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Abstract An integral domain D is a v-domain if, for every finitely generated nonzero
(fractional) ideal F of D, we have (FF−1)−1 = D. The v-domains generalize Prüfer
and Krull domains and have appeared in the literature with different names. This
paper is the result of an effort to put together information on this useful class of
integral domains. In this survey, we present old, recent and new characterizations
of v-domains along with some historical remarks. We also discuss the relationship
of v-domains with their various specializations and generalizations, giving suitable
examples.

1 Preliminaries and introduction

Let D be an integral domain with quotient field K. Let F(D) be the set of all nonzero
D-submodules of K and let F(D) be the set of all nonzero fractional ideals of D, i.e.,
A ∈ F(D) if A ∈ F(D) and there exists an element 0 �= d ∈ D with dA ⊆ D. Let f (D)
be the set of all nonzero finitely generated D-submodules of K. Then, obviously
f (D) ⊆ F(D) ⊆ F(D).

Recall that a star operation on D is a map ∗ : F(D) → F(D), A �→ A∗, such that
the following properties hold for all 0 �= x ∈ K and all A,B ∈ F(D):

(∗1) D = D∗, (xA)∗ = xA∗;
(∗2) A ⊆ B implies A∗ ⊆ B∗;
(∗3) A ⊆ A∗ and A∗∗ := (A∗)∗ = A∗.

(the reader may consult [53, Sections 32 and 34] for a quick review of star
operations).
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In [107], the authors introduced a useful generalization of the notion of a star
operation: a semistar operation on D is a map � : F(D)→ F(D), E �→ E�, such that
the following properties hold for all 0 �= x ∈ K and all E,F ∈ F(D):

(�1) (xE)� = xE�;
(�2) E ⊆ F implies E� ⊆ F�;
(�3) E ⊆ E� and E�� := (E�)� = E�.

Clearly, a semistar operation � on D, restricted to F(D), determines a star
operation if and only if D = D�.

If ∗ is a star operation on D, then we can consider the map ∗f : F(D) → F(D)
defined as follows:

A∗f :=
⋃
{F∗ | F ∈ f (D) and F ⊆ A} for all A ∈ F(D).

It is easy to see that ∗f is a star operation on D, called the star operation of finite type

associated to ∗. Note that F∗ = F∗f for all F ∈ f (D). A star operation ∗ is called a
star operation of finite type (or a star operation of finite character) if ∗ = ∗f . It is
easy to see that (∗f)f = ∗f (i.e., ∗f is of finite type).

If ∗1 and ∗2 are two star operations on D, we say that ∗1 ≤ ∗2 if A∗1 ⊆ A∗2

for all A ∈ F(D). This is equivalent to saying that (A∗1)∗2 = A∗2 = (A∗2)∗1 for all
A ∈ F(D). Obviously, for any star operation ∗ on D, we have ∗f ≤ ∗, and if ∗1 ≤ ∗2,
then (∗1)f ≤ (∗2)f .

Let I ⊆D be a nonzero ideal of D. We say that I is a ∗-ideal of D if I∗ = I. We call
a ∗-ideal of D a ∗-prime ideal of D if it is also a prime ideal and we call a maximal
element in the set of all proper ∗-ideals of D a ∗-maximal ideal of D.

It is not hard to prove that a ∗-maximal ideal is a prime ideal and that each proper
∗f -ideal is contained in a ∗f -maximal ideal.

Let Δ be a set of prime ideals of an integral domain D and set

E�Δ :=
⋂

{EDQ | Q ∈ Δ} for all E ∈ F(D).

The operation �Δ is a semistar operation on D called the spectral semistar operation
associated to Δ . Clearly, it gives rise to a star operation on D if (and only if)
⋂{DQ | Q ∈ Δ} = D.

Given a star operation ∗ on D, when Δ coincides with Max∗f (D), the (nonempty)
set of all ∗f -maximal ideals of D, the operation ∗̃ defined as follows:

A∗̃ :=
⋂{

ADQ | Q ∈ Max∗f (D)
}

for all A ∈ F(D)

determines a star operation on D, called the stable star operation of finite type
associated to ∗. It is not difficult to show that ∗̃ ≤ ∗f ≤ ∗.

It is easy to see that, mutatis mutandis, all the previous notions can be extended
to the case of a semistar operation.

Let A,B ∈ F(D), set (A : B) := {z ∈ K | zB ⊆ A}, (A :D B) := (A : B) ∩ D,
A−1 := (D : A). As usual, we let vD (or just v) denote the v-operation defined by
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Av := (D : (D : A)) =
(
A−1

)−1
for all A ∈ F(D). Moreover, we denote (vD)f by tD

(or just by t), the t-operation on D; and we denote the stable semistar operation
of finite type associated to vD (or, equivalently, to tD) by wD (or, just by w), i.e.,
wD := ṽD = t̃D.

Clearly, wD ≤ tD ≤ vD. Moreover, from [53, Theorem 34.1(4)], we immediately
deduce that ∗ ≤ vD, and thus ∗̃ ≤ wD and ∗f ≤ tD, for each star operation ∗ on D.

Integral ideals that are maximal with respect to being ∗-ideals, when ∗ = v or t
or w are relevant in many situations. However, maximal v-ideals are not a common
sight. There are integral domains, such as a nondiscrete rank one valuation domain,
that do not have any maximal v-ideal [53, Exercise 12, p. 431]. Unlike maximal
v-ideals, the maximal t-ideals are everywhere, in that every t-ideal is contained in
at least one maximal t-ideal, which is always a prime ideal [80, Corollaries 1 and 2,
pp. 30–31] (or, [93, Proposition 3.1.2], in the integral domains setting). Note also
that the set of maximal t-ideals coincides with the set of maximal w-ideals [10,
Theorem 2.16].

We will denote simply by dD (or just d) the identity star operation on D and
clearly dD ≤ ∗, for each star operation ∗ on D. Another important star operation on
an integrally closed domain D is the bD-operation (or just b-operation) defined as
follows:

AbD :=
⋂

{AV |V is a valuation overring of D} for all A ∈ F(D).

Given a star operation on D, for A ∈ F(D), we say that A is ∗-finite if there
exists a F ∈ f (D) such that F∗ = A∗. (Note that in the above definition, we do not
require that F ⊆ A.) It is immediate to see that if ∗1 ≤ ∗2 are star operations and A
is ∗1-finite, then A is ∗2-finite. In particular, if A is ∗f -finite, then it is ∗-finite. The
converse is not true in general, and one can prove that A is ∗f -finite if and only if
there exists F ∈ f (D), F ⊆ A, such that F∗ = A∗ [126, Theorem 1.1].

Given a star operation on D, for A ∈ F(D), we say that A is ∗-invertible if
(AA−1)∗ = D. From the fact that the set of maximal ∗̃-ideals, Max∗̃(D), coincides
with the set of maximal ∗f -ideals, Max∗f (D), [10, Theorem 2.16], it easily follows
that a nonzero fractional ideal A is ∗̃-invertible if and only if A is ∗f -invertible (note
that if ∗ is a star operation of finite type, then (AA−1)∗ = D if and only if AA−1 �⊆ Q
for all Q ∈ Max∗(D)).

An invertible ideal is a ∗-invertible ∗-ideal for any star operation ∗ and, in fact, it
is easy to establish that, if ∗1 and ∗2 are two star operations on an integral domain D
with ∗1 ≤ ∗2, then any ∗1-invertible ideal is also ∗2-invertible.

A classical result due to Krull [80, Théorème 8, Chap. I, § 4] shows that for a
star operation ∗ of finite type, ∗-invertibility implies ∗-finiteness. More precisely,
for A ∈ F(D), we have that A is ∗f -invertible if and only if A and A−1 are ∗f -finite
(hence, in particular, ∗-finite) and A is ∗-invertible (see [46, Proposition 2.6] for the
semistar operation case).

We recall now some notions and properties of monoid theory needed later.
A nonempty set with a binary associative and commutative law of composition
“ · ” is called a semigroup. A monoid H is a semigroup that contains an identity
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element 1 (i.e., an element such that, for all x ∈ H, 1 · x = x · 1 = x). If there is
an element 0 in H such that, for all x ∈ H, 0 · x = x · 0 = 0, we say that H has a
zero element. Finally if, for all a,x,y in a monoid H with a �= 0, a · x = a · y implies
that x = y we say that H is a cancellative monoid. In what follows we shall be work-
ing with commutative and cancellative monoids with or without zero. Note that, if
D is an integral domain then D can be considered as a monoid under multiplication
and, more precisely, D is a cancellative monoid with zero element 0.

Given a monoid H, we can consider the set of invertible elements in H, denoted
by U(H) (or, by H×) and the set H• := H \ {0}. Clearly, U(H) is a subgroup
of (the monoid) H• and the monoid H is called a groupoid if U(H) = H•.
A monoid with a unique invertible element is called reduced. The monoid H/U(H)
is reduced. A monoid shall mean a reduced monoid unless specifically stated.

Given a monoid H, we can easily develop a divisibility theory and we can in-
troduce a GCD. A GCD–monoid is a monoid having a uniquely determined GCD
for each finite set of elements. In a monoid H an element, distinct from the unit
element 1 and the zero element 0, is called irreducible (or, atomic) if it is divisible
only by itself and 1. A monoid H is called atomic if every nonzero noninvertible
element of H is a product of finitely many atoms of H. A nonzero noninvertible
element p ∈ H with the property that p | a · b, with a,b ∈ H implies p | a or p | b
is called a prime element. It is easy to see that in a GCD–monoid, irreducible and
prime elements coincide.

Given a monoid H, we can also form the monoids of fractions of H and, when H

is cancellative, the groupoid of fractions q(H) of H in the same manner, avoiding
the zero element 0 in the denominator, as in the constructions of the rings of fractions
and the field of fractions of an integral domain D.


 
 

This survey paper is the result of an effort to put together information on the

important class of integral domains called v-domains, i.e., integral domains in which
every finitely generated nonzero (fractional) ideal is v-invertible. In the present
work, we will use a ring theoretic approach. However, because in multiplicative
ideal theory we are mainly interested in the multiplicative structure of the integral
domains, the study of monoids came into multiplicative ideal theory at an early
stage. For instance, as we shall indicate in the sequel, v-domains came out of a
study of monoids. During the second half of the 20th century, essentially due to the
work of Griffin [57], and due to Gilmer’s books [53] and [54], multiplicative ideal
theory from a ring theoretic point of view became a hot topic for the ring theorists.
However, things appear to be changing. Halter-Koch has put together in [59], in the
language of monoids, essentially all that was available at that time and essentially
all that could be translated to the language of monoids. On the other hand, more
recently, Matsuda, under the influence of [54], is keen on converting into the lan-
guage of additive monoids and semistar operations all that is available and permits
conversion [95].

Since translation of results often depends upon the interest, motivation and imag-
ination of the “translator”, it is a difficult task to indicate what (and in which way)
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can be translated into the language of monoids, multiplicative or additive, or to the
language of semistar operations. But, one thing is certain, as we generalize, we gain
a larger playground but, at the same time, we lose the clarity and simplicity that we
had become so accustomed to.

With these remarks in mind, we indicate below some of the results that may or
may not carry over to the monoid treatment, and we outline some general problems
that can arise when looking for generalizations, without presuming to be exhaustive.
The first and foremost is any result to do with polynomial ring extensions may not
carry over to the language of monoids even though some of the concepts translated
to monoids do get used in the study of semigroup rings. The other trouble-spot is the
results on integral domains that use the identity (d-)operation. As soon as one con-
siders the multiplicative monoid of an integral domain, with or without zero, some
things get lost. For instance, the multiplicative monoid R\{0} of a PID R, with more
than one maximal ideal, is no longer a principal ideal monoid, because a monoid
has only one maximal ideal, which in this case is not principal. All you can recover
is that R\{0} is a unique factorization monoid; similarly, from a Bézout domain
you can recover a GCD-monoid. Similar comments can be made for Dedekind and
Prüfer domains. On the other hand, if the v-operation is involved then nearly every
result, other than the ones involving polynomial ring extensions, can be translated to
the language of monoids. So, a majority of old ring theoretic results on v-domains
and their specializations can be found in [59] and some in [95], in one form or
another. We will mention or we will provide precise references only for those re-
sults on monoids that caught our fancy for one reason or another, as indicated in the
sequel.

The case of semistar operations and the possibility of generalizing results on
v-domains, and their specializations, in this setting is somewhat difficult in that the
area of research has only recently opened up [107]. Moreover, a number of results
involving semistar invertibility are now available, showing a more complex situation
for the invertibility in the semistar operation setting see for instance [46, 109, 110].
However, in studying semistar operations, in connection with v-domains, we often
gain deeper insight, as recent work indicates, see [6, 14].

2 When and in what context did the v-domains show up?

2.1 The genesis

The v-domains are precisely the integral domains D for which the v-operation is
an “endlich arithmetisch brauchbar” operation, cf. [52, p. 391]. Recall that a star
operation ∗ on an integral domain D is endlich arithmetisch brauchbar (for short,
e.a.b.) (respectively, arithmetisch brauchbar (for short, a.b.)) if for all F,G,H ∈
f (D) (respectively, F ∈ f (D) and G,H ∈ F(D)) (FG)∗ ⊆ (FH)∗ implies that
G∗ ⊆ H∗.
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In [90], the author only considered the concept of “a.b. ∗-operation” (actually,
Krull’s original notation was “ ′-Operation”, instead of “∗-operation”). He did not
consider the (weaker) concept of “e.a.b. ∗-operation”.

The e.a.b. concept stems from the original version of Gilmer’s book [52]. The
results of Section 26 in [52] show that this (presumably) weaker concept is all
that one needs to develop a complete theory of Kronecker function rings. Robert
Gilmer explained to us saying that � I believe I was influenced to recognize this
because during the 1966 calendar year in our graduate algebra seminar (Bill Heinzer,
Jimmy Arnold, and Jim Brewer, among others, were in that seminar) we had cov-
ered Bourbaki’s Chaps. 5 and 7 of Algèbre Commutative, and the development in
Chap. 7 on the v-operation indicated that e.a.b. would be sufficient. 


Apparently there are no examples in the literature of star operations which are
e.a.b. but not a.b.. A forthcoming paper [45] (see also [44]) will contain an explicit
example to show that Krull’s a.b. condition is really stronger than the Gilmer’s e.a.b.
condition.

We asked Robert Gilmer and Joe Mott about the origins of v-domains. They had
the following to say: � We believe that Prüfer’s paper [111] is the first to discuss
the concept in complete generality, though we still do not know who came up with
the name of “v-domain”. 


However, the basic notion of v-ideal appeared around 1929. More precisely, the
notion of quasi-equality of ideals (where, for A,B ∈ F(D), A is quasi-equal to B, if
A−1 = B−1), special cases of v-ideals and the observation that the classes of quasi-
equal ideals of a Noetherian integrally closed domain form a group first appeared
in [119] (cf. also [89, p. 121]), but this material was put into a more polished form
by E. Artin and in this form was published for the first time by Bartel Leendert van
der Waerden in “Modern Algebra” [120]. This book originated from notes taken by
the author from E. Artin’s lectures and it includes research of E. Noether and her
students. Note that the “v” of a v-ideal (or a v-operation) comes from the German
“Vielfachenideale” or “V -Ideale” (“ideal of multiples”), terminology used in [111,
Section 7]. It is important to recall also the papers [16] and [91] that introduce the
study of v-ideals and t-ideals in semigroups.

The paper [31] provides a clue to where v-domains came out as a separate class of
rings, though they were not called v-domains there. Note that [31] has been cited in
[80, p. 23] and, later, in [59, p. 216], where it is mentioned that J. Dieudonné gives
an example of a v-domain that is not a Prüfer v-multiplication domain (for short,
PvMD, i.e., an integral domain D in which every F ∈ f (D) is t-invertible).

2.2 Prüfer domains and v-domains

The v-domains generalize the Prüfer domains (i.e., the integral domains D such
that DM is a valuation domain for all M ∈ Max(D)), since an integral domain D
is a Prüfer domain if and only if every F ∈ f (D) is invertible [53, Theorem 22.1].
Clearly, an invertible ideal is ∗-invertible for all star operations ∗. In particular, a
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Prüfer domain is a Prüfer ∗-multiplication domain (for short, P∗MD, i.e., an integral
domain D such that, for each F ∈ f (D), F is ∗f -invertible [75, p. 48]). It is clear from
the definitions that a P∗MD is a PvMD (since ∗ ≤ v for all star operations ∗, cf. [53,
Theorem 34.1]) and a PvMD is a v-domain.

The picture can be refined. M. Griffin, a student of Ribenboim’s, showed that D
is a PvMD if and only if DM is a valuation domain for each maximal t-ideal M of D
[57, Theorem 5]. A generalization of this result is given in [75, Theorem 1.1] by
showing that D is a P∗MD if and only if DQ is a valuation domain for each maximal
∗f -ideal Q of D.

Call a valuation overring V of D essential if V = DP for some prime ideal P of
D (which is invariably the center of V over D) and call D an essential domain if D
is expressible as an intersection of its essential valuation overrings. Clearly, a Prüfer
domain is essential and so it is a P∗MD and, in particular, a PvMD (because, in the
first case, D =

⋂
DQ where Q varies over maximal ∗f -ideals of D and DQ is a valua-

tion domain; in the second case, D =
⋂

DM where M varies over maximal t-ideals of
D and DM is a valuation domain; see [57, Proposition 4] and [84, Proposition 2.9]).

From a local point of view, it is easy to see from the definitions that every integral
domain D that is locally essential is essential. The converse is not true and the first
example of an essential domain having a prime ideal P such that DP is not essential
was given in [67].

Now add to this information the following well known result [85, Lemma 3.1]
that shows that the essential domains sit in between PvMD’s and v-domains.

Proposition 2.1. An essential domain is a v-domain.

Proof. Let Δ be a subset of Spec(D) such that D =
⋂{DP | P ∈ Δ}, where each

DP is a valuation domain with center P ∈ Δ , let F be a nonzero finitely generated
ideal of D, and let ∗Δ be the star operation induced by the family of (flat) overrings
{DP | P ∈ Δ} on D. Then

(FF−1)∗Δ =
⋂{(FF−1)DP | P ∈ Δ} =

⋂{FDPF−1DP | P ∈ Δ}
=
⋂{FDP(FDP)−1 | P ∈ Δ} (because F is f.g.)

=
⋂{DP | P ∈ Δ} (because DP is a valuation domain).

Therefore, (FF−1)∗Δ = D and so (FF−1)v = D (since ∗Δ ≤ v [53, Theorem 34.1]).

For an alternate implicit proof of Proposition 2.1, and much more, the reader may
consult [124, Theorem 3.1 and Corollary 3.2].

Remark 2.2. (a) Note that Proposition 2.1 follows also from a general result for
essential monoids [59, Exercise 21.6 (i), p. 244], but the result as stated above
(for essential domains) was already known for instance as an application of
[125, Lemma 4.5].

If we closely look at [59, Exercise 21.6, p. 244], we note that part (ii) was al-
ready known for the special case of integral domains (i.e., an essential domain is
a PvMD if and only if the intersection of two principal ideals is a v-finite v-ideal,
[122, Lemma 8]) and part (iii) is related to the following fact concerning integral



152 Marco Fontana and Muhammad Zafrullah

domains: for F ∈ f (D), F is t-invertible if and only if (F−1 : F−1) = D and F−1 is
v-finite. The previous property follows immediately from the following statements:

(a.1) Let F ∈ f (D), then F is t-invertible if and only if F is v-invertible and F−1

is v-finite;
(a.2) Let A ∈ F(D), then A is v-invertible if and only if (A−1 : A−1) = D.

The statement (a.1) can be found in [127] and (a.2) is posted in [128]. For reader’s
convenience, we next give their proofs.

For the “only if part” of (a.1), if F ∈ f (D) is t-invertible, then F is clearly
v-invertible and F−1 is also t-invertible. Hence, F−1 is t-finite and thus v-finite.

For a “semistar version” of (a.1), see for instance [46, Lemma 2.5].
For the “if part” of (a.2), note that AA−1 ⊆ D and so (AA−1)−1 ⊇ D. Let x ∈

(AA−1)−1, hence xAA−1 ⊆ D and so xA−1 ⊆ A−1, i.e., x ∈ (A−1 : A−1) = D. For the
“only if part”, note that in general D ⊆ (A−1 : A−1). For the reverse inclusion, let
x ∈ (A−1 : A−1), hence xA−1 ⊆ A−1. Multiplying both sides by A and applying the
v-operation, we have xD = x(AA−1)v ⊆ (AA−1)v = D, i.e., x ∈ D and so D ⊇ (A−1 :
A−1). A simple proof of (a.2) can also be deduced from [59, Theorem 13.4].

It is indeed remarkable that all those results known for integral domains can be
interpreted and extended to monoids.

(b) We have observed in (a) that a PvMD is an essential domain such that the
intersection of two principal ideals is a v-finite v-ideal. It can be also shown that D
is a PvMD if and only if (a)∩ (b) is t-invertible in D, for all nonzero a,b ∈ D [94,
Corollary 1.8].

For v-domains we have the following “v-version” of the previous characterization
for PvMD’s:

D is a v-domain ⇔ (a)∩ (b) is v-invertible in D, for all nonzero a,b ∈ D.

The idea of proof is simple and goes along the same lines as those of PvMD’s.
Recall that every F ∈ f (D) is invertible (respectively, v-invertible; t-invertible) if
and only if every nonzero two generated ideal of D is invertible (respectively,
v-invertible; t-invertible) [111, p. 7] or [53, Theorem 22.1] (respectively, for the
“v-invertibility case”, [99, Lemma 2.6]; for the “t-invertibility case”, [94, Lemma
1.7]); for the general case of star operations, see the following Remark 2.5 (c).
Moreover, for all nonzero a,b ∈ D, we have:

(a,b)−1 = 1
a D∩ 1

b D = 1
ab(aD∩bD) ,

(a,b)(a,b)−1 = 1
ab (a,b)(aD∩bD) .

Therefore, in particular, the fractional ideal (a,b)−1 (or, equivalently, (a,b)) is
v-invertible if and only if the ideal aD∩bD is v-invertible.

(c) Note that, by the observations contained in the previous point (b), if D is a
Prüfer domain then (a)∩ (b) is invertible in D, for all nonzero a,b ∈ D. However,
the converse is not true, as we will see in Sections 2.3 and 2.5 (Irreversibility of
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⇒7). The reason for this is that aD∩bD invertible allows only that the ideal (a,b)v

ab
(or, equivalently, (a,b)v) is invertible and not necessarily the ideal (a,b).

Call a P-domain an integral domain such that every ring of fractions is essential
(or, equivalently, a locally essential domain, i.e., an integral domain D such that DP

is essential, for each prime ideal P of D) [100, Proposition 1.1]. Note that every ring
of fractions of a PvMD is still a PvMD (see Section 3 for more details), in particular,
since a PvMD is essential, a locally PvMD is a P-domain. Examples of P-domains
include Krull domains. As a matter of fact, by using Griffin’s characterization of
PvMD’s [57, Theorem 5], a Krull domain is a PvMD, since in a Krull domain D the
maximal t-ideals (= maximal v-ideals) coincide with the height 1 prime ideals [53,
Corollary 44.3 and 44.8] and D =

⋂{DP | P is an height 1 prime ideal of D}, where
DP is a discrete valuation domain for all height 1 prime ideals P of D [53, (43.1)].
Furthermore, it is well known that every ring of fractions of a Krull domain is still a
Krull domain [24, BAC, Chap. 7, § 1, N. 4, Proposition 6].

With these observations at hand, we have the following picture:

Krull domain ⇒0 PvMD;
Prüfer domain ⇒1 PvMD ⇒2 locally PvMD

⇒3 P-domain ⇒4 essential domain
⇒5 v-domain .

Remark 2.3. Note that P-domains were originally defined as the integral domains D
such that DQ is a valuation domain for every associated prime ideal Q of a principal
ideal of D (i.e., for every prime ideal which is minimal over an ideal of the type (aD :
bD) for some a ∈ D and b ∈ D\ aD) [100, p. 2]. The P-domains were characterized
in a somewhat special way in [108, Corollary 2.3]: D is a P-domain if and only if D
is integrally closed and, for each u ∈ K, D ⊆ D[u] satisfies INC at every associated
prime ideal Q of a principal ideal of D.

2.3 Bézout-type domains and v-domains

Recall that an integral domain D is a Bézout domain if every finitely generated ideal
of D is principal and D is a GCD domain if, for all nonzero a,b ∈ D, a greatest
common divisor of a and b, GCD(a,b), exists and is in D. Among the characteri-
zations of the GCD domains we have that D is a GCD domain if and only if, for
every F ∈ f (D), Fv is principal or, equivalently, if and only if the intersection of
two (integral) principal ideals of D is still principal (see, for instance, [2, Theorem
4.1] and also Remark 2.2 (b)). From Remark 2.2 (b), we deduce immediately that a
GCD domain is a v-domain.

However, in between GCD domains and v-domains lie several other distin-
guished classes of integral domains. An important generalization of the notion of
GCD domain was introduced in [3] where an integral domain D is called a General-
ized GCD (for short, GGCD) domain if the intersection of two (integral) invertible
ideals of D is invertible D. It is well known that D is a GGCD domain if and only if,
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for each F ∈ f (D), Fv is invertible [3, Theorem 1]. In particular, a Prüfer domain
is a GGCD domain. From the fact that an invertible ideal in a local domain is prin-
cipal [86, Theorem 59], we easily deduce that a GGCD domain is locally a GCD
domain. On the other hand, from the definition of PvMD, we easily deduce that a
GCD domain is a PvMD (see also [2, Section 3]). Therefore, we have the following
addition to the existing picture:

Bézout domain ⇒6 GCD domain ⇒7 GGCD domain
⇒8 locally GCD domain ⇒9 locally PvMD
⇒3 ..... ⇒4 ..... ⇒5 v-domain .

2.4 Integral closures and v-domains

Recall that an integral domain D with quotient field K is called a completely
integrally closed (for short, CIC) domain if D = {z ∈ K | for all n ≥ 0, azn ∈
D for some nonzero a ∈ D}. It is well known that the following statements are
equivalent.

(i) D is CIC;
(ii) for all A ∈ F(D), (Av : Av) = D;
(ii′) for all A ∈ F(D), (A : A) = D;
(ii′′) for all A ∈ F(D), (A−1 : A−1) = D;
(iii) for all A ∈ F(D), (AA−1)v = D;

(see [53, Theorem 34.3] and Remark 2.2 (a.2); for a general monoid version of this
characterization, see [59, p. 156]).

In Bourbaki [24, BAC, Chap. 7, § 1, Exercice 30], an integral domain D is called
regularly integrally closed if, for all F ∈ f (D), Fv is regular with respect to the
v-multiplication (i.e., if (FG)v = (FH)v for G,H ∈ f (D) then Gv = Hv).

Theorem 2.4. ([53, Theorem 34.6] and [24, BAC, Chap. 7, § 1, Exercice 30 (b)])
Let D be an integral domain, then the following are equivalent.

(i) D is a regularly integrally closed domain.
(ii f ) For all F ∈ f (D), (Fv : Fv) = D.
(iii f ) For all F ∈ f (D) (FF−1)−1 = D (or, equivalently, (FF−1)v = D).
(iv) D is a v-domain.

The original version of Theorem 2.4 appeared in [91, p. 538] (see also [31, p. 139]
and [79, Theorem 13]). A general monoid version of the previous characterization
is given in [59, Theorem 19.2].

Remark 2.5. (a) Note that the condition
(ii′f ) for all F ∈ f (D), (F : F) = D
is equivalent to say that D is integrally closed [53, Proposition 34.7] and so it is
weaker than condition (ii f ) of the previous Theorem 2.4, since (Fv : Fv) = (Fv :
F) ⊇ (F : F).
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On the other hand, by Remark 2.2 (a.2), the condition
(ii′′f ) for all F ∈ f (D), (F−1 : F−1) = D
is equivalent to the other statements of Theorem 2.4.

(b) By [99, Lemma 2.6], condition (iii f ) of the previous theorem is equivalent to
(iii2) Every nonzero fractional ideal with two generators is v-invertible.

This characterization is a variation of Prüfer’s classical result that an integral
domain is Prüfer if and only if each nonzero ideal with two generators is invertible
(Remark 2.2 (b)) and of the characterization of PvMD’s also recalled in that remark.

(c) Note that several classes of Prüfer-like domains can be studied in a unified
frame by using star and semistar operations. For instance Prüfer star-multiplication
domains were introduced in [75]. Later, in [39], the authors studied Prüfer semistar-
multiplication domains and gave several characterizations of these domains, that are
new also for the classical case of PvMD’s. Other important contributions, in general
settings, were given recently in [110] and [63].

In [6, Section 2], given a star operation ∗ on an integral domain D, the authors call
D a ∗-Prüfer domain if every nonzero finitely generated ideal of D is ∗-invertible
(i.e., (FF−1)∗ = D for all F ∈ f (D)). (Note that ∗-Prüfer domains were previously
introduced in the case of semistar operations � under the name of �-domains [47,
Section 2].) Since a ∗-invertible ideal is always v-invertible, a ∗-Prüfer domain is
always a v-domain. More precisely, d-Prüfer (respectively, t-Prüfer; v-Prüfer) do-
mains coincide with Prüfer (respectively, Prüfer v-multiplication; v-) domains.

Note that, in [6, Theorem 2.2], the authors show that a star operation ver-
sion of (iii2) considered in point (b) characterizes ∗-Prüfer domains, i.e., D is
a ∗-Prüfer domain if and only if every nonzero two generated ideal of D is ∗-
invertible. An analogous result, in the general setting of monoids, can be found in
[59, Lemma 17.2].

(d) Let f v(D) := {Fv | F ∈ f (D)} be the set of all divisorial ideals of finite type
of an integral domain D (in [31], this set is denoted by M f ). By Theorem 2.4, we
have that a v-domain is an integral domain D such that each element Fv ∈ f v(D)
is v-invertible, but F−1 (= (Fv)−1) does not necessarily belong to f v(D). When
(and only when), in a v-domain D, F−1 ∈ f v(D) for each F ∈ f v(D), D is a PvMD
(Remark 2.2 (a.1)).

The “regular” teminology for the elements of f v(D) used by [31, p. 139] (see the
above definition of Fv regular with respect to the v-multiplication) is totally different
from the notion of “von Neumann regular”, usually considered for elements of a
ring or of a semigroup. However, it may be instructive to record some observations
showing that, in the present situation, the two notions are somehow related.

Recall that, by a Clifford semigroup, we mean a multiplicative commutative semi-
group H, containing a unit element, such that each element a of H is von Neumann
regular (this means that there is b ∈ H such that a2b = a).

(α) Let H be a commutative and cancellative monoid. If H is a Clifford semi-
group, then a is invertible in H (and conversely); in other words, H is a group.

(β ) Let D be a v-domain. If A ∈ f v(D) is von Neumann regular in the monoid
f v(D) under v-multiplication, then A is t-invertible (or, equivalently, A−1 ∈
f v(D)). Consequently, an integral domain D is a PvMD if and only if D is a
v-domain and the monoid f v(D) (under v-multiplication) is Clifford regular.
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The proofs of (α) and (β ) are straightforward, after recalling that f v(D) under
v-multiplication is a commutative monoid and, by definition, it is cancellative if D
is a v-domain.

Note that, in the “if part” of (β ), the assumption that D is a v-domain is essential.
As a matter of fact, it is not true that an integral domain D, such that every member
of the monoid f v(D) under the v-operation is von Neumann regular, is a v-domain.
For instance, in [129, Theorem 11] (see also [30]), the authors show that for every
quadratic order D, each nonzero ideal I of D satisfies I2J = cI, i.e., I2J(1/c) = I,
for some (nonzero) ideal J of D and some nonzero c ∈ D. So, in particular, in this
situation f (D) = F(D) and every element of the monoid f v(D) is von Neumann
regular (we do not even need to apply the v-operation in this case), however not
all quadratic orders are integrally closed (e.g., D := Z[

√
5]) and so, in general, not

all elements of f v(D) are regular with respect to the v-operation (i.e., D is not a
v-domain).

Clifford regularity for class and t-class semigroups of ideals in various types
of integral domains was investigated, for instance, in [20 and 21, Bazzoni (1996),
(2001)] [49], [71, 72 and 73, Kabbaj-Mimouni, (2003), (2007), (2008)], [116], and
[54 and 55, Halter-Koch (2007), (2008)]. In particular, in the last paper, Halter-
Koch proves a stronger and much deeper version of (β ), that is, a v-domain having
its t-class semigroups of ideals Clifford regular is a domain of Krull-type (i.e., a
PvMD with finite t-character). This result generalizes [82, Theorem 3.2] on Prüfer
v-multiplication domains.

(e) In the situation of point (d, β ), the condition that every v-finite v-ideal is
regular, in the sense of von Neumann, in the larger monoid Fv(D) := {Av | A ∈
F(D)} of all v-ideals of D (under v-multiplication) is too weak to imply that D is a
PvMD.

As a matter of fact, if we assume that D is a v-domain, then every A ∈ f v(D) is
v-invertible in the (larger) monoid Fv(D). Therefore, A is von Neumann regular in
Fv(D), since (AB)v = D for some B ∈ Fv(D) and thus, multiplying both sides by A
and applying the v-operation, we get (A2B)v = A.

Remark 2.6. Regularly integrally closed integral domains make their appearance
with a different terminology in the study of a weaker form of integrality, intro-
duced in the paper [15]. Recall that, given an integral domain D with quotient field
K, an element z ∈ K is called pseudo-integral over D if z ∈ (Fv : Fv) for some
F ∈ f (D). The terms pseudo-integral closure (i.e., D̃ :=

⋃{(Fv : Fv)) | F ∈ f (D)}
and pseudo-integrally closed domain (i.e., D = D̃) are coined in the obvious fash-
ion and it is clear from the definition that pseudo-integrally closed coincides with
regularly integrally closed.

From the previous observations, we have the following addition to the existing
picture:

CIC domain ⇒10 v-domain ⇒11 integrally closed domain.

Note that in the Noetherian case, the previous three classes of domains coincide
(see the following Proposition 2.8 (2) or [53, Theorem 34.3 and Proposition 34.7]).
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Recall also that Krull domains can be characterized by the property that, for all
A ∈ F(D), A is t-invertible [85, Theorem 3.6]. This property is clearly stronger
than the condition (iii f ) of previous Theorem 2.4 and, more precisely, it is strictly
stronger than (iii f ), since a Krull domain is CIC (by condition (iii) of the above char-
acterizations of CIC domains, see also [24, BAC, Chap. 7, § 1, N. 3, Théorème 2])
and a CIC domain is a v-domain, but the converse does not hold, as we will see in
the following Section 2.5.

Remark 2.7. Note that Okabe and Matsuda [106] generalized pseudo-integral
closure to the star operation setting. Given a star operation ∗ on an integral domain
D, they call the ∗-integral closure of D its overring

⋃{(F∗ : F∗) |F ∈ f (D)} denoted
by cl∗(D) in [58]. Note that, in view of this notation, D̃ =clv(D) (Remark 2.6) and
the integral closure D of D coincides with cld(D) [53, Proposition 34.7]. Clearly,
if ∗1 and ∗2 are two star operations on D and ∗1 ≤ ∗2, then cl∗1(D) ⊆ cl∗2(D). In
particular, for each star operation ∗ on D, we have D ⊆ cl∗(D) ⊆ D̃.

It is not hard to see that cl∗(D) is integrally closed [106, Theorem 2.8] and is
contained in the complete integral closure of D, which coincides with

⋃{(A : A) |
A ∈ F(D)} [53, Theorem 34.3].

Recall also that, in [59, Section 3], the author introduces a star operation of fi-
nite type on the integral domain cl∗(D), that we denote here by cl(∗), defined as
follows, for all G ∈ f (cl∗(D)):

Gcl(∗) :=
⋃
{((F∗ : F∗)G)∗ | F ∈ f (cl∗(D))} .

Clearly, Dcl(∗) = cl∗(D). Call an integral domain D ∗-integrally closed when D =
cl∗(D). Then, from the fact that cl(∗) is a star operation on cl∗(D), it follows that
cl∗(D) is cl(∗)-integrally closed. In general, if D is not necessarily ∗-integrally
closed, then cl(∗), defined on f (D), gives rise naturally to a semistar operation (of
finite type) on D [41, Definition 4.2].

Note that the domain D̃ (= clv(D)), even if it is cl(v)-integrally closed, in
general is not vD̃-integrally closed; a counterexample is given in [15, Example 2.1]
by using a construction due to [55]. On the other hand, since an integral domain D is
a v-domain if and only if D = clv(D) (Theorem 2.4), from the previous observation
we deduce that, in general, D̃ is not a v-domain. On the other hand, using a particular
“D+M construction”, in [106, Example 3.4], the authors construct an example of a
non–v-domain D such that D̃ is a v-domain, i.e., D � D̃ = clvD̃(D̃).

2.5 Irreversibility of the implications “⇒n”

We start by observing that, under standard finiteness assumptions, several classes of
domains considered above coincide. Recall that an integral domain D is called
v-coherent if a finite intersection of v-finite v-ideals is a v-finite v-ideal or,
equivalently, if F−1 is v-finite for all F ∈ f (D) [35, Proposition 3.6], and it is
called a v-finite conductor domain if the intersection of two principal ideals is
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v-finite [33]. From the definitions, it follows that a v-coherent domain is a v-finite
conductor domain. From Remark 2.2 (a.1), we deduce immediately that

D is a PvMD ⇔ D is a v-coherent v-domain.

In case of a v-domain, the notions of v-finite conductor domain and v-coherent do-
main coincide. As a matter of fact, as we have observed in Remark 2.5 (c), a PvMD
is exactly a t-Prüfer domain and an integral domain D is t-Prüfer if and only if every
nonzero two generated ideal is t-invertible. This translates to D is a PvMD if and
only if (a,b) is v-invertible and (a)∩(b) is v-finite, for all a,b ∈ D (see also Remark
2.5 (b)). In other words,

D is a PvMD ⇔ D is a v-finite conductor v-domain.

Recall that an integral domain D is a GGCD domain if and only if D is a PvMD
that is a locally GCD domain [3, Corollary 1 and p. 218] or [124, Corollary 3.4].
On the other hand, we have already observed that a locally GCD domain is essential
and it is known that an essential v-finite conductor domain is a PvMD [122, Lemma
8]. The situation is summarized in the following:

Proposition 2.8. Let D be an integral domain.

(1) Assume that D is a v-finite conductor (e.g., Noetherian) domain. Then, the fol-
lowing classes of domains coincide:

(a) PvMD’s;
(b) locally PvMD’s;
(c) P–domains;
(d) essential domains.
(e) locally v-domains;
(f) v-domains.

(2) Assume that D is a Noetherian domain. Then, the previous classes of domains
(a)–(f) coincide also with the following:

(g) Krull domains;
(h) CIC domains;
(i) integrally closed domains.

(3) Assume that D is a v-finite conductor (e.g., Noetherian) domain. Then, the fol-
lowing classes of domains coincide:

(j) GGCD domains;
(k) locally GCD domains.

Since the notion of Noetherian Bézout (respectively, Noetherian GCD) domain
coincides with the notion of PID or principal ideal domain (respectively, of
Noetherian UFD (= unique factorization domain) [53, Proposition 16.4]), in the
Noetherian case the picture of all classes considered above reduces to the following:

Dedekind domain ⇒1,2,3,4,5 v-domain
PID ⇒6 UFD ⇒7,8 locally UFD ⇒9,3,4,5 v-domain.
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In general, of the implications ⇒n (with 0 ≤ n ≤ 11) discussed above all, except
⇒3, are known to be irreversible. We leave the case of irreversibility of ⇒3 as an
open question and proceed to give examples to show that all the other implications
are irreversible.

• Irreversibility of ⇒0. Take any nondiscrete valuation domain or, more gener-
ally, a Prüfer non-Dedekind domain.

• Irreversibility of ⇒1 (even in the Noetherian case). Let D be a Prüfer domain
that is not a field and let X be an indeterminate over D. Then, as D[X ] is a PvMD
if and only if D is [93, Theorem 4.1.6] (see also [4, Proposition 6.5], [84, Theorem
3.7], [12, Corollary 3.3], and the following Section 4), we conclude that D[X ] is
a PvMD that is not Prüfer. An explicit example is Z[X ], where Z is the ring of
integers.

• Irreversibility of ⇒2. It is well known that every ring of fractions of a PvMD
is again a PvMD [69, Proposition 1.8] (see also the following Section 3). The fact
that ⇒2 is not reversible has been shown by producing examples of locally PvMD’s
that are not PvMD’s. In [100, Example 2.1] an example of a non PvMD essential
domain due to Heinzer and Ohm [69] was shown to have the property that it was
locally PvMD and hence a P-domain.

• Irreversibility of ⇒3: Open. However, as mentioned above, [100, Example 2.1]
shows the existence of a P-domain which is not a PvMD. Note that [125, Section 2]
gives a general method of constructing P-domains that are not PvMD’s.

• Irreversibility of ⇒4. An example of an essential domain which is not a
P-domain was constructed in [67]. Recently, in [40, Example 2.3], the authors show
the existence of n-dimensional essential domains which are not P-domains, for all
n ≥ 2.

• Irreversibility of ⇒5. Note that, by ⇒10, a CIC domain is a v-domain and
Nagata solving with a counterexample a famous conjecture stated by Krull in 1936,
has produced an example of a one dimensional quasilocal CIC domain that is not a
valuation ring (cf. [101,102,114]). This proves that a v-domain may not be essential.
It would be desirable to have an example of a nonessential v-domain that is simpler
than Nagata’s example.

• Irreversibility of ⇒6 (even in the Noetherian case). This case can be handled
in the same manner as that of ⇒1, since a polynomial domain over a GCD domain
is still a GCD domain (cf. [86, Exercise 9, p. 42]).

• Irreversibility of ⇒7 (even in the Noetherian case). Note that a Prüfer domain
is a GGCD domain, since a GGCD domain is characterized by the fact that Fv is
invertible for all F ∈ f (D) [3, Theorem 1]. Moreover, a Prüfer domain D is a Bézout
domain if and only if D is GCD. In fact, according to [28] a Prüfer domain D
is Bézout if and only if D is a generalization of GCD domains called a Schreier
domain (i.e., an integrally closed integral domain whose group of divisibility is a
Riesz group, that is a partially ordered directed group G having the following inter-
polation property: given a1,a2, . . . ,am,b1,b2, . . . ,bn ∈ G with ai ≤ b j, there exists
c ∈ G with ai ≤ c ≤ b j see [28] and also [2, Section 3]). Therefore, a Prüfer non-
Bézout domain (e.g., a Dedekind non principal ideal domain, like Z[i

√
5]) shows

the irreversibility of ⇒7.
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• Irreversibility of ⇒8. From the characterization of GGCD domains recalled
in the irreversibility of ⇒7 [3, Theorem 1], it follows that a GGCD domain is a
PvMD. More precisely, as we have already observed just before Proposition 2.8, an
integral domain D is a GGCD domain if and only if D is a PvMD that is a locally
GCD domain. Finally, as noted above, there are examples in [125] of locally GCD
domains that are not PvMD’s. More explicitly, let E be the ring of entire functions
(i.e., complex functions that are analytic in the whole plane). It is well known that E
is a Bézout domain and every nonzero non unit x ∈ E is uniquely expressible as an
associate of a “countable” product x = ∏ pei

i , where ei ≥ 0 and pi is an irreducible
function (i.e., a function having a unique root) [70, Theorems 6 and 9]. Let S be
the multiplicative set of E generated by the irreducible functions and let X be an
indeterminate over E , then E +XES[X ] is a locally GCD domain that is not a PvMD
[125, Example 2.6 and Proposition 4.1].

• Irreversibility of ⇒9 (even in the Noetherian case). This follows easily from the
fact that there do exist examples of Krull domains (which we have already observed
are locally PvMD’s) that are not locally factorial (e.g., a non-UFD local Noetherian
integrally closed domain, like the power series domain D[[X ]] constructed in [115],
where D is a two dimensional local Noetherian UFD). As a matter of fact, a Krull
domain which is a GCD domain is a UFD, since in a GCD domain, for all F ∈ f (D),
Fv is principal and so the class group Cl(D) = 0 [25, Section 2]; on the other hand,
a Krull domain is factorial if and only if Cl(D) = 0 [48, Proposition 6.1].

• Irreversibility of ⇒10. Let R be an integral domain with quotient field L and
let X be an indeterminate over L. By [29, Theorem 4.42] T := R + XL[X ] is a
v-domain if and only if R is a v-domain. Therefore, if R is not equal to L, then
obviously T is an example of a v-domain that is not completely integrally closed
(the complete integral closure of T is L[X ] [53, Lemma 26.5]). This establishes that
⇒10 is not reversible.
Note that, in [35, Section 4] the transfer in pullback diagrams of the PvMD property
and related properties is studied. A characterization of v-domains in pullbacks is
proved in [50, Theorem 4.15]. We summarize these results in the following:

Theorem 2.9. Let R be an integral domain with quotient field k and let T be an
integral domain with a maximal ideal M such that L := T/M is a field extension
of k. Let ϕ : T → L be the canonical projection and consider the following pullback
diagram:

D := ϕ−1(R) −−−−→ R
⏐
⏐



⏐
⏐



T1 := ϕ−1(k) −−−−→ k
⏐
⏐



⏐
⏐



T
ϕ−−−−→ L

Then, D is a v-domain (respectively, a PvMD) if and only if k = L, TM is a valuation
domain and R and T are v-domains (respectively, PvMD’s).
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Remark 2.10. Recently, bringing to a sort of close a lot of efforts to restate results
of [29] in terms of very general pullbacks, in the paper [76], the authors use some
remarkable techniques to prove a generalization of the previous theorem. Although
that paper is not about v-domains in particular, it does have a few good results on v-
domains. One of these results will be recalled in Proposition 3.6. Another one, with
a pullback flavor, can be stated as follows: Let I be a nonzero ideal of an integral
domain D and set T := (I : I). If D is a v-domain (respectively, a PvMD) then T is
a v-domain (respectively, a PvMD) [76, Proposition 2.5].

• Irreversibility of ⇒11. Recall that an integral domain D is called a Mori do-
main if D satisfies ACC on its integral divisorial ideals. According to [103, Lemma
1] or [112], D is a Mori domain if and only if for every nonzero integral ideal I of
D there is a finitely generated ideal J ⊆ I such that Jv = Iv (see also [20] for an
updated survey on Mori domains). Thus, if D is a Mori domain then D is CIC (i.e.,
every nonzero ideal is v-invertible) if and only if D is a v-domain (i.e., every nonzero
finitely generated ideal is v-invertible). On the other hand, a completely integrally
closed Mori domain is a Krull domain (see for example [48, Theorem 3.6]). More
precisely, Mori v-domains coincide with Krull domains [104, Theorem]. Therefore,
an integrally closed Mori non Krull domain provides an example of the irreversibil-
ity of ⇒11. An explicit example is given next.

It can be shown that, if k ⊆ L is an extension of fields and if X is an indeterminate
over L, then k + XL[X ] is always a Mori domain (see, for example, [50, Theorem
4.18] and references there to previous papers by V. Barucci and M. Roitman). It is
easy to see that the complete integral closure of k + XL[X ] is precisely L[X ] [53,
Lemma 26.5]. Thus if k � L then k +XL[X ] is not completely integrally closed and,
as an easy consequence of the definition of integrality, it is integrally closed if and
only if k is algebraically closed in L. This shows that there do exist integrally closed
Mori domains that are not Krull. A very explicit example is given by Q + XR[X ],
where R is the field of real numbers and Q is the algebraic closure of Q in R.

3 v-domains and rings of fractions

We have already mentioned that, if S is a multiplicative set of a PvMD D, then DS is
still a PvMD [69, Proposition 1.8]. The easiest proof of this fact can be given noting
that, given F ∈ f (D), if F is t-invertible in D then FDS is t-invertible in DS, where S
is a multiplicative set of D [25, Lemma 2.6]. It is natural to ask if DS is a v-domain
when D is a v-domain.

The answer is no. As a matter of fact an example of an essential domain D with a
prime ideal P such that DP is not essential was given in [67]. What is interesting is
that an essential domain is a v-domain by Proposition 2.1 and that, in this example,
DP is a (non essential) overring of the type k +XL[X ](X) = (k +XL[X ])XL[X ], where
L is a field and k its subfield that is algebraically closed in L. Now, a domain of type
k + XL[X ](X) is an integrally closed local Mori domain, see [50, Theorem 4.18].
In the irreversibility of ⇒11, we have also observed that if a Mori domain is a
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v-domain then it must be CIC, i.e., a Krull domain, and hence, in particular, an
essential domain. Therefore, Heinzer’s construction provides an example of an es-
sential (v-)domain D with a prime ideal P such that DP is not a v-domain.

Note that a similar situation holds for CIC domains. If D is CIC then it may be
that for some multiplicative set S of D the ring of fractions DS is not a completely
integrally closed domain. A well known example in this connection is the ring E of
entire functions. For E is a completely integrally closed Bézout domain that is infi-
nite dimensional (see [61 and 62, Henriksen (1952), (1953)], [53, Examples 16–21,
pp. 146–148] and [38, Section 8.1]). Localizing E at one of its prime ideals of
height greater than one would give a valuation domain of dimension greater than
one, which is obviously not completely integrally closed [53, Theorem 17.5]. For
another example of a CIC domain that has non–CIC rings of fractions, look at the
integral domain of integer-valued polynomials Int(Z) [7, Example 7.7 and the fol-
lowing paragraph at p. 127]. (This is a non-Bézout Prüfer domain, being atomic and
two-dimensional.)

Note that these examples, like other well known examples of CIC domains with
some overring of fractions not CIC, are all such that their overrings of fractions
are at least v-domains (hence, they do not provide further counterexamples to the
transfer of the v-domain property to the overrings of fractions). As a matter of fact,
the examples that we have in mind are CIC Bézout domains with Krull dimension
≥2 (and polynomial domains over them), constructed using the Krull-Jaffard-Ohm-
Heinzer Theorem (for the statement, a brief history and applications of this theorem
see [53, Theorem 18.6, p. 214, p. 136, Example 19.12]). Therefore, it would be
instructive to find an example of a CIC domain whose overrings of fractions are not
all v-domains. Slightly more generally, we have the following.

It is well known that if {Dλ | λ ∈ Λ} is a family of overrings of D with
D =

⋂
λ∈Λ Dλ and if each Dλ is a completely integrally closed (respectively, in-

tegrally closed) domain then so is D (for the completely integrally closed case see
for instance [53, Exercise 11, p. 145]; the integrally closed case is a straightfor-
ward consequence of the definition). It is natural to ask if in the above statement
“completely integrally closed/integrally closed domain” is replaced by “v-domain”
the statement is still true.

The answer in general is no, because by Krull’s theorem every integrally closed
integral domain is expressible as an intersection of a family of its valuation overrings
(see e.g. [53, Theorem 19.8]) and of course a valuation domain is a v-domain. But,
an integrally closed domain is not necessarily a v-domain (see the irreversibility of
⇒11). If however each of Dλ is a ring of fractions of D, then the answer is yes.
A slightly more general statement is given next.

Proposition 3.1. Let {Dλ | λ ∈ Λ} be a family of flat overrings of D such that
D =

⋂
λ∈Λ Dλ . If each of Dλ is a v-domain then so is D.

Proof. Let vλ be the v-operation on Dλ and let ∗ := ∧vλ , be the star operation on D
defined by A �→ A∗ :=

⋂
λ (ADλ )vλ , for all A ∈ F(D) [1, Theorem 2]. To show that

D is a v-domain it is sufficient to show that every nonzero finitely generated ideal
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is ∗-invertible (for ∗ ≤ v and so, if F ∈ f (D) and (FF−1)∗ = D, then applying the
v-operation to both sides we get (FF−1)v = D).

Now, we have

(FF−1)∗ =
⋂

λ ((FF−1)Dλ )vλ =
⋂

λ ((FDλ )(F−1Dλ ))vλ

=
⋂

λ ((FDλ )(FDλ )−1)vλ (since Dλ is D-flat and F is f.g.)
=
⋂

λ Dλ (since Dλ is a vλ -domain)
= D .

Corollary 3.2. Let Δ be a nonempty family of prime ideals of D such that D =
⋂{DP | P ∈ Δ}. If DP is a v-domain for each P ∈ Δ , then D is a v-domain. In
particular, if DM is a v-domain for all M ∈ Max(D) (for example, if D is locally a
v-domain, i.e., DP is a v-domain for all P ∈ Spec(D)), then D is a v-domain.

Note that the previous Proposition 3.1 and Corollary 3.2 generalize Proposition 2.1,
which ensures that an essential domain is a v-domain. Corollary 3.2 in turn leads to
an interesting conclusion concerning the overrings of fractions of a v-domain.

Corollary 3.3. Let S be a multiplicative set in D. If DP is a v-domain for all prime
ideals P of D such that P is maximal with respect to being disjoint from S, then DS

is a v-domain.

In Corollary 3.2 we have shown that, if DM is a v-domain for all M ∈ Max(D),
then D is a v-domain. However, if DP is a v-domain for all P ∈ Spec(D), we get
much more in return. To indicate this, we note that, if S is a multiplicative set of D,
then DS =

⋂{DQ | Q ranges over associated primes of principal ideals of D with
Q∩S = /0} [26, Proposition 4] (the definition of associated primes of principal ideals
was recalled in Remark 2.3). Indeed, if we let S = {1}, then we have D =

⋂
DQ | Q

ranges over all associated primes of principal ideals of D} (see also [86, Theorem
53] for a “maximal-type” version of this property). Using this terminology and the
information at hand, it is easy to prove the following result.

Proposition 3.4. Let D be an integral domain. Then, the following are equivalent.

(i) D is a v-domain such that, for every multiplicative set S of D, DS is a v-domain.
(ii) For every nonzero prime ideal P of D, DP is a v-domain.
(iii) For every associated prime of principal ideals of D, Q, DQ is a v-domain.

From the previous considerations, we have the following addition to the existing
picture:

locally PvMD ⇒12 locally v-domain ⇒13 v-domain.

The example discussed at the beginning of this section shows the irreversibility of
⇒13. Nagata’s example (given for the irreversibility of ⇒5) of a one dimensional
quasilocal CIC domain that is not a valuation ring shows also the irreversibility
of ⇒12.
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Remark 3.5. In the spirit of Proposition 3.4, we can make the following statement
for CIC domains: Let D be an integral domain. Then, the following are equivalent:

(i) D is a CIC domain such that, for every multiplicative set S of D, DS is CIC.
(ii) For every nonzero prime ideal P of D, DP is CIC.
(iii) For every associated prime of a principal ideal of D, Q, DQ is CIC.

At the beginning of this section, we have mentioned the existence of examples
of v-domains (respectively, CIC domains) having some localization at prime ide-
als which is not a v-domain (respectively, a CIC domain). Therefore, the previous
equivalent properties (like the equivalent properties of Proposition 3.4) are strictly
stronger than the property of being a CIC domain (respectively, v-domain).

On the other hand, for the case of integrally closed domains, the fact that, for
every nonzero prime ideal P of D, DP is integrally closed (or, for every maximal
ideal M of D, DM is integrally closed) returns exactly the property that D is integrally
closed (i.e., the “integrally closed property” is a local property; see, for example,
[17, Proposition 5.13]). Note that, more generally, the semistar integral closure is a
local property (see for instance [60, Theorem 4.11]).

We have just observed that a ring of fractions of a v-domain may not be a
v-domain, however there are distinguished classes of overrings for which the ascent
of the v-domain property is possible.

Given an extension of integral domains D ⊆ T with the same field of quo-
tients, T is called v-linked (respectively, t-linked) over D if whenever I is a nonzero
(respectively, finitely generated) ideal of D with I−1 = D we have (IT )−1 = T .
It is clear that v-linked implies t-linked and it is not hard to prove that flat over-
ring implies t-linked [32, Proposition 2.2]. Moreover, the complete integral closure
and the pseudo-integral closure of an integral domain D are t-linked over D (see
[32, Proposition 2.2 and Corollary 2.3] or [58, Corollary 2]). Examples of v-linked
extensions can be constructed as follows: take any nonzero ideal I of an integral
domain then the overring T := (Iv : Iv) is a v-linked overring of D [76, Lemma 3.3].

The t-linked extensions were used in [32] to deepen the study of PvMD’s. It is
known that an integral domain D is a PvMD if and only if each t-linked overring of D
is a PvMD (see [73, Proposition 1.6], [84, Theorem 3.8 and Corollary 3.9]). More
generally, in [32, Theorem 2.10], the authors prove that an integral domain D is a
PvMD if and only if each t-linked overring is integrally closed. On the other hand,
a ring of fractions of a v-domain may not be a v-domain, so a t-linked overring of
a v-domain may not be a v-domain. However, when it comes to a v-linked overring
we get a different story. The following result is proven in [76, Lemma 2.4].

Proposition 3.6. If D is a v-domain and T is a v-linked overring of D, then T is a
v-domain.

Proof. Let J := y1T +y2T + · · ·+ynT be a nonzero finitely generated ideal of T and
set F := y1D+ y2D+ · · ·+ ynD ∈ f (D). Since D is a v-domain, (FF−1)v = D and,
since T is v-linked, we have (JF−1T )v = (FF−1T )v = T . We conclude easily that
(J(T : J))v = T .
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4 v-domains and polynomial extensions

4.1 The polynomial ring over a v-domain

As for the case of integrally closed domains and of completely integrally closed
domains [53, Corollary 10.8 and Theorem 13.9], we have observed in the proof
of irreversibility of ⇒1 that, given an integral domain D and an indeterminate X
over D,

D[X ] is a PvMD ⇔ D is a PvMD.

A similar statement holds for v-domains. As a matter of fact, the following
statements are equivalent (see part (4) of [12, Corollary 3.3]).

(i) For every F ∈ f (D), Fv is v-invertible in D.
(ii) For every G ∈ f (D[X ]), Gv is v-invertible in D[X ].

This equivalence is essentially based on a polynomial characterization of inte-
grally closed domains given in [113], for which we need some introduction. Given
an integral domain D with quotient field K, an indeterminate X over K and a
polynomial f ∈ K[X ], we denote by cD( f ) the content of f , i.e., the (fractional)
ideal of D generated by the coefficients of f . For every fractional ideal B of D[X ],
set cD(B) := (cD( f ) | f ∈ B). The integrally closed domains are characterized by
the following property: for each integral ideal J of D[X ] such that J ∩ D �= (0),
Jv = (cD(J)[X ])v = cD(J)v[X ] (see [113, Section 3] and [12, Theorem 3.1]). More-
over, an integrally closed domain is an agreeable domain (i.e., for each fractional
ideal B of D[X ], with B⊆K[X ], there exists 0 �= s∈D -depending on B- with sB⊆D)
[12, Theorem 2.2]. (Note that agreeable domains were also studied in [65] under the
name of almost principal ideal domains.)

The previous considerations show that, for an integrally closed domain D, there is
a close relation between the divisorial ideals of D[X ] and those of D [113, Theorem
1 and Remark 1]. The equivalence (i)⇔(ii) will now follow easily from the fact that,
given an agreeable domain, for every integral ideal J of D[X ], there exist an integral
ideal J1 of D[X ] with J1 ∩ D �= (0), a nonzero element d ∈ D and a polynomial
f ∈ D[X ] in such a way that J = d−1 f J1 [12, Theorem 2.1].

On the other hand, using the definitions of v-invertibility and v-multiplicati-
on, one can easily show that for A ∈ F(D), A is v-invertible if and only if Av is
v-invertible. By the previous equivalence (i)⇔(ii), we conclude that every F ∈ f (D)
is v-invertible if and only if every G ∈ f (D[X ]) is v-invertible and this proves the
following:

Theorem 4.1. Given an integral domain D and an indeterminate X over D, D is a
v-domain if and only if D[X ] is a v-domain.

Note that a much more interesting and general result was proved in terms of
pseudo-integral closures in [15, Theorem 1.5 and Corollary 1.6].
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4.2 v-domains and rational functions

Characterizations of v-domains can be also given in terms of rational functions,
using properties of the content of polynomials.

Recall that Gauss’ Lemma for the content of polynomials holds for Dedekind
domains (or, more generally, for Prüfer domains). A more precise and general
statement is given next.

Lemma 4.2. Let D be an integral domain with quotient field K and let X be an
indeterminate over D. The following are equivalent.

(i) D is an integrally closed domain (respectively, a PvMD; a Prüfer domain).
(ii) For all nonzero f ,g ∈ K[X ], cD( f g)v = (cD( f )cD(g))v (respectively, cD( f g)w

= (cD( f )cD(g))w; cD( f g) = cD( f )cD(g)).

For the “Prüfer domain part” of the previous lemma, see [53, Corollary 28.5],
[118], and [51]; for the “integrally closed domains part”, see [90, p. 557] and [113,
Lemme 1]; for the “PvMD’s part”, see [14, Corollary 1.6] and [27, Corollary 3.8].
For more on the history of Gauss’ Lemma, the reader may consult [68, p. 1306] and
[2, Section 8].

For general integral domains, we always have the inclusion of ideals cD( f g) ⊆
cD( f )cD(g), and, more precisely, we have the following famous lemma due to
Dedekind and Mertens (for the proof, see [105] or [53, Theorem 28.1] and, for
some complementary information, see [2, Section 8]):

Lemma 4.3. In the situation of Lemma 4.2, let 0 �= f ,g ∈ K[X ] and let m := deg(g).
Then

cD( f )mcD( f g) = cD( f )m+1cD(g) .

A straightforward consequence of the previous lemma is the following:

Corollary 4.4. In the situation of Lemma 4.2, assume that, for a nonzero polynomial
f ∈ K[X ], cD( f ) is v-invertible (e.g., t-invertible). Then cD( f g)v = (cD( f )cD(g))v

(or, equivalently, cD( f g)t = (cD( f )cD(g))t ), for all nonzero g ∈ K[X ].

From Corollary 4.4 and from the “integrally closed domain part” of Lemma 4.2,
we have the following result (see [99, Theorem 2.4 and Section 3]):

Corollary 4.5. In the situation of Lemma 4.2, set VD := {g ∈ D[X ] | cD(g) is
v-invertible} and TD := {g ∈ D[X ] | cD(g) is t-invertible}. Then, TD and VD are
multiplicative sets of D[X ] with TD ⊆ VD. Furthermore, VD (or, equivalently, TD) is
saturated if and only if D is integrally closed.

It can be useful to observe that, from Remark 2.2 (a.1), we have

TD = {g ∈ VD | cD(g)−1 is t-finite}.

We are now in a position to give a characterization of v-domains (and PvMD’s) in
terms of rational functions (see [99, Theorems 2.5 and 3.1]).
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Theorem 4.6. Suppose that D is an integrally closed domain, then the following are
equivalent:

(i) D is a v-domain (respectively, a PvMD).
(ii) VD = D[X ]\{0} (respectively, TD = D[X ]\{0}).
(iii) D[X ]VD (respectively, D[X ]TD ) is a field (or, equivalently, D[X ]VD = K(X)

(respectively, D[X ]TD = K(X))).
(iv) Each nonzero element z ∈ K satisfies a polynomial f ∈ D[X ] such that cD( f )

is v-invertible (respectively, t-invertible).

Remark 4.7. Note that quasi Prüfer domains (i.e., integral domains having inte-
gral closure Prüfer [19]) can also be characterized by using properties of the
field of rational functions. In the situation of Lemma 4.2, set SD := {g ∈ D[X ] |
cD(g) is invertible}. Then, by Lemma 4.4, the multiplicative set SD of D[X ] is sat-
urated if and only if D is integrally closed. Moreover, D is quasi Prüfer if and only
if D[X ]SD is a field (or, equivalently, D[X ]SD = K(X)) if and only if each nonzero
element z ∈ K satisfies a polynomial f ∈ D[X ] such that cD( f ) is invertible [99,
Theorem 1.7].

Looking more carefully at the content of polynomials, it is obvious that the set

ND := {g ∈ D[X ] | cD(g)v = D}

is a subset of TD and it is well known that ND is a saturated multiplicative set of D[X ]
[84, Proposition 2.1]. We call the Nagata ring of D with respect to the v-operation
the ring:

Na(D,v) := D[X ]ND .

We can also consider

Kr(D,v) := { f/g | f ,g ∈ D[X ], g �= 0, cD( f )v ⊆ cD(g)v} .

When v is an e.a.b. operation on D (i.e., when D is a v-domain) Kr(D,v) is
a ring called the Kronecker function ring of D with respect to the v-operation
[53, Theorem 32.7]. Clearly, in general, Na(D,v) ⊆ Kr(D,v). It is proven in [39,
Theorem 3.1 and Remark 3.1] that Na(D,v) = Kr(D,v) if and only if D is a PvMD.

Remark 4.8. (a) Concerning Nagata and Kronecker function rings, note that a uni-
fied general treatment and semistar analogs of several results were obtained in the
recent years, see for instance [41–43].

(b) A general version of Lemma 4.2, in case of semistar operations, was recently
proved in [14, Corollary 1.2].

4.3 v-domains and uppers to zero

Recall that if X is an indeterminate over an integral domain D and if Q is a nonzero
prime ideal of D[X ] such that Q∩D = (0) then Q is called an upper to zero. The



168 Marco Fontana and Muhammad Zafrullah

“upper” terminology in polynomial rings is due to S. McAdam and was introduced
in the early 1970s. In a recent paper, Houston and Zafrullah introduce the UMv-
domains as the integral domains such that the uppers to zero are maximal v-ideals
and they prove the following result [78, Theorem 3.3].

Theorem 4.9. Let D be an integral domain with quotient field K and let X be an
indeterminate over K. The following are equivalent.

(i) D is a v-domain.
(ii) D is an integrally closed UMv-domain.
(iii) D is integrally closed and every upper to zero in D[X ] is v-invertible.
(iii�) D is integrally closed and every upper to zero of the type Q� := �K[X ]∩D[X ]

with � ∈ D[X ] a linear polynomial is v-invertible.

It would be unfair to end the section with this characterization of v-domains
without giving a hint about where the idea came from.

Gilmer and Hoffmann in 1975 gave a characterization of Prüfer domains using
uppers to zero. This result is based on the following characterization of essential
valuation overrings of an integrally closed domain D: let P be a prime ideal of D,
then DP is a valuation domain if and only if, for each upper to zero Q of D[X ],
Q �⊆ P[X ], [53, Theorem 19.15].

A globalization of the previous statement leads to the following result that can
be easily deduced from [56, Theorem 2].

Proposition 4.10. In the situation of Theorem 4.9, the following are equivalent:

(i) D is a Prüfer domain.
(ii) D is integrally closed and if Q is an upper to zero of D[X ], then Q �⊆ M[X ], for

all M ∈ Max(D) (i.e., cD(Q) = D).

In [123, Proposition 4], the author proves a “t-version” of the previous result.

Proposition 4.11. In the situation of Theorem 4.9, the following are equivalent:

(i) D is a PvMD.
(ii) D is integrally closed and if Q upper to zero of D[X ], then Q �⊆ M[X ], for all

maximal t-ideal M of D (i.e., cD(Q)t = D).

The proof of the previous proposition relies on very basic properties of
polynomial rings.

Note that in [123, Lemma 7] it is also shown that, if D is a PvMD, then every
upper to zero in D[X ] is a maximal t-ideal. As we observed in Section 1, unlike
maximal v-ideals, the maximal t-ideals are ubiquitous.

Around the same time, in [75, Proposition 2.6], the authors came up with a much
better result, using the ∗-operations much more efficiently. Briefly, this result said
that the converse holds, i.e., D is a PvMD if and only if D is an integrally closed
integral domain and every upper to zero in D[X ] is a maximal t-ideal.
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It turns out that integral domains D such that their uppers to zero in D[X ] are
maximal t-ideals (called UMt-domains in [77, Section 3]; see also [36] and, for a
survey on the subject, [74]) and domains such that, for each upper to zero Q of D[X ],
cD(Q)t = D had an independent life. In [77, Theorem 1.4], studying t-invertibility,
the authors prove the following result.

Proposition 4.12. In the situation of Theorem 4.9, let Q be an upper to zero in D[X ].
The following statements are equivalent.

(i) Q is a maximal t-ideal of D[X ].
(ii) Q is a t-invertible ideal of D[X ].
(iii) cD(Q)t = D.

Based on this result, one can see that the following statement is a precursor to
Theorem 4.9.

Proposition 4.13. Let D be an integral domain with quotient field K and let X be an
indeterminate over K. The following are equivalent.

(i) D is a PvMD.
(ii) D is an integrally closed UMt-domain.
(iii) D is integrally closed and every upper to zero in D[X ] is t-invertible.
(iii�) D is integrally closed and every upper to zero of the type Q� := �K[X ]∩D[X ],

with � ∈ D[X ] a linear polynomial, is t-invertible.

Note that the equivalence (i)⇔(ii) is in [77, Proposition 3.2]. (ii)⇔(iii) is
a consequence of previous Proposition 4.12. Obviously, (iii)⇒(iii�). (iii�)⇒(i)
is a consequence of the characterization already cited that an integral domain D
is a PvMD if and only if each nonzero two generated ideal is t-invertible [94,
Lemma 1.7]. As a matter of fact, consider a nonzero two generated ideal I := (a,b)
in D, set � := a + bX and Q� := �K[X ]∩D[X ]. Since D is integrally closed, then
Q� = �cD(�)−1D[X ] by [113, Lemme 1, p. 282]. If Q� is t-invertible (in (D[X ]), then
it is easy to conclude that cD(�) = I is t-invertible (in D).

Remark 4.14. Note that Prüfer domains may not be characterized by straight modi-
fications of conditions (ii) and (iii) of Proposition 4.13. As a matter of fact, if there
exists in D[X ] an upper to zero which is also a maximal ideal, then the domain D
is a G(oldman)-domain (i.e., its quotient field is finitely generated over D), and
conversely [86, Theorems 18 and 24]. Moreover, every upper to zero in D[X ] is
invertible if and only if D is a GGCD domain [11, Theorem 15].

On the other hand, a variation of condition (iii�) of Proposition 4.13 does charac-
terize Prüfer domains: D is a Prüfer domain if and only if D is integrally closed and
every upper to zero of the type Q� := �K[X ]∩D[X ] with �∈D[X ] a linear polynomial
is such that cD(Q�) = D [75, Theorem 1.1].
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5 v-domains and GCD–theories

In [23, p. 170], a factorial monoid D is a commutative semigroup with a unit ele-
ment 1 (and without zero element) such that every element a ∈ D can be uniquely
represented as a finite product of atomic (= irreducible) elements qi of D, i.e.,
a = q1q2 · · ·qr, with r ≥ 0 and this factorization is unique up to the order of fac-
tors; for r = 0 this product is set equal to 1. As a consequence, it is easy to see that
this kind of uniqueness of factorization implies that 1 is the only invertible element
in D, i.e., U(D) = {1}. Moreover, it is not hard to see that, in a factorial monoid,
any two elements have GCD and every atom is a prime element [59, Theorem 10.7].

Let D be an integral domain and set D• := D \ {0}. In [23, p. 171] an integral
domain D is said to have a divisor theory if there is a factorial monoid D and a
semigroup homomorphism, denoted by (–): D• → D, given by a �→ (a), such that:

(D1) (a) | (b) in D if and only if a | b in D for a,b ∈ D•.
(D2) If g | (a) and g | (b) then g | (a±b) for a,b ∈ D• with a±b �= 0 and g ∈ D.
(D3) Let g ∈ D and set

g := {x ∈ D• such that g | (x)}∪{0}.

Then a = b if and only if a = b for all a,b ∈ D.

Given a divisor theory, the elements of the factorial monoid D are called divi-
sors of the integral domain D and the divisors of the type (a), for a ∈ D are called
principal divisors of D.

Note that, in [117, p. 119], the author shows that the axiom (D2), which
guarantees that g is an ideal of D, for each divisor g ∈ D, is unnecessary. Fur-
thermore, note that divisor theories were also considered in [98, Chap. 10], written
in the spirit of Jaffard’s volume [80].

Borevich and Shafarevich introduced domains with a divisor theory in order to
generalize Dedekind domains and unique factorization domains, along the lines of
Kronecker’s classical theory of “algebraic divisors” (cf. [88] and also [121] and
[34]). As a matter of fact, they proved that

(a) If an integral domain D has a divisor theory (–): D• → D then it has only one
(i.e., if ((–)): D• → D′ is another divisor theory then there is an isomorphism
D ∼= D′ under which the principal divisors in D and D′, which correspond to a
given nonzero element a ∈ D, are identified) [23, Theorem 1, p. 172];

(b) An integral domain D is a unique factorization domain if and only if D has a
divisor theory (–): D• →D in which every divisor of D is principal [23, Theorem
2, p. 174];

(c) An integral domain D is a Dedekind domain if and only if D has a divisor theory
(–): D• → D such that, for every prime element p of D, D/p is a field [23,
Chap. 3, Section 6.2].

Note that Borevich and Shafarevich do not enter into the details of the determi-
nation of those integral domains for which a theory of divisors can be constructed
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[23, p. 178], but it is known that they coincide with the Krull domains (see [120,
Section 105], [18, Theorem 5], [92, Section 5], and [87] for the monoid case). In
particular, note that, for a Krull domain, the group of non-zero fractional divisorial
ideals provides a divisor theory.

Taking the above definition as a starting point and recalling that (D2) is unnec-
essary, in [92], the author introduces a more general class of domains, called the
domain with a GCD–theory.

An integral domain D is said to have a GCD–theory if there is a GCD–monoid G

and a semigroup homomorphism, denoted by (–): D• → G, given by a �→ (a), such
that:

(G1) (a) | (b) in G if and only if a | b in D for a,b ∈ D•.
(G2) Let g ∈ G and set g := {x ∈ D• such that g | (x)}∪{0}. Then a = b if and

only if a = b for all a,b ∈ G.

Let Q := q(G) be the group of quotients of the GCD–monoid G. It is not hard to
prove that the natural extension a GCD–theory (–): D• → G to a group homomor-
phism (–)′ : K• → Q has the following properties:

(qG1) (α)′ | (β )′ with respect to G if and only if α | β with respect to D for α,
β ∈ K•.

(qG2) Let h ∈ Q and set h := {γ ∈ K• such that h | (γ)′}∪{0} (the division in Q

is with respect to G). Then a = b if and only if a = b for all a,b ∈Q.

In [92, Theorem 2.5], the author proves the following key result, that clarifies the
role of the ideal a. (Call, as before, divisors of D the elements of the GCD–monoid
G and principal divisors of D the divisors of the type (a), for a ∈ D•.)

Proposition 5.1. Let D be an integral domain with GCD–theory (–): D• → G,
let a be any divisor of G and {(ai)}i∈I a family of principal divisors with a =
GCD({(ai)}i∈I). Then a = ({ai}i∈I)v = av.

Partly as a consequence of Proposition 5.1, we have a characterization of a
v-domain as a domain with GCD-theory [92, Theorem and Definition 2.9].

Theorem 5.2. Given an integral domain D, D is a ring with GCD–theory if and only
if D is a v-domain.

The “only if part” is a consequence of Proposition 5.1 (for details see
[92, Corollary 2.8]).

The proof of the “if part” is constructive and provides explicitly the GCD–theory.
The GCD–monoid is constructed via Kronecker function rings. Recall that, when v
is an e.a.b. operation (i.e., when D is a v-domain (Theorem 2.4)), the Kronecker
function ring with respect to v, Kr(D,v), is well defined and is a Bézout domain
[53, Lemma 32.6 and Theorem 32.7]. Let K be the monoid Kr(D,v)•, let U :=
U(Kr(D,v)) be the group of invertible elements in Kr(D,v) and set G := K/U. The
canonical map:
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[–] : D• → G =
Kr(D,v)•

U
, a �→ [a] (= the equivalence class of a in G)

defines a GCD–theory for D, called the Kroneckerian GCD–theory for the
v-domain D. In particular, the GCD of elements in D is realized by the equivalence
class of a polynomial; more precisely, under this GCD–theory, given a0,a1, . . . ,an

in D•, GCD(a0,a1, . . . ,an) := GCD([a0], [a1], . . . , [an]) = [a0 + a1X + · · ·+ anXn].
It is classically known [23, Chap. 3, Section 5] that the integral closure of a do-

main with divisor theory in a finite extension of fields is again a domain with divisor
theory. For integral domains with GCD–theory a stronger result holds.

Theorem 5.3. Let D be an integrally closed domain with field of fractions K and let
K ⊆ L be an algebraic field extension and let T be the integral closure of D in L.
Then T is a v-domain (i.e., domain with GCD–theory) if and only if D is a v-domain
(i.e., a domain with GCD–theory).

The proof of the previous result is given in [92, Theorem 3.1] and it is based on
the following facts:

In the situation of Theorem 5.3,

(a) For each ideal I of D, IvD = (IT )vT ∩K [90, Satz 9, p. 675];
(b) If D is a v-domain, then the integral closure of Kr(D,vD) in the algebraic field

extension K(X) ⊆ L(X) coincides with Kr(T,vT ) [92, Theorem 3.3].

Remark 5.4. (a) The notions of GCD–theory and divisor theory, being more in the
setting of monoid theory, have been given a monoid treatment [59, Exercises 18.10,
19.6 and Chap. 20].

(b) Note that a part of previous Theorem 5.3 appears also as a corollary to [61,
Theorem 3.6]. More precisely, let clv(D) (:=

⋃{Fv : Fv) | F ∈ f (D)}) be the
v-(integral) closure of D. We have already observed (Theorem 2.4 and Remark 2.6)
that an integral domain D is a v-domain if and only if D = clv(D). There-
fore Theorem 5.3 is an easy consequence of the fact that, in the situation of
Theorem 5.3, it can be shown that clv(T ) is the integral closure of clv(D) in L
[61, Theorem 3.6].

(c) In [92, Section 4], the author develops a “stronger GCD–theory” in or-
der to characterize PvMD’s. A GCD-theory of finite type is a GCD–theory, (–),
with the property that each divisor a in the GCD–monoid G is such that a =
GCD((a1),(a2), . . . ,(an)) for a finite number of nonzero elements a1,a2, . . . ,an ∈D.
For a PvMD, the group of non-zero fractional t-finite t-ideals provides a GCD–
theory of finite type. (Note that the notion of a GCD–theory of finite type was intro-
duced in [18] under the name of “quasi divisor theory”. A thorough presentation of
this concept, including several characterizations of P∗MD’s, is in [59, Chap. 20].)

The analogue of Theorem 5.2 can be stated as follows: Given an integral
domain D, D is a ring with GCD–theory of finite type if and only if D is a PvMD.
Also in this case, the GCD–theory of finite type and the GCD–monoid are con-
structed explicitly, via the Kronecker function ring Kr(D,v) (which coincides in
this situation with the Nagata ring Na(D,v)), for the details see [92, Theorem 4.4].
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Moreover, in [92, Theorem 4.6] there is given another proof of Prüfer’s theorem
[111, Section 11], analogous to Theorem 5.3: Let D be an integrally closed do-
main with field of fractions K and let K ⊆ L be an algebraic field extension and let
T be the integral closure of D in L. Then T is a PvMD (i.e., domain with GCD–
theory of finite type) if and only if D is PvMD (i.e., domain with GCD–theory of
finite type). Recall that a similar result holds for the special case of Prüfer domains
[53, Theorem 22.3].

6 Ideal-theoretic characterizations of v-domains

Important progress in the knowledge of the ideal theory for v-domains was made in
1989, after a series of talks given by the second named author while visiting seve-
ral US universities. The results of various discussions of that period are contained
in the “A to Z” paper [5], which contains in particular some new characterizations
of v-domains and of completely integrally closed domains. These characterizations
were then expanded into a very long list of equivalent statements, providing further
characterizations of (several classes of) v-domains [13].

Proposition 6.1. Let D be an integral domain. Then, D is a v-domain if and only
if D is integrally closed and (F1 ∩ F2 ∩ ·· · ∩ Fn)v = Fv

1 ∩ Fv
2 ∩ ·· · ∩ Fv

n for all
F1,F2, . . . ,Fn ∈ f (D) (i.e., the v-operation distributes over finite intersections of
finitely generated fractional ideals).

The “if part” is contained in the “A to Z” paper (Theorem 7 of that paper, where
the converse was left open). The converse of this result was proved a few years later
in [96, Theorem 2].

Note that, even for a Noetherian 1-dimensional domain, the v-operation may
not distribute over finite intersections of (finitely generated) fractional ideals. For
instance, here is an example due to W. Heinzer cited in [9, Example 1.2], let k be
a field, X an indeterminate over k and set D := k[[X3,X4,X5]], F := (X3,X4) and
G := (X3,X5). Clearly, D is a non-integrally closed 1-dimensional local Noethe-
rian domain with maximal ideal M := (X3,X4,X5) = F + G. It is easy to see that
Fv = Gv = M, and so F ∩G = (X3) = (F ∩G)v

� Fv ∩Gv = M.
Recently, D.D. Anderson and Clarke have investigated the star operations that

distribute over finite intersections. In particular, in [8, Theorem 2.8], they proved
a star operation version of the “only if part” of Proposition 6.1 and, moreover, in
[8, Proposition 2.7] and [9, Lemma 3.1 and Theorem 3.2] they established several
other general equivalences that, particularized in the v-operation case, are summa-
rized in the following:

Proposition 6.2. Let D be an integral domain.

(a) (F1 ∩F2 ∩ ·· · ∩Fn)v = Fv
1 ∩Fv

2 ∩ ·· · ∩Fv
n for all F1,F2, . . . ,Fn ∈ f (D) if and

only if (F :D G)v = (Fv :D Gv) for all F,G ∈ f (D).
(b) The following are equivalent.
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(i) D is a v-domain.
(ii) D is integrally closed and (F :D G)v = (Fv :D Gv) for all F,G ∈ f (D)
(iii) D is integrally closed and ((a,b)∩(c,d))v = (a,b)v∩(c,d)v for all nonzero

a,b,c,d ∈ D.
(iv) D is integrally closed and ((a,b)∩ (c))v = (a,b)v ∩ (c) for all nonzero

a,b,c ∈ D.
(v) D is integrally closed and ((a,b) :D (c))v = ((a,b)v :D (c)) for all nonzero

a,b,c ∈ D.

Note that PvMD’s can be characterized by “t-versions” of the statements of
Proposition 6.2 (b) [9, Theorem 3.3]. Moreover, in [9], the authors also asked several
questions related to distribution of the v-operation over intersections. One of these
questions [8, Question 3.2(2)] can be stated as: Is it true that, if D is a v-domain,
then (A∩B)v = Av ∩Bv for all A,B ∈ F(D)?

In [97, Example 3.4], the author has recently answered in the negative, construct-
ing a Prüfer domain with two ideals A,B ∈ F(D) such that (A∩B)v �= Av ∩Bv.

In a very recent paper [6], the authors classify the integral domains that come
under the umbrella of v-domains, called there ∗-Prüfer domains for a given star
operation ∗ (i.e., integral domains such that every nonzero finitely generated frac-
tional ideal is ∗-invertible). Since v-Prüfer domains coincide with v-domains, this
paper provides also direct and general proofs of several relevant quotient-based char-
acterizations of v-domains given in [13, Theorem 4.1]. We collect in the following
theorem several of these ideal-theoretic characterizations in case of v-domains. For
the general statements in the star setting and for the proof the reader can consult [6,
Theorems 2.2 and 2.8].

Theorem 6.3. Given an integral domain D, the following properties are equivalent.

(i) D is a v-domain.
(ii) For all A ∈ F(D) and F ∈ f (D), A ⊆ Fv implies Av = (BF)v for some B

∈ F(D).
(iii) (A : F)v = (Av : F) = (AF−1)v for all A ∈ F(D) and F ∈ f (D).
(iv) (A : F−1)v = (Av : F−1) = (AF)v for all A ∈ F(D) and F ∈ f (D).
(v) (F : A)v = (Fv : A) = (FA−1)v for all A ∈ F(D) and F ∈ f (D).
(vi) (Fv : A−1) = (FAv)v for all A ∈ F(D) and F ∈ f (D).
(vii) ((A + B) : F)v = ((A : F)+ (B : F))v for all A,B ∈ F(D) and F ∈ f (D).
(viii) (A : (F ∩G))v = ((A : F) + (A : G))v for all A ∈ F(D) and F,G ∈ f v(D)

(:= {H ∈ f (D) | H = Hv}).
(ix) (((a) :D (b))+ ((b) :D (a)))v = D for all nonzero a,b ∈ D.
(x f ) ((F ∩G)(F + G))v = (FG)v for all F,G ∈ f (D).
(xF) ((A∩B)(A + B))v = (AB)v for all A,B ∈ F(D).
(xi f ) (F(Gv ∩Hv))v = (FG)v ∩ (FH)v for all F,G,H ∈ f (D).
(xifF) (F(Av ∩Bv))v = (FA)v ∩ (FB)v for all F ∈ f (D) and A,B ∈ F(D).
(xii) If A,B ∈ F(D) are v-invertible, then A∩B and A + B are v-invertible.
(xiii) If A,B ∈ F(D) are v-invertible, then A + B is v-invertible.
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Note that some of the previous characterizations are remarkable for various rea-
sons. For instance, (xiii) is interesting in that while an invertible ideal (respectively,
t-invertible t-ideal) is finitely generated (respectively, t-finite) a v-invertible v-ideal
may not be v-finite. Condition (xF) in the star setting gives ((A∩B)(A + B))∗ =
(AB)∗ for all A,B ∈ F(D) and for ∗ = d (respectively, ∗ = t), it is a (known) char-
acterization of Prüfer domains (respectively, PvMD’s), but for ∗ = v is a brand-new
characterization of v-domains. More generally, note that, replacing in each of the
statements of the previous theorem v with the identity star operation d (respec-
tively, with t), we (re)obtain several characterizations of Prüfer domains (respec-
tively, PvMD’s).

Franz Halter-Koch has recently shown a great deal of interest in the paper [6] and,
at the Fez Conference in June 2008, he has presented further systematic work in the
language of monoids, containing in particular the above characterizations [64].
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Grèce. 29, 45–59 (1988)
26. Brewer, J., Heinzer, W.: Associated primes of principal ideals. Duke Math. J. 41, 1–7 (1974)
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545–577; 665–679 (1936)
91. Lorenzen, P.: Abstrakte Begründung der multiplicativen Idealtheorie. Math. Z. 45, 533–553

(1939)
92. Lucius, F.: Rings with a theory of greatest common divisors. Manuscripta Math. 95, 117–136

(1998)
93. Malik, S.: A study of strong S-rings and Prüfer v-multiplication domains. Ph.D. Thesis,
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