , defines a star operation. Note that if D is not integrally
closed, the map b still satisfies most of the properties of star operations; the only problem is that
Db (which coincides with the integral closure of D , by Krull Theorem [G-1972, Theorem 19.8]) is a
proper overring of D and is not necessarily a fractional ideal of D . This observation leads in a natural
way to the notion of semistar operation [OM-1994].

A semistar operation on D is a map ! : F (D) → F (D) such that for all z ∈ K , z %= 0 and for all
E, F ∈ F (D), the following properties hold: (!1) (zE)! = zE!; (!2) E ⊆ F ⇒ E! ⊆ F !; (!3) E ⊆ E! and
E!! := (E!)! = E! .

The b-operation is a semistar operation even if D is not integrally closed.
A (semi)star operation on D is a semistar operation ! such that D! = D , i.e., a (semi)star operation is

a semistar operation which restricted to F (D) is a star operation. Conversely, if ∗ is a star operation on
an integral domain D (hence, defined only on F (D)), we can extend it trivially to a semistar (in fact,
(semi)star) operation on D , denoted ∗e , by defining E∗e to be the quotient field of D whenever E ∈
F (D)\ F (D). Therefore, all “classical” star operation examples can be considered semistar examples as
well. Note that, in general, a star operation ∗ can be extended in several different ways to a semistar
operation and ∗e is just one possible (trivial) way to do so.

As in the classical star-operation setting, we associate to a semistar operation ! on D a new semis-
tar operation ! f of D as follows. If E ∈ F (D), we set:

E! f :=
⋃{

F !
∣∣ F ⊆ E, F ∈ f (D)

}
.

We call ! f the semistar operation of finite type on D associated to !. If ! = ! f , we say that ! is a semistar
operation of finite type on D . Given two semistar operations !′ and !′′ of D , we say that !′ ! !′′ if
E!′ ⊆ E!′′

for all E ∈ F (D). Note that ! f ! ! and (! f ) f = ! f , so ! f is a semistar operation of finite
type of D .

If ! coincides with the semistar v-operation of D , defined by Ev := (D : (D : E)), for each E ∈ F (D),
then v f is denoted by t . Note that v [respectively, t] restricted to F (D) coincides with the classical
star v-operation [respectively, t-operation] of D . Furthermore, the v-semistar operation is the trivial
extension of the v-star operation. The identity semistar operation on D , i.e., the operation denoted by d
and defined by Ed := E for all E ∈ F (D), is the smallest semistar operation on D . Clearly, d, t and v
are examples of (semi)star operations on D .

Examples of semistar operations (not necessarily star operations) can be given as follows: Let
T := {Tλ | λ ∈ Λ} be a family of overrings of D , then the operation ∧T defined by E∧T := ⋂{ETλ |
λ ∈ Λ} for all E ∈ F (D) is a semistar operation of D and it is a (semi)star operation if and only if⋂{Tλ | λ ∈ Λ} = D . In particular, if T := {T } is a family consisting of a unique proper overring T
of D , then we have that E∧T := E∧{T } = ET is a semistar, but not a (semi)star, operation of D . If
ι : D ↪→ T is the canonical embedding of D in one of its overrings and if ! is a semistar operation
on T , we denote by !ι the semistar operation defined on D by E!ι := (ET )! , for all E ∈ F (D). More
generally, it is easy to see that, if !λ is a semistar operation of Tλ and ιλ : D ↪→ Tλ is the canonical
embedding for λ ∈ Λ, then E∧{!λ|λ∈Λ} := E∧{(!λ)ιλ |λ∈Λ} := ⋂{(ETλ)

!λ | λ ∈ Λ}, for all E ∈ F (D), defines
a semistar operation of D .

We say that a nonzero ideal I of D is a quasi-!-ideal if I! ∩ D = I , a quasi-!-prime if it is a prime
quasi-!-ideal, and a quasi-!-maximal if it is maximal in the set of all proper quasi-!-ideals. A quasi-
!-maximal ideal is a prime ideal. It is possible to prove that each proper quasi-! f -ideal is contained
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in a quasi-! f -maximal ideal. More details can be found in [FL-2003, p. 4781]. We will denote by
QMax!(D) the set of the quasi-!-maximal ideals of D . By the previous considerations we have that
QMax!(D) is not empty, for all semistar operations ! of finite type. When ! is a (semi)star operation,
the condition I! ∩ D = I becomes I! = I and we simply say that I is a !-ideal and we will denote
by Max!(D) the set of the !-maximal ideals of D (i.e., the maximal elements in the set of all proper
!-ideals).

A semistar operation ! is called stable if (E ∩ F )! = E! ∩ F ! , for all E, F ∈ F (D). By using the
localizations at the quasi-! f -maximal ideals, we can associate to ! a semistar operation stable and of
finite type, as follows. For each E ∈ F (D), we set

E !̃ :=
⋂{

EDQ
∣∣ Q ∈ QMax! f (D)

}
.

The previous definition gives rise to a semistar operation !̃ on D which is stable and of finite type,
called the semistar operation stable of finite type associated to ! [FH-2000, Corollary 3.9].

Recall that, if K is the quotient field of D and X is an indeterminate over K , the integral domain
Na(D,!) := { f /g ∈ K (X) | f , g ∈ D[X],0 #= g and c(g)! = D!}, overring of D[X], is called the Nagata
ring of D associated to the semistar operation !. It is known that E !̃ = ENa(D,!) ∩ K for all E ∈ F (D)
[FL-2003, Proposition 3.4(3)]. It is easy to see that !̃ ! ! f ! !. We denote by w the semistar operation
stable of finite type associated to v , i.e., w := ṽ . Since Dw = D [Gr-1967, Proposition 4], w is also an
example of (semi)star operation.

Let ! be a semistar operation on D . If F is in f (D), we say that F is !-eab [respectively, !-ab] if
(FG)! ⊆ (F H)! implies that G! ⊆ H! , with G, H ∈ f (D) [respectively, with G, H ∈ F (D)].

The operation ! is said to be eab [respectively, ab] if each F ∈ f (D) is !-eab [respectively, !-ab].
An ab operation is obviously an eab operation.

Note that if ! is an eab semistar operation then ! f is also an eab semistar operation, since they
agree on all finitely generated ideals. Note also that, if ! is a semistar operation of finite type, then !
is an eab semistar operation if and only if ! is an ab semistar operation; therefore, in the finite type
setting, we use the terminology of (e)ab semistar operation. In general, we have that the notions of
!-eab ideal and ! f -(e)ab ideal coincide, therefore, ! is an eab semistar operation if and only if ! f
is an (e)ab semistar operation [FL-2009, Proposition 4].

Using the fact that, given F ∈ f (D), F is !-eab if and only if ((F H)! : F !) = H! , for each H ∈ f (D)
[FL-2009, Lemma 8], we can associate to any semistar operation ! on D an (e)ab semistar operation
of finite type !a on D , called the (e)ab semistar operation associated to !, defined as follows for each
F ∈ f (D) and for each E ∈ F (D):

F !a :=
⋃{(

(F H)! : H!
) ∣∣ H ∈ f (D)

}
,

E!a :=
⋃{

F !a
∣∣ F ⊆ E, F ∈ f (D)

}

[FL-2001a, Definition 4.4 and Proposition 4.5]. The previous construction, in the ideal systems setting,
is essentially due to P. Jaffard [J-1960] and F. Halter-Koch [HK-1997,HK-1998]. The overring D!a =⋃{(H! : H!) | H ∈ f (D)} of D is called the !-integral closure of D . Obviously (! f )a = !a . Moreover,
when ! = ! f , then ! is (e)ab if and only if ! = !a [FL-2001a, Proposition 4.5(5)].

For a domain D and a semistar operation ! of D , we say that a valuation overring V of D is
a !-valuation overring of D provided F ! ⊆ F V (or, equivalently, F !V = F V ) for each F ∈ f (D). Set
V(!) := {V | V is a !-valuation overring of D}. The semistar operation on D defined as follows: for
each E ∈ F (D),

Eb(!) :=
⋂{

EV
∣∣ V ∈ V(!)

}
= E∧V(!) ,

is an ab semistar operation on D [FL-2009, p. 2098]; clearly, b(!) = b(! f ) and b(!) is a (semi)star
operation on D if and only if D is !-integrally closed, i.e. D = D!a .
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Let X be an indeterminate over D and c(h) the content of a polynomial h ∈ D[X]. Then, we define

Kr(D,!) :=
{
f /g

∣∣ f , g ∈ D[X], g "= 0, and there exists

h ∈ D[X] \ {0} with c( f )c(h) ⊆
(
c(g)c(h)

)!}
.

This is a Bézout domain with quotient field K (X), called the semistar Kronecker function ring associ-
ated to a semistar operation ! [FL-2001a, Theorem 5.1 and Theorem 3.11 (3)]. Furthermore, Kr(D,!) =⋂{V (X) | V ∈ V(!)} [FL-2001a, Corollary 3.8 and Theorem 5.1]. A key fact is the following ([FL-2001a,
Corollary 3.4] and [FL-2003, Proposition 4.1(5)]): for each E ∈ F (D),

E!a = Eb(!) = E Kr(D,!) ∩ K .

Finally, recall that a nonzero fractional ideal I of D is called !-invertible if (I I−1)! = D! and a
domain D is a Prüfer !-multiplication domain (for short, P!MD) if every finitely generated ideal of D is
! f -invertible [HMM-1984, p. 48]. For ! = d, a Prüfer d-multiplication domain coincides with a Prüfer
domain; for ! = v , the PvMD’s or Prüfer v-multiplication domains generalize at the same time Prüfer
and Krull domains ([Gr-1967] and [MZ-1981]).

After collecting, in Section 2, some properties of the b-operation needed later, in Section 3, we
study the integral domains that are b-Noetherian (i.e., such that, for each nonzero ideal I of D ,
Ib = J b for some finitely generated ideal J of D). For instance, we prove that a b-Noetherian do-
main has Noetherian spectrum and, if it is integrally closed, is a Mori domain, but integrally closed
Mori domains with Noetherian spectra are not necessarily b-Noetherian. We also characterize several
distinguished classes of b-Noetherian domains and we investigate the local-global behavior of the
b-Noetherianity.

In Section 4, we study more generally the eab semistar operation of finite type !a canonically
associated to a given semistar operation ! (for instance, the b-operation is the eab semistar opera-
tion of finite type canonically associated to the identity operation). These operations, introduced and
studied by Krull, Jaffard, Gilmer and Halter-Koch, play a very important role in the recent generaliza-
tions of the Kronecker function ring. In particular, in the present section, we classify several classes
of integral domains having some of the fundamental operations d, t , w and v equal to some of the
canonically associated eab operations b, ta , wa and va . For instance, the integral domains such that v
coincides with va [respectively, t coincides with ta; w coincides with wa] (considered as star opera-
tions) are exactly the integrally closed domains such that Na(D, v) is a divisorial domain [respectively,
the v-domains; the Prüfer v-multiplication domains].

2. Elementary properties of the b-operation

Given E ∈ F (D), an element z of K is said to be integrally dependent on E if it satisfies an equation
of the form zq + a1zq−1 + · · · + aq = 0, where q ! 1 and ai ∈ Ei for all i = 1,2, . . . ,q [ZS-1960, Ap-
pendix 4, p. 349]. Equivalently, z is integrally dependent on E if (and only if) there exists a nonzero
finitely generated D-submodule H of K such that zH ⊆ EH .

It turns out that the set of the elements that are integrally dependent on E is a D-submodule
of K which coincides with the completion of E , i.e., with the D-submodule (denoted here by) Eb of K
[ZS-1960, Appendix 4, Definition 1 and Theorem 1].

In other words, for all E ∈ F (D):

⋃{
(EH : H)

∣∣ H ∈ f (D)
}

= Eb =
⋂{

EV
∣∣ V valuation overring of D

}
.

Therefore, the b-operation coincides with the eab-semistar operation canonically associated to the
identity (semi)star operation, i.e. b = b(d). In particular, the b-operation is an eab (in fact, ab) semis-
tar operation of finite type. Note that the quasi-b-ideals are exactly the ideals which are integrally
closed (in D).

We collect in the following lemma some elementary facts about the b-operation.
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Lemma 1. Let D be an integral domain.

(1) b = da.
(2) b is an ab semistar operation of finite type.
(3) Pb ∩ D = P for each nonzero prime ideal P of D.
(4) (

√
I )b ∩ D =

√
I for each nonzero ideal I of D.

(5) b̃ = d. In particular, an ideal of D is b-invertible if and only if it is invertible.

Proof. For (1) and (2), see the comments preceding Lemma 1.
(3) If P is a nonzero prime ideal, there exists a valuation overring (V ,M) of D centered in P

[G-1972, Theorem 19.6], and so Pb ∩ D ⊆ P V ∩ D ⊆ M ∩ D = P .
(4) The previous statement ensures that every nonzero prime ideal is a quasi-b-ideal. Radical ideals

are also quasi-b-ideals, as intersections of quasi-b-ideals.
(5) The equality b̃ = d follows from (3) (and from the definition of b̃). The fact that b-invertible

ideals are invertible is the consequence of the fact that an ideal is ! f -invertible if and only if it is
!̃-invertible (cf. for example [FP-2005, Theorem 2.18]). Explicitly, in the present situation, for all F ∈
f (D), (F F−1)b = Db is equivalent to F F−1 ! M for all M ∈ QMaxb(D) = Max(D), i.e., F F−1 = D . !

Let SStar(D) [respectively, SStar f (D)] be the set of all semistar operations [respectively, all semis-

tar operations of finite type] on D . We can consider the maps (̃. . .): SStar(D) → SStar f (D), ! '→ !̃,
and (. . .)a: SStar(D) → SStar f (D), ! '→ !a .

The relations among (̃!a), (!̃)a , !̃, and !a were already investigated in [FL-2003]. The next goal is

to answer the following natural question: when do the maps (. . .)a and (̃. . .) establish a bijection on
SStar f (D)?

Note that (̃da) = d, but (d̃)a = b = da , and (b̃)a = b, but (̃ba) = d = b̃. Therefore, using also [G-1972,
Theorem 24.7], it is easy to verify the next lemma.

Lemma 2. Let D be an integral domain. The following statements are equivalent.

(i) The maps (. . .)a and (̃. . .) establish a bijection on SStar f (D).
(ii) D is a Prüfer domain.
(iii) d = b.
(iv) SStar f (D) = {d}.

3. b-Noetherian domains

Recall that an integral domain D is !-Noetherian if the ascending chain condition on the quasi-
!-ideals of D holds. If ! = d (where d is the identity (semi)star operation), we have the classical
Noetherian domains, if ! = v this definition gives back the Mori domains [Ba-2000, Theorem 2.1], and
if ! = w we obtain the class of strong Mori domains [WMc-1997]. It is well known that a Noetherian
domain is characterized by the fact that each ideal is finitely generated. The semistar version of this
characterization uses the concept of ! f -finiteness: if E ∈ F (D), we say that E is ! f -finite if there exists
F ∈ f (D), F ⊆ E , such that F ! f = E! f (see for instance [FP-2005, p. 650]).

A !-Noetherian domain is characterized by the fact that each nonzero ideal of D is ! f -finite
[EFP-2004, Lemma 3.3].

Note that, from this characterization, it follows that D is !-Noetherian if and only if it is
! f -Noetherian. Finally, we notice that if !1 ! !2 are two semistar operations on D , then D is
!1-Noetherian implies D is !2-Noetherian. Note that the converse does not hold, since a domain
can be ! f -Noetherian, but not !̃-Noetherian [WMc-1999, p. 159]. When ! = !̃, i.e. when ! is a stable
semistar operation of finite type, Picozza has shown that several classical properties of Noetherian
domains can be extended to !̃-Noetherian domains [Pi-2007]. This is not true for general semistar
operations: for instance if D is a (non-integrally closed) v-Noetherian domain, then D[X] is not nec-
essarily v-Noetherian [Q-1980, §3, Théorème 5] and [Ro-1990, Theorem 8.4], but it is true that if D
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is w-Noetherian, then D[X] is w-Noetherian [WMc-1999, Theorem 1.13], [Pk-2001, Theorem 4.7] and
[C-2005, Theorem 2.2].

Remark 3. When ∗ is a star operation on D , it is clear that, if D is ∗-Noetherian then ∗ is a star
operation of finite type (that is, ∗ =∗ f ). Indeed, for each nonzero (fractional) ideal I of D there exists
a finitely generated (fractional) ideal F of D , F ⊆ I , such that I∗ = F ∗ . So, I∗ = F ∗ = F ∗ f , thus I = I∗ f .

When ! is a semistar operation on D , it is still true that I! = I! f for each nonzero (fractional)
ideal I of D , but this is not enough to say that ! is a semistar operation on D of finite type (even
if ! is a (semi)star operation). For instance, let D be a Noetherian domain that is not conducive
(that is, there exists a proper overring T of D , T #= K , such that T ∈ F (D) \ F (D), i.e., (D : T ) = (0)
[DF-1984]). Consider the semistar operation de on D defined as follows: Ede := E if E ∈ F (D) and
Ede := K otherwise (this semistar operation is the so-called trivial semistar extension of the identity star
operation d on D [OM-1994, Proposition 17]). It is clear that D is de-Noetherian, but it is easy to check
that de is not a semistar operation of finite type.

In particular, a b-Noetherian domain is a domain in which the ascending chain condition on
quasi-b-ideals holds. Equivalently, since b is a semistar operation of finite type, if for every nonzero
(fractional) ideal I of D , I is b-finite, that is, there exists a finitely generated (fractional) ideal F
(which can be taken inside I by [FP-2005, Lemma 2.3], since b is of finite type), such that F b = Ib .

The next goal is to give an example of a b-Noetherian domain that is not Noetherian.

Lemma 4. Let D be an integral domain and D its integral closure. Set b := bD and b := bD .

(1) If D is b-Noetherian, then D is b-Noetherian.
(2) If D is b-Noetherian and (D : D) #= (0), then D is b-Noetherian.

Proof. Let ι : D ↪→ D be the canonical inclusion. Note that the semistar operation bι on D , defined
by Ebι := (ED)b for all E ∈ F (D), coincides with b, since D and D have the same valuation overrings.
Conversely, for the same reason, the semistar operation bι on D defined by Ebι := Eb for all E ∈
F (D)(⊆ F (D)), coincides with b.

(1) It is not difficult to see that if i : D ↪→ T is the canonical inclusion of D in its overring
T and if !′ is a semistar operation on T , then T !′-Noetherian implies that D is (!′)i-Noetherian
[EFP-2004, Lemma 3.1(2)]. For T = D , !′ = b, and i = ι, if D is b-Noetherian, then we conclude that D
is b-Noetherian.

(2) Suppose that D is b-Noetherian and let J be a nonzero ideal of D . For any 0 #= x ∈ (D : D), I :=
x J is a nonzero ideal of D and so for some F ∈ f (D), with F ⊆ I , F b = Ib . Therefore, if G := x−1F D ,
then G ∈ f (D), G ⊆ J and Gb = Gb = x−1(F D)b = x−1F b = x−1 Ib = J b = J b . !

Example 5 (Example of non-Noetherian b-Noetherian domain with Noetherian integral closure). Let D be a
non-Noetherian domain with Noetherian integral closure D (e.g., D := Q + XQ!X", where Q is the
field of algebraic numbers, i.e., the algebraic closure of the field of rational numbers Q in C. Note
that D is a 1-dimensional Mori non-Noetherian non-integrally closed local domain with Noetherian
spectrum and integral closure D = Q!X", which is a Noetherian domain [Ba-1983, Theorem 3.2],
[F-1980, Corollary 15(5), Propositions 1.8 and 2.1(7)]). Since D is Noetherian, it is bD -Noetherian. If ι

is the canonical embedding of D in D , from Lemma 4(1), we have that D is bD -Noetherian.

Proposition 6. Let D be a b-Noetherian domain. Then,

(1) D has Noetherian spectrum.
(2) Let V be a valuation overring of D. Then, for every ( fractional) ideal I of D, I V is a principal ( fractional)

ideal of V . In particular, if V is an essential valuation overring of D, V is a rank 1 discrete valuation
domain.

(3) Assume, moreover, that D is integrally closed, then D is a Mori domain.
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Proof. (1) It is well known that Spec(D) is Noetherian if and only if each prime ideal of D is the
radical of a finitely generated ideal (cf., for instance, [FHP-1997, Theorem 3.1.11]). Let P be a nonzero
prime ideal of D . Since D is b-Noetherian, there exists a finitely generated ideal F of D , F ⊆ P , such

that F b = Pb . Since F ⊆
√

F ⊆ P , we have Pb = F b ⊆
√

F
b ⊆ Pb . By Lemma 1(5),

√
F =

√
F
b ∩ D =

Pb ∩ D = P and P is the radical of a finitely generated ideal.
(2) Let I be a nonzero (fractional) ideal of D . By b-Noetherianity, there exists a finitely generated

(fractional) ideal F of D , F ⊆ I , such that Ib = F b . Thus I V = IbV = F bV = F V = aV for some a ∈ F .
If, moreover, V is an essential valuation overring of D , then V = DP for some prime ideal P of D .
So, for each nonzero prime ideal Q of D , Q ⊆ P , Q DP is a principal ideal of DP . Therefore, DP is a
Noetherian domain, thus DP is a rank 1 discrete valuation domain.

(3) Note that, in this case D = Db , since Db coincides with the integral closure of D , and so b ! t
(see also [G-1972, Theorem 34.1(4)]), because we have already observed that b is a semistar operation
of finite type (Lemma 1(2)). Therefore, since D is b-Noetherian, D is also t-Noetherian (i.e., Mori). !

Remark 7. (a) By Proposition 6(2), if V is a valuation overring of a b-Noetherian domain D such that
each ideal of V is the extension of a fractional ideal of D , then V is a DVR. This is the case, for
example, of the following situations:

(1) (D : V ) %= (0) (or, equivalently, D is a conducive domain [DF-1984, Theorem 3.2], i.e., for every
overring T of D , (D : T ) %= (0));

(2) V is flat over D (or, equivalently, V is an essential valuation overring of D);
(3) V well-centered on D (i.e., if each principal ideal of V is generated by an element of D [HR-2004,

p. 435]).

The cases (2) and (3) are considered by Sega [Se-2007, Proposition 3.8].
(b) From (a), we deduce that a b-Noetherian valuation domain (as a valuation overring of a

b-Noetherian domain) is a DVR. Note that this property can be observed also as a straightforward
consequence of the fact that in a valuation domain b = d (Lemma 2).

Recall that a Noetherian conducive domain (not a field) is one-dimensional and local [DF-1984,
Corollary 2.7]. More generally, one can easily deduce from [HR-2004, Proposition 3.21] that the same
holds for Mori domains. From Remark 7, we obtain the same result for b-Noetherian conducive do-
mains.

Proposition 8. Let D be a b-Noetherian conducive domain with quotient field K , D %= K . Then, D is local and
one-dimensional.

Proof. By Remark 7(a), every valuation overring of D is a DVR. So, D has dimension 1 [G-1972,
Theorem 30.8]. On the other hand, conducive domains have at most one prime of height 1 [DF-1984,
Theorem 2.4], so D is necessarily local. !

From Proposition 6(2), we deduce immediately the following.
By the previous Proposition 6, for finding an example of a b-Noetherian non-Noetherian integrally

closed domain, one should look among the examples of (non-Noetherian integrally closed) Mori do-
mains with Noetherian spectrum.

Recall that a Prüfer v-multiplication domain is characterized by the fact that the localizations at
its t-maximal ideals are valuation domains [Gr-1967, Theorem 5]. Since each domain is intersection
of the localizations at its t-maximal ideals [Gr-1967, Proposition 4], a PvMD is integrally closed.

It is easy to prove the following.

Proposition 9.

(1) Prüfer b-multiplication domains coincide with Prüfer domains.
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(2) The following classes of integral domains coincide:
(i) b-Noetherian Prüfer domains;
(ii) b-Dedekind domains (i.e., b-Noetherian Prüfer b-multiplication domains [EFP-2004, Proposi-

tion 4.1]);
(iii) Dedekind domains.

Proof. (1) Recall that b̃ = d; we have also observed that a nonzero fractional ideal is b-invertible if
and only if it is invertible (Lemma 1(3)).

(2) It is enough to recall that an integral domain is Prüfer if and only if d = b (Lemma 2) and that
a Noetherian Prüfer domain is a Dedekind domain. !

In Proposition 9(2)(i), if we replace the assumption “Prüfer domain” with the weaker assumption
“Prüfer v-multiplication domain”, we obtain the following.

Corollary 10. A b-Noetherian Prüfer v-multiplication domain is a Krull domain.

Proof. As observed above, a PvMD is integrally closed and an integrally closed b-Noetherian domain
is Mori (Proposition 6(3)). The conclusion follows from the fact that a Mori PvMD is Krull [Kg-1989,
Theorem 3.2]. !

In Theorem 21 we will further extend the previous corollary.

Remark 11. (a) Note that a Krull domain is not necessarily b-Noetherian (even if it is always a
PvMD). For instance, if K is a field and X1, X2, . . . , Xn, . . . is a countable family of indeterminates
over K , then D := K [X1, X2, . . . , Xn, . . . ;n ! 1] is a Krull domain [Bk-1965, Chapitre 7, §1, Exer-
cice 8], but it is not b-Noetherian, since the ascending chain of prime (b-)ideals of D given by
(X1) ! (X1, X2) ! (X1, X2, X3) ! · · · is not stationary. This example (which is, in particular, an in-
tegrally closed Mori domain) also shows that the conclusion of statement (3) of Proposition 6 does
not imply b-Noetherianity.

(b) The conclusion of statement (2) of Proposition 6 is also not sufficient to have a b-Noetherian
domain. Take, for instance, an almost Dedekind domain which is not Dedekind.

(c) A 2-dimensional valuation domain has Noetherian spectrum but it is not b-Noetherian (Re-
mark 7(b)). Therefore, the conclusion of statement (1) of Proposition 6, even in the integrally closed
case, does not imply b-Noetherianity

(d) From Proposition 6(2) (or, from Corollary 10) it follows that if D is a b-Noetherian PvMD then
it has t-dimension 1, since the localizations DQ are DVR’s for each Q ∈ Maxt(D).

Example 12 (Examples of Mori integrally closed domains with Noetherian spectrum that are not
b-Noetherian). (a) Take any DVR (V ,M), let π : V → V /M be the canonical projection. Assume
that k is a proper subfield of the residue field k(V ) := V /M and that k is algebraically closed in
k(V ). The domain D := π−1(k) is a non-Noetherian integrally closed Mori domain [Ba-1983, Theo-
rem 3.2 or Proposition 3.4] (or, [Ba-2000, Theorem 2.2]) and, clearly, Spec(D) is Noetherian, since
Spec(D) = Spec(V ) [AD-1980, Corollary 3.11]. However, this domain is not b-Noetherian by Propo-
sition 6(2), since D admits valuation overrings with non-principal extended ideals, because in the
present situation tr.degk(k(V )) ! 1. For instance, let C be the field of complex numbers and let
X and Y be two indeterminates over C. Take V := C(X)!Y ", M := YC(X)!Y ", and k := C. Con-
sider D := C + YC(X)!Y ". Clearly, D is an integrally closed local 1-dimensional Mori domain with
Noetherian spectrum (homeomorphic to Spec(C(X)!Y ")). Set W := C[X](X) + YC(X)!Y ". Then, W
is a 2-dimensional discrete valuation overring of D with height 1 prime ideal equal to M = MW (in
fact, it is not hard to prove that M remains a prime ideal in all the overrings of D included in V ).
However, the prime (nonmaximal) ideal M of W is not a principal ideal, since W is a 2-dimensional
discrete valuation domain.
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(b) A nonlocal example of a Mori integrally closed domain with Noetherian spectrum that is not
b-Noetherian can be constructed as follows.

Let K be a field and X, Y two indeterminates over K . Set D := K + XK [X, Y ]. It is easy to see that
D = K [X, Y ] ∩ D1, where D1 := K + XK [X, Y ](X) = K + XK (Y )[X](X) . By the same arguments used
above, D1 is an integrally closed local 1-dimensional Mori domain with Noetherian spectrum that
is not b-Noetherian. By standard properties of the rings of fractions of pullbacks [F-1980, Propo-
sition 1.9], it is easy to see that D1 coincides with the localization of D at the maximal ideal
M := XK [X, Y ]. Since D1 is not b-Noetherian, D also is not b-Noetherian (Proposition 14(1)). Fur-
thermore, since for each maximal ideal N of K [X, Y ] such that N ! XK [X, Y ], DN∩D is canonically
isomorphic to K [X, Y ]N and the canonical continuous map Spec(K [X, Y ]) → Spec(D) is surjective
[F-1980, Theorem 1.4 and Corollary 1.5], then it is easy to conclude that dim(D) = 2, D has infinitely
many maximal ideals of height 2 (different from M , which has height 1), and D is a Mori integrally
closed domain with Noetherian spectrum ([F-1980, Corollary 1.5(5)], [BG-1987, Proposition 4.5 and
Example 4.6(b)], and also [Lu-2000, Example 2]).

We can look for other possible extensions of Proposition 9(2). We call a quasi-Prüfer domain an
integral domain with Prüfer integral closure [ACE-1996, Proposition 1.3].

Corollary 13. Let D be an integral domain.

(1) Assume that the integral closure D of D is a Dedekind domain. Then D is a (one-dimensional) quasi-Prüfer
b-Noetherian domain.

(2) Assume that D is a (one-dimensional) quasi-Prüfer b-Noetherian domain and that (D : D) #= (0). Then D
is a Dedekind domain.

Proof. The statements are easy consequences of Lemma 4 and Proposition 9. The condition on the di-
mension is not essential, since it follows from the fact that dim(D) = 1 if and only if dim(D) = 1. !

Recall that, if D is an integral domain, P a prime ideal of D , b the b-operation of D and ιP the
canonical embedding of D in DP , then the semistar operation bιP on DP is defined by EbιP := Eb ,
for each E ∈ F (DP ). Note that bιP coincides with bP , the b-operation of DP . Indeed, clearly bιP ! bP .
Conversely, since b is an ab semistar operation of finite type on D , then bιP is an (e)ab operation
of finite type on DP [Pi-2005, Proposition 3.1((1) and (3))] and obviously dP ! bιP , where dP is the
identity operation on DP . Therefore, bP = (dP )a ! (bιP )a = bιP .

Proposition 14. Let D be an integral domain. For each P ∈ Spec(D), denote by bP the b-operation on the
localization DP and by ιP : D ↪→ DP the canonical inclusion.

(1) If D is b-Noetherian, then DP is bP -Noetherian for every P ∈ Spec(D).
(2) b = ∧

(bP )ιP , where P varies over Spec(D)

Proof. (1) Let J be an ideal of DP . Then, J = I D P for some ideal I ⊆ D . Since D is b-Noetherian,
there exists F ∈ f (D), F ⊆ I , such that F b = Ib . Since bP = bιP , then (F DP )bP = (F DP )b = (F bDP )b =
(IbD P )b = (I D P )b = (I D P )bP = J bP . Therefore, DP is bP -Noetherian, since F DP ∈ f (DP ).

(2) Recall that (bP )ιP is the semistar operation on D defined by E(bP )ιP := (EDP )bP for all E ∈
F (D). The conclusion follows after observing that {V | V valuation overring of D} = ⋃{W(P ) | P ∈
Spec(D)}, where W(P ) := {W | W valuation overring of DP }. !

A variation of Proposition 14(2) can be stated for more general eab semistar operations.
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Proposition 15. Let ! be a semistar operation on an integral domain D. For each Q ∈ QMax! f (D), let ιQ :
D !̃ ↪→ DQ be the canonical inclusion. Then

(!̃)a =
∧{

(bQ )ιQ
∣∣ Q ∈ QMax! f (D)

}
.

In particular, for ! = d, we have

b =
∧{

(bM)ιM
∣∣ M ∈ Max(D)

}
.

Proof. Note that W is a valuation overring of DQ for some Q ∈ QMax! f (D) if and only if W is a
!̃-valuation overring of D [FL-2003, Theorem 3.9].

The second part follows from the first part and from the fact that d = d̃ = d f , da = b and
QMaxd(D) = Max(D). !

The next result generalizes [FPT-2010, Proposition 1.7].

Proposition 16. Let D be an integral domain and T := {Tλ | λ ∈ Λ} be a family of overrings of D. Assume
that T has finite character (i.e., each nonzero element of D is non-unit in finitely many Tλ ’s). For each λ,
let !λ be a given semistar operation of finite type on Tλ and let ιλ : D ↪→ Tλ be the canonical inclusion. Set
! := ∧{(!λ)

ιλ | λ ∈ Λ}. If I is an ideal of D such that ITλ is !λ-finite for each λ, then I is !-finite.

Proof. Let λ1,λ2, . . . ,λr be the finite set of indexes λ ∈ Λ such that I Tλ #= Tλ . Let Gk ∈ f (Tλk ), Gk ⊆
I Tλk , be such that (Gk)

!λk = (I Tλk )
!λk , for 1 ! k ! r. Now, every generator g(k)

i of Gk (⊆ I Tλk ), for
1 ! i ! nk , can be written as a finite linear combination of elements in I and coefficients in Tλk .
Therefore, using all these finite elements of I , varying g(k)

i for all i, we can construct Fk ∈ f (D),
Fk ⊆ I , FkTλk = Gk for all k. Set F := F1 + F2 + · · · + Fr ∈ f (D). Then, by a routine argument, it can
be shown that F ! = I! , with F ⊆ I . !

The following corollary is a straightforward consequence of Propositions 14, 15 and 16.

Corollary 17. Let D be an integral domain with the finite character on maximal ideals. The following are
equivalent.

(i) D is b-Noetherian.
(ii) DP is bP -Noetherian for each prime ideal P .
(iii) DM is bM-Noetherian for each maximal ideal M.

In relation with Corollary 13, note that if Kr(D,b) is Noetherian (or, equivalently, Dedekind) then
D is b-Noetherian. As a matter of fact, if ι : D ↪→ D is the canonical inclusion, we have already
observed in the proof of Lemma 4 that bι coincides with b := bD (the b-operation on D). Therefore,
Kr(D,b) = Kr(D,b) [FL-2003, Proposition 4.1(2)]; hence, Kr(D,b) is Dedekind is equivalent to Kr(D,b)
is Dekekind and this happens if and only if D is Dedekind [G-1972, Proposition 38.7]. Note also that,
in this case, b = ∧{D} since, for every E ∈ F (D), Eb = ⋂{EDN | N ∈ Max(D)} = ED . More generally,
the fact that b = ∧{D} characterizes the quasi-Prüfer domains [Pi-2009, Remark 2.7].

Conversely, if D is (b-)Noetherian, not necessarily Kr(D,b) is Noetherian. For instance, take a
Noetherian 2-dimensional domain D; in this case 2 = dim(D) = dimv(D) = dim(Kr(D,b)) [G-1972,
Corollary 30.10 and Proposition 32.16]. Therefore, the Bézout domain Kr(D,b) is not Noetherian (since
it is not a Dedekind domain).

Let !a be the eab semistar operation of finite type canonically associated to a given semistar
operation ! defined on an integral domain D . Recall that a domain D is said to be !-integrally closed
if D = D!a = ⋃{(F ! : F !) | F ∈ f (D)} = ⋂{V | V is a ! -valuation overring of D}.
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In the particular case that ! = d, it is clear that the valuation overrings of D coincide with the
b-valuation overrings of D , and therefore we reobtain that Dda = Db = ⋃{(F : F ) | F ∈ f (D)} = D =⋂{V | V is a valuation overring of D} [G-1972, Theorem 19.8 and Proposition 34.7]. From the previ-
ous observations it follows that D is b-integrally closed if and only if it is integrally closed and a
!-integrally closed domain is always (b-)integrally closed.

Theorem 18. Let D be an integral domain. Then, D is a 1-dimensional, integrally closed, b-Noetherian domain
if and only if D is a Dedekind domain.

The proof of the previous result is based on the following fact of independent interest.

Lemma 19. Let D be a b-Noetherian integrally closed domain and I a nonzero ideal of D. Then there exists
m ! 1 such that (

√
I )m ⊆ Ib ⊆

√
I . In particular,

√
Ib =

√
I .

Proof. We have already observed that, in a b-Noetherian domain, radical ideals are quasi-b-ideals
(Lemma 1(5)), and so, in b-Noetherian integrally closed domain, radical ideals are b-ideals. Therefore,√

I = (a1,a2, . . . ,at)b , for some ak ∈
√

I . Moreover, for each k, 1 " k " t , there exists nk such that
ankk ∈ I . Now, if we take m := 1 + ∑t

k=1(nk − 1), then (
√

I )m ⊆ ((
√

I )m)b = (((a1,a2, . . . ,at)b)m)b =
((a1,a2, . . . ,at)m)b ⊆ Ib . Furthermore, if x ∈ Ib then, for some n ! 1, xn = ∑n

k=1 akx
n−k , with ak ∈ Ik

and xn−k ∈ Db = D = D and so xn ∈ I D = I .

The last statement follows by observing that
√

(
√

I )m =
√

I . !

Proof of Theorem 18.

Claim 1. Let (D,M) be an integrally closed, one-dimensional, b-Noetherian local domain. Then, M is a princi-
pal ideal (i.e., D is a DVR).

Let 0 %= t ∈ M . Since D is local one-dimensional, M = √
(t). By Lemma 19, there exists an integer

m ! 1 such that (Mm)b ⊆ (t)b ⊆ Mb = M . Since D is integrally closed, all nonzero principal ideals are
integrally closed, in particular (tr)b = (tr) for any r ! 1. Thus, Mm ⊆ (t) ⊆ M . If (t) = M , M is principal
and we have done. So, assume that (t) ! M . Since Mm ⊆ (t), there exists 1 " n "m such that Mn ⊆ (t)
but Mn−1 " (t). Let a ∈ Mn−1 \ (t), and set β := t/a ∈ K . Note that β−1 = a/t /∈ D , otherwise a ∈ tD .
In particular, β−1 is not integral over D . Since D is b-Noetherian, there exists a finitely generated
ideal F of D such that F b = M . If β−1M ⊆ M , we have that β−1 ∈ (F b : F b) and so it is in the
b-integral closure of D . On the other hand, we have already recalled above that the b-integral closure
coincides with the integral closure. So, β−1M ⊆ M implies that β−1 ∈ D = D , a contradiction. Thus,
β−1M " M . We claim that β−1M ⊆ D . Indeed, β−1M = (a/t)M ⊆ D , since aM ⊆ Mn−1M = Mn ⊆ (t).
Since β−1M " M and D is local, we have β−1M = D and so M = βD is principal. Therefore, D is
integrally closed, one-dimensional and its unique nonzero prime ideal is principal, hence, by Cohen’s
theorem, D is Noetherian [G-1972, Theorem 3.6]. i.e., a DVR.

Claim 2. Let D be an integrally closed, one-dimensional, b-Noetherian domain. Then, D is an almost Dedekind
domain.

Recall that an almost Dedekind domain is an integral domain such that DM is a DVR for all maximal
ideals M of D . Therefore, this claim is a consequence of Proposition 14(1) and Claim 1.

We now conclude that if D is an integrally closed, one-dimensional, b-Noetherian domain, then
D is Dedekind by Claim 2 and [G-1972, Theorem 37.2], since a b-Noetherian domain has the acc
on radical ideals (Proposition 6(1)), and so every nonzero element is contained in a finite number of
minimal primes [Ka-1970, Theorem 88], which are also maximal ideals in the present situation. !

Remark 20. Note that, from the properties proved above, the following are equivalent:
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(i) D is integrally closed 1-dimensional bM-Noetherian for each M ∈ Max(D).
(ii) D is an almost Dedekind domain.

Therefore, a (non-semilocal) integrally closed 1-dimensional domain D which is bM -Noetherian for
each M ∈ Max(D) is not necessarily b-Noetherian, because in this situation b-Noetherian coincides
with Noetherian (Corollary 17 and Theorem 18).

By the previous results, the localizations of an integrally closed b-Noetherian domain at the primes
of height 1 are DVR’s. So, if one could prove that an integrally closed b-Noetherian domain D is the
intersection of its localizations at the primes of height 1, then D would be a Krull domain. We obtain
this property by a simple argument, avoiding the techniques used in the proof of Theorem 3.12 of
Fossum’s book [Fo-1973]. Note that next theorem generalizes Corollary 10 and Theorem 18.

Theorem 21. Let D be a b-Noetherian domain. The following are equivalent.

(i) D is integrally closed.
(ii) D is completely integrally closed.
(iii) D is a v-domain.
(iv) D is a PvMD.
(v) D is a Krull domain.

Proof. It is well known that (v) ⇒ (iv) ⇒ (iii) ⇒ (i) and (ii) ⇒ (i) (see, for example, [FZ-2011, Sec-
tion 2] and [G-1972, Theorem 13.1 and p. 418]).

In order to show that all the statements are equivalent, it is enough to show that (i)⇒ (ii), since
a b-Noetherian integrally closed domain is Mori (Proposition 6(3)) and a Mori completely integrally
closed domain is Krull [G-1972, Exercise 15, p. 559].

Recall that D is integrally closed (respectively, completely integrally closed) if and only if D =⋃{(F : F ) | F ∈ f (D)} (respectively, D = ⋃{(I : I) | I ∈ F (D)}) [G-1972, Theorem 34.3 and Proposi-
tion 34.7].

As mentioned above, if D is integrally closed, it is b-integrally closed and conversely. There-
fore,

⋃{(F : F ) | F ∈ f (D)} = D = ⋃{(F b : F b) | F ∈ f (D)}. On the other hand, because of the
b-Noetherianity, for every I ∈ F (D), there exists F ∈ f (D) such that F b = Ib . Therefore,

⋃{(I : I) |
I ∈ F (D)} ⊆ ⋃{(Ib : Ib) | I ∈ F (D)} ⊆ ⋃{(F b : F b) | F ∈ f (D)} = D . !

Corollary 22. A conducive domain is b-Noetherian if and only if its integral closure is a DVR. In particular, a
conducive integrally closed b-Noetherian domain is a DVR.

Proof. The “if” part follows directly from Lemma 4(1). Conversely, let D be conducive and
b-Noetherian. Then, D is b-Noetherian by Lemma 4(2) and integrally closed. Moreover, D is one-
dimensional and local, since D is one-dimensional and local (Proposition 8). Thus D is a local
Dedekind domain (i.e., a DVR) by Theorem 18. !

Recall that a DW-domain is an integral domain in which d = w , that is a domain in which each
maximal ideal is a t-ideal (see [Mi-2005, Proposition 2.2] and [PT-2008, Corollary 2.6]); a treed do-
main is an integral domain such that Spec(D) (as a partially ordered set under ⊆) is a tree. It
is well known that treed domains (for example, pseudo-valuation domains or Prüfer domains) are
DW-domains [DHLZ-1989, Corollary 2.7] and [PT-2008, p. 1957]. Note that quasi-Prüfer domains, i.e.,
domains with Prüfer integral closure, are also DW-domains and it is not difficult to give examples of
quasi-Prüfer domains that are not treed [Pp-1976, Example 2.28].

It is also clear that a Krull DW-domain is a Dedekind domain, and conversely [Mi-2005, Proposi-
tion 2.3]. As a consequence of Theorem 21, the following result relates these classes of domains in
the b-Noetherian integrally closed case.
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Proposition 23. The following are equivalent.

(i) b-Noetherian integrally closed treed domain.
(ii) b-Noetherian integrally closed DW-domain.
(iii) Dedekind domain.

Note that the previous result recovers in particular Remark 7(b) and Proposition 9(2). The following
result is a straightforward consequence of Lemma 4(2) and Proposition 23.

Corollary 24. Let D be a b-Noetherian domain such that (D : D) != (0). If D is DW, then D is a Dedekind
domain.

Note that the previous result recovers in particular Corollary 13(2). Examples of integral domains
whose integral closure is a DW (e.g., finite-dimensional treed domains, domains with finite spectrum,
etc.) are mentioned in [PT-2008, Section 3].

4. Classes of domains defined by eab semistar operations

As the next lemma shows in the star operation case, the equality of the star operations ∗ and
∗a for the classical operations d, w and t characterizes relevant classes of domains. So, it is natural
to study more in detail equalities of the previous type, in the general setting of star and semistar
operations.

Lemma 25.

(1) d = da is equivalent to Prüfer domain;
(2) w = wa is equivalent to PvMD;
(3) t = ta is equivalent to v-domain.

Proof. (1) is clear from Corollary 2, since da = b (Lemma 1(1)).
(2) is a consequence of a general characterization of P!MD’s given by Fontana, Jara and Santos

[FJS-2003, Theorem 3.1], from which we have that PvMD is equivalent to an integral domain such
that w is an eab (semi)star operation.

(3) It is well known that v-domain is equivalent to saying that v is an eab (semi)star operation
[G-1972, p. 418] and thus, also, t = v f is an (e)ab (semi)star operation, i.e., t = ta [FL-2001a, Propo-
sition 4.5(5)]. Conversely, if t = ta , then it is easy to see that v is eab, since (FG)t = (FG)v ⊆ (F H)v =
(F H)t implies Gv = Gt ⊆ Ht = Hv , for F ,G, H ∈ f (D). !

Remark 26. In Lemma 25, we have (implicitly) considered the equality of two operations as semistar
operations, that is, we have compared them on F (D). However, this is not relevant in case of the pre-
vious lemma, since the operations considered there are all operations of finite type, so the statements
(1), (2) and (3) are respectively equivalent to their analogous “weaker” versions (that is, the equality
holds as star operations):

(1F (D)) d = da on F (D),
(2F (D)) w = wa on F (D),
(3F (D)) t = ta on F (D).

Indeed, since a finitely generated D-submodule of K is always a fractional ideal, the semistar
operations of finite type are “essentially” defined on f (D) (since, E! = ⋃{F ! | F ∈ f (D), F ⊆ E}, for
each E ∈ F (D)), that is if !1 and !2 are semistar operations of finite type, then the following are
equivalent:
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(i) !1 and !2 coincide on f (D);
(ii) !1 and !2 coincide on F (D);
(iii) !1 and !2 coincide (on F (D)).

As we will see later, when dealing with operations that are not of finite type, the equality as
semistar operations is much stronger than the equality as star operations.

The next step is the study of domains for which v = va . First, we consider the case when v = va ,
as star operations.

Proposition 27.Given an integral domain D, v = va on F (D) if and only if D is a PvMDwith t-finite character
such that each (nonzero) t-prime is contained in only one t-maximal ideal and t-maximal ideals are t-finite
(and, therefore, t-invertible).

Proof. Since va is an operation of finite type, then clearly v = va (on F (D)) is equivalent to v = t
(on F (D)) and t = ta (on F (D)). Since t = ta on F (D) is equivalent to v-domain (Lemma 25(3)),
v = va on F (D) is equivalent to v-domain which is also a TV-domain (i.e., a domain for which t = v
on F (D) [HZ-1998] and [E-2009]). The v-domains that also are TV-domains are exactly the PvMD’s
with t-finite character such that each (nonzero) t-prime is contained in only one t-maximal ideal and
t-maximal ideals are t-finite (t-invertible) [HZ-1998, Theorem 3.1]. !

Remark 28. (a) The domains with t-finite character such that each (nonzero) t-prime is contained in
only one t-maximal ideal are called weakly Matlis in [AZ-1999]. We can say that this is the “t-version”
of Matlis’ notion of h-local domain (i.e., an integral domain such that each nonzero ideal is contained
in at most finitely many maximal ideals and each nonzero prime is contained in a unique maximal
ideal [Ma-1964]).

(b) In particular, a domain in which v = va (on F (D)) is a PvMD with the property that P DP
is a principal ideal in the essential valuation overring DP , for every (nonzero) t-prime ideal P of D .
However, a PvMD (or, even, a Prüfer domain) with this property not necessarily has v = va , even on
F (D). For instance, take an almost Dedekind domain which is non-Dedekind. In this case, va = ta =
wa = da = b = d ! v .

Several characterizations of domains for which v = va , as star operations, are summarized in the
following proposition. Recall that a domain is called divisorial if every nonzero ideal is divisorial (i.e., if
d = v as star operations). Heinzer characterized the integrally closed divisorial domains as the h-local
Prüfer domains such that the maximal ideals are finitely generated [H-1968, Theorem 5.1].

Proposition 29. Let D be an integral domain. The following are equivalent.

(i) v = va on F (D).
(ii) D is a PvMD and v = t on F (D).
(iii) D is a v-domain and v = t on F (D).
(iv) D is an essential domain and v = t on F (D).
(v) D is integrally closed and Na(D, v) is a divisorial domain.
(vi) D is integrally closed and v = w on F (D).
(vii) Na(D, v) = Kr(D, v) is h-local and the maximal ideals are finitely generated.
(viii) w = va (on F (D)) and v = t on F (D).
(ix) v = wa on F (D).
(x) w = t = v = wa = ta = va on F (D).

Proof. (i) ⇒ (ii) If v = va , then v = t , since va is of finite type. That D is a PvMD has been proven in
Proposition 27.

(ii) ⇒ (iv) A PvMD is obviously an essential domain.
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(iv) ⇒ (iii) An essential domain is a v-domain [Kg-1989, Lemma 3.1].
(iii) ⇒ (ii) All finitely generated ideals are v-invertible, since D is a v-domain [G-1972, Theo-

rem 34.6]. By assumption v = t , so all finitely generated ideals are t-invertible and D is a PvMD.
(ii) ⇒ (vi) In a PvMD, t = w and so if v = t , we have v = t = w . Moreover, a PvMD is integrally

closed.
(vi) ⇒ (ii) D is a PvMD by [EG-2005, Theorem 3.3]. Moreover, w = v implies t = v (since w !

t ! v).
(vi) ⇔ (v) [GHP-2009, Corollary 3.5 and Proposition 3.2].
(v) ⇒ (vii) We have already shown that (v) implies (ii), so D is a PvMD and Na(D, v) = Kr(D, v) by

[FJS-2003, Remark 3.1]. Furthermore, Kr(D, v) is always a Prüfer domain (in fact, Bézout) [FL-2001a,
Corollary 3.4(2)]. Thus, Na(D, v) is a divisorial Prüfer domain, hence Na(D, v) is h-local with the
maximal ideals finitely generated by [H-1968, Theorem 5.1].

(vii) ⇒ (v) First, D is a PvMD, so integrally closed, by [FJS-2003, Remark 3.1]. Moreover, Na(D, v) =
Kr(D, v) implies that Na(D, v) is Prüfer. Finally, a Prüfer h-local domain with the maximal ideals
finitely generated is divisorial again by [H-1968, Theorem 5.1].

(ii) ⇒ (x) It is an easy consequence of the fact that, in PvMD, t = w = wa = ta (= va).
(x) ⇒ (viii) This implication is trivial.
(viii) ⇒ (ix) We have v = t ! ta = va = w ! wa ! va = w ! t . Thus, v = wa .
(ix) ⇒ (i) va = (wa)a = wa = v . !

Corollary 30. Let D be an integral domain.

(1) v = va on F (D) and dim(D) = 1 if and only if D is a Dedekind domain.
(2) v = va on F (D) and dimt(D) = 1 if and only if D is a Krull domain.

Proof. (1) If D is 1-dimensional, the maximal ideals of D are t-ideal, so in D we have w = d. By
Proposition 27, we know that, when v = va on F (D), D is a PvMD. In a PvMD, we know that
w = wa (Lemma 25(2)), thus a PvMD with d = w is a Prüfer domain, since b = da = wa = w = d
(Lemma 2). Moreover, again from Proposition 27, we have that P DP is finitely generated for every
(nonzero) (t-)prime ideal P of D . So DP is a DVR, for each P . Therefore, D is an almost Dedekind
domain. On the other hand, we have also that v = va = t = w = b = d, so D is an almost Dedekind
domain in which every nonzero ideal is divisorial, hence a Dedekind domain since the maximal ideals
of D are finitely generated by [H-1968, Theorem 5.1]. The converse is obvious.

(2) Mutatis mutandis, the proof of this statement follows the lines of the previous proof, using
Proposition 27 and recalling that, in a PvMD, D = ⋂{DP | P ∈ Maxt(D)}. Conversely, in a Krull do-
main, we have v = t = ta [G-1972, Corollary 44.3 and Proposition 44.13]. !

Note that a domain in which ! = !a is not necessarily a P!MD. For example, in any integral domain
b = ba and, on the other hand, a PbMD is a Prüfer domain. More generally, for a semistar operation !
of finite type which is (e)ab, we have ! = !a , however a P!MD is an integral domain for which
!̃ = (!̃)a [FJS-2003, Theorem 3.1]. Therefore, ! = !a does not imply !̃ = (!̃)a and, conversely, !̃ = (!̃)a
does not imply ! = !a , even on F (D) (for instance, take ! = v in a PvMD which does not verify the
other conditions listed in Proposition 27).

Remark 31. Note that, in Proposition 27, we have considered v = va as star operations. Suppose now
v = va as semistar operations, that is, Ev = Eva for all E ∈ F (D).

In particular, v = va as star operations, so D is a PvMD and w = t = v . Assume that D $= K . Let V
be a v-valuation overring of D (since v = w and D is a PvMD, one can take as V a localization of D
at a t-maximal ideal). If (D : V ) = (0), K = V v = V w = V , a contradiction. So, (D : V ) $= (0) and D is
a conducive domain, by [DF-1984, Theorem 3.2]. So, since D is a conducive integrally closed domain,
there exists a divided prime ideal P , such that DP is a valuation domain [BDF-1986, Corollary 4]. In
particular, P is a t-ideal, being the contraction to D of the t-ideal P DP of DP . So, P is a prime t-ideal
and, since it is divided, it is comparable to all other prime ideals of D (see, for instance, [Ak-1967,
proof of Theorem 1] and [Gn-1974, Proposition 1.2(ii)], or [D-1976, Proposition 2.1]).
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Moreover, since w = v , D is weakly Matlis [EG-2005, Theorem 1.5], that is, each nonzero element
is contained only in a finite number of t-maximal ideals and each t-prime is contained in a unique
t-maximal ideal. In particular, P is contained in only one t-maximal ideal. But, since P is comparable
with all primes of D , it follows that D has exactly one t-maximal ideal, say M . Since D is a PvMD, D
is the intersection of the localizations of D at its maximal t-ideals, it follows that D = DM and so it
is a valuation domain. Furthermore, since in a valuation domain t = d, we have that D is a divisorial
domain and so, in particular, its maximal ideal is principal by [H-1968, Theorem 5.1].

Conversely, the fact that if V is a divisorial valuation domain then it is trivial that v = va as
semistar operations.

So we have proven the following result:
Let D be an integral domain. Then, v = va as semistar operations if and only if D is a valuation domain

with principal maximal ideal.

We have already observed that the integral domains for which d = b are exactly the Prüfer domains
(Lemma 2). The next goal is to understand the domains for which v = b. This is a stronger condition
than v = va , since we require not only that v is eab of finite type but, also, precisely that va = b.
First, we consider the case when v = b as star operations.

Proposition 32. Let D be an integral domain. The semistar operations b and v coincide on F (D) if and only if
D is an h-local Prüfer domain such that the maximal ideals are finitely generated or, equivalently, if and only
if the (semi)star operations d and v coincide on F (D) and D is integrally closed.

Proof. Note that if b = v on F (D), then in particular v = va on F (D). In this situation, by Proposi-
tion 27, D is a PvMD (with further properties). On the other hand, b = v on F (D) also implies that
D is a PbMD, i.e., D is Prüfer domain. Furthermore, since in a Prüfer domain d = b, D is a divisorial
Prüfer domain, hence we conclude by [H-1968, Theorem 5.1], where the second and the third part of
the statement are shown to be equivalent.

Conversely it is clear that in a divisorial integrally closed (Prüfer) domain d = v on F (D) and also,
at the same time, d = b on F (D), thus b = v on F (D). !

Remark 33. (a) Note that, in an integrally closed b-Noetherian domain, we have v = t = w = wa on
F (D), since it is a Krull domain (Theorem 21). However, for a general integrally closed b-Noetherian
(non-Dedekind) domain b ! wa (Proposition 32).

(b) If we require b = v as semistar operations (i.e., if we require that b = v on F (D)), we can
say something more. In fact, if V is a valuation overring such that (D : V ) = (0), we have V v = K
and V b = V . So, if b = v as semistar operations, such a valuation overring of D cannot exist, unless
D = K . Therefore, if D != K , D must be a conducive domain [DF-1984, Theorem 3.2] and, also, by
Proposition 32, a Prüfer divisorial domain. Therefore, D is a valuation domain [Pi-2005, Lemma 4.6].
In this case, we also have d = v as semistar operations. Moreover, if D is integrally closed and d = v
then b = va and, in particular, b = v since in this case b ! t ! v ! va . Therefore, we can conclude,
using also Remark 31, that for an integral domain D, the following are equivalent.

(i) b = v (as semistar operations).
(ii) D is a divisorial valuation domain (i.e., D is a valuation domain with principal maximal ideal).
(iii) D is integrally closed and d = v (as semistar operations).
(iv) v = va (as semistar operations).

Note that the condition that D is integrally closed is necessary in (iii). For example, in a pseudo-
valuation non-valuation domain D such that the canonically associated valuation domain V is two-
generated as a D-module, d = v on F (D) ([HH-1978, Corollary 1.8] and [HZ-1998, Proposition 4.3]).
Moreover, in this case, D is conducive, since (D : V ) != (0), so d = v on F (D). Clearly, in this example,
D is not integrally closed, since Db = V and, obviously, D = Dv != Db .

We consider next the case w = wa = b.
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Proposition 34. Let D be an integral domain. The following are equivalent.

(i) b = w.
(ii) D is a Prüfer domain.
(iii) d = b.

Proof. The condition b = w implies that b is a stable semistar operation (of finite type) and so d =
b̃ = b = da . Henceforth, D is a Prüfer domain. The converse is clear, since in a Prüfer domain not only
d = b, but also every nonzero finitely generated ideal is invertible (hence, divisorial) and so d = t and
thus, in particular, d = w !

It remains only to study the case when the b-operation coincides with the t-operation. Recall that
a domain is called vacant if it is integrally closed and it has only one “classical” Kronecker function
ring (as in Gilmer’s book [G-1972, p. 400]) or, equivalently, if it admits exactly one eab star operation
of finite type (i.e., the b-operation). For example, any Prüfer domain is a vacant domain.

Proposition 35. (See [Fa-2011, Remark 2.9].) Let D be an integral domain. The following are equivalent:

(i) b = t.
(ii) b = ta.
(iii) D is a vacant v-domain.

Proof. (i) ⇒ (ii) If b = t , then in particular t is eab, and so t = ta [FL-2001a, Proposition 4.5(5)].
Therefore, b = ta .

(ii) ⇒ (iii) Now, let ∗ be an eab star operation of finite type on D . Clearly, ∗ =∗ a ! da = b, but
also ∗ " t , being ∗ a star operation of finite type [G-1972, Theorem 34.1(4)]. Thus, ta ! t ! ∗ =∗ a ! b.
Therefore, there is a unique star operation which is eab and of finite type on D . So D is vacant.
Moreover, we have also observed that t is eab and so D is a v-domain (Lemma 25(3)).

(iii) ⇒ (i) Since D is a v-domain, t is eab. Since D is vacant, the b-operation is the only star
operation eab and of finite type. So, b = t . !

Remark 36. (a) Recall that a t-integrally closed (= v-integrally closed) domain was also called a
pseudo-integrally closed domain in [AHZ-1991]. With this terminology, the condition (iii) in Propo-
sition 35 can be equivalently stated (by [FZ-2011, Theorem 2.4 and Remark 2.6]) in the following
form:

(iii′) D is a vacant pseudo-integrally closed domain.

Note also that a vacant domain (which is integrally closed by definition) is not in general pseudo-
integrally closed (see [G-1972, Example 12, p. 409] and [AHZ-1991, Proposition 1.8]).

(b) If D verifies b = t , then D is a (vacant v-)domain for which d (= b̃ = t̃) = w , i.e., a DW-domain.
More generally, it can be shown that any vacant domain is a DW-domain [Fa-2011, Proposition 2.6].
Note also that

DW-domain ⇔ b = wa.

As a matter of fact, in a DW-domain, b = da = wa; conversely, if b = wa , then d = b̃ = w̃a ! w̃ =
w ! d. Finally, note that the condition b = wa is strictly weaker than the condition “D is a vacant
domain” (and so, in particular, also of the condition b = ta) [Fa-2011, Example 6.8].

(c) If, in Proposition 35(iii), we assume PvMD [respectively, Krull domain] instead of v-domain, we
have:
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D is a vacant PvMD-domain ⇔ D is a Prüfer domain ⇔ b = w (= wa),

D is a vacant Krull domain ⇔ D is a Dedekind domain.

As a matter of fact, in the first case, b = ta and w = wa easily imply that b = wa and so b = wa = w .
Conversely, from b = w , clearly w = wa , and also d = b̃ = w̃ = w and hence d = b. For the second
case, it is sufficient to recall that a Krull domain is a PvMD and that a Krull Prüfer domain is a
Dedekind domain.
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