
GENERALIZED GOING-DOWN HOMOMORPHISMS OF
COMMUTATIVE RINGS

DAVID E. DOBBS Department of Mathematics, University of Tennessee, Knoxville,
Tennessee 37996-1300, U. S. A., dobbs@math.utk.edu

MARCO FONTANA Dipartimento di Matematica, Università degli Studi Roma
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ABSTRACT

Sufficient conditions are given for a (unital) homomorphism f : A ! B of (com-
mutative) rings to be a chain morphism, in the sense that a f : Spec(B)! Spec(A)
permits the covering of chains of arbitrary cardinality. One such sufficient condi-
tion is that f satisfies lying-over, a f be open in the flat (resp., Zariski) topology, and
that each reduced fiber of a f be quasilocal (resp., an integral domain). Sufficient
conditions are given for f to have the generalized going-down property GGD (that
is, “going-down” predicated for chains of arbitrary cardinality). Typical of such
sufficient conditions are the following: f is a chain morphism and B is quasilo-
cal treed; f satisfies going-down and either the reduced fibers of a f are integral
domains or A is a going-down ring. “Universally going-down” is equivalent to
“universally GGD”; in particular, if f is flat, then f satisfies GGD. The universally
subtrusive homomorphisms are the same as the universally chain morphisms, and
these descend the GGD property.

1 INTRODUCTION

All rings considered below are commutative with identity, and all ring homomor-
phisms are unital. Adapting the notation in [10, p. 28], we let GU, GD, LO, and



INC denote the going-up, going-down, lying-over, and incomparable properties,
respectively, for ring homomorphisms. As in [3], our interests here include the fol-
lowing strengthening of the LO property. A ring homomorphism f : A! B is called
a chain morphism if the associated map a f : Spec(B)! Spec(A), Q 7! f�1(Q), per-
mits each chain (of arbitrary cardinality) of prime ideals of A to be “covered” by
some chain of prime ideals of B. Theorem 2.3 gives our main sufficient condi-
tions for a ring homomorphism f to be a chain morphism, namely, that f satisfy
GU (resp., GD) and LO, with reduced fibers that are quasilocal (resp., integral do-
mains). Theorem 2.8 is essentially a corollary giving sufficient conditions that are
couched topologically. (For background on the flat spectral topology, see [8], [4];
for background on the patch, or constructible, topology, see [8], [7].) Proposition
2.2 collects the sufficient conditions for chain morphisms that were established in
[3], most notably, that f be injective and integral. Theorem 3.26 presents a signifi-
cant generalization: any universally subtrusive f (in the sense of [14], for instance,
any pure or faithfully flat f ) is universally a chain morphism. This result depends
on the heart of the paper, Section 3, which develops the theory of the GGD (gen-
eralized going-down) concept, the property that “going-down” behavior hold for
chains of arbitrary cardinality.

Proposition 3.1 states the sufficient condition for a ring homomorphism f : A!
B to satisfy GGD that was obtained in [3]. Numerous other sufficient conditions
are given, including that f satisfy GD with reduced fibers that are integral domains
(Corollary 3.6); and that B be a quasilocal treed ring with f satisfying either GD
or both LO and GU (Corollary 3.4). Theorem 3.9 identifies a context for which
GGD and GD are equivalent, namely, where A is a going-down ring (in the sense
of [2]) in which each maximal ideal of A contains a unique minimal prime ideal of
A. A noteworthy upshot appears in Corollary 3.14: a weak Baer ring A is a going-
down ring if and only if A ,! B satisfies GD for each overring B of A. Despite the
nomenclature, such an assertion fails if A is not a weak Baer ring [2, Examples 1
and 2, pp. 9-12]. Accordingly, since our present focus is on properties of homo-
morphisms, we intend to devote a subsequent paper to weak Baer going-down rings
and related themes.

As a companion for the characterization of universally chain morphisms in The-
orem 3.26, we also characterize the universally GGD ring homomorphisms (in
Theorem 3.16): they are precisely the universally going-down maps. In particular,
each flat ring homomorphism is (universally) GGD. Among other sufficient con-
ditions for a ring homomorphism f to satisfy GGD is that f satisfy GD and a f
be injective (Corollary 3.21), in which case a f is a topological immersion (relative
to the Zariski topology). Finally, we note a consequence of Theorem 3.26: each
universally subtrusive ring homomorphism descends the universally going-down
property.

We next describe notational conventions. Unless otherwise specified, maps of
the form a f are considered relative to the Zariski topology. As usual, a typical



closed set in that topology on Spec(A) is V (I) = fP 2 Spec(A) : P � Ig, where I
is an ideal of A. We denote the closure of a set X in the Zariski topology by X ,
with Xc denoting the closure of X in the patch topology. By a patch, we mean a
set that is closed in the patch topology. A ring A is treed if no maximal ideal of A
contains incomparable prime ideals of A. If A is a ring, then U(A) denotes the set
of units of A and tq(A) denotes the total quotient ring of A. By an overring of a
ring A, we mean any A-subalgebra of tq(A); or, more intuitively, any ring B such
that A � B � tq(A). Finally, � denotes proper containment, and jIj denotes the
cardinality of the set I.

Background is recalled as needed. Any unexplained material is standard, as in
[10], [7], [6].

Dobbs was supported in part by a University of Tennessee Faculty Development
Award and a Visiting Professorship funded by the Istituto Nazionale di Alta Matem-
atica. He thanks the Università degli Studi di Roma Tre for the warm hospitality
accorded during his visit in October-November, 2000.

As this paper went to press (May, 2002), Kang-Oh have announced a preprint,
“Lifting Up a Tree of Prime Ideals to a Going-Up Extension,” whose methods, we
have determined, can be extended to show that GGD and GD are equivalent for
ring homomorphisms A ! B such that both A and B are locally irreducible. In
particular, this equivalence holds if A and B are each integral domains.

2 CHAIN MORPHISMS

Let A be a ring and X a subset of Spec(A). Following [15], we define U(X) :=
[fP : P 2 Xg and R (X) := \fP : P 2 Xg. Observe that if X is a chain, then
U(X);R (X)2 Spec(A) [10, Theorem 9]. A chain X is called a local chain if X has
a (necessarily unique) maximal element. If X is a chain, then X[fU(X)g is a local
chain; in fact, a chain X is a local chain if and only if U(X) 2 X . By reworking the
proof of [15, Proposition 2.2], we see that each local chain is quasi-compact in the
Zariski topology.

We next introduce the key concepts of this section. Suppose that f : A! B is a
ring homomorphism. Consider X = fPi : i 2 Ig, a subset of Spec(A). (The notation
is generally taken so that Pi 6= Pj whenever i 6= j; as a result, jX j = jIj.) A subset
Y = fQi : i 2 Ig of Spec(B) is said to cover (or to dominate) X if f�1(Qi) = Pi

for each i 2 I. (By the notational convention, Qi 6= Q j if i 6= j, and so jY j = jIj.)
We say that f is a chain morphism if, for each chain X in Spec(A), there exists a
chain Y in Spec(B) such that Y covers X . As partial motivation for this definition,
we make two observations: each chain Y of Spec(B) has a subchain that covers the
chain fP : P = f�1(Q) for some Q 2Yg of Spec(A); and, by focusing on singleton
chains, we see that any chain morphism satisfies LO.

Proposition 2.1 collects some easy but useful facts, and Proposition 2.2 gives
examples of chain morphisms that are essentially already known.



PROPOSITION 2.1. Let f : A! B be a ring homomorphism. Then:
(a) If a local chain Y in Spec(B) covers a subset X of Spec(A), then X is a local

chain.
(b) If a chain Y in Spec(B) covers a local chain X in Spec(A), then Y is a local

chain and f�1(U(Y )) = U(X).
(c) If f is a chain morphism and X is a local chain in Spec(A), then X is covered

by some local chain Y in Spec(B) and f�1(U(Y )) = U(X).

Proof. (a) By the above observation, X is a chain. If P 2 X , there exists Q 2
Y such that f�1(Q) = P, whence P � f�1(U(Y )) 2 X . It follows that U(X) =
f�1(U(Y )) 2 X , and so X is a local chain.

(b) Choose Q 2 Y such that f�1(Q) = U(X). If Q � Q1 2 Y , then f�1(Q) �
f�1(Q1), contradicting the fact that f�1(Q) = U(X) � f�1(Q1). Thus, U(Y ) =
Q 2Y , and so Y is a local chain. Then f�1(U(Y )) = U(X) by the proof of (a).

(c) Apply (b). 2

PROPOSITION 2.2. (Dobbs [3]) Let f : A! B be a ring homomorphism. Then f
is a chain morphism in each of the following four cases:

(i) f is injective and integral;
(ii) f satisfies LO and GU, and each chain in Spec(A) is well-ordered via inclu-

sion;
(iii) f satisfies LO and GD, and each chain in Spec(A) is well-ordered via re-

verse inclusion;
(iv) A is Noetherian, and f satisfies LO and either GU or GD.

Proof. (i) was proved in [3, Remark(d)]; (ii) and (iii) follow from what was proved
in [3, Theorem] and [3, Remark(a)], respectively, as those proofs, although given
for injective f , carry over to the general case; and (iv) follows from (ii) and (iii),
since A Noetherian ensures that each chain in Spec(A) is finite (hence, well-ordered
with respect to both inclusion and reverse inclusion). 2

As noted above, each chain morphism satisfies LO. Partial converses were given
in Proposition 2.2 (ii)-(iv). Before deriving additional partial converses (in Theo-
rems 2.3 and 2.8), we interpret topologically some conditions appearing in those re-
sults. Let f : A! B be a ring homomorphism and let P2 Spec(A). It is well known
that a f�1(P), the so-called topological fiber of P (with respect to f ), is homeomor-
phic to Spec((AP=PAP)
A B) in both the Zariski topology and the flat topology.
One calls (AP=PAP)
A B�= BP=PBP the fiber of f at P; its associated reduced ring,
BP=

p
PBP, is called the reduced fiber (of f at P). It is easy to show, via Zorn’s

Lemma and [10, Theorem 9], that each element of a f�1(P) is contained in some
maximal element of a f�1(P) and contains some minimal element of a f�1(P). It
follows that a f�1(P) has a unique maximal (resp., unique minimal) element if and
only if the reduced fiber of f at P is a quasilocal ring (resp., an integral domain);



that is (cf. [15, Lemme 2.5]), if and only if a f�1(P) is irreducible in the flat (resp.,
Zariski) topology.

THEOREM 2.3. Let f : A! B be a ring homomorphism that satisfies at least one
of the following two conditions:

(i) f satisfies GU and each reduced fiber of f is quasilocal;
(ii) f satisfies GD and each reduced fiber of f is an integral domain.
Then:
(a) For each chain X � Im(a f ), there exists a chain Y in Spec(B) such that Y

covers X.
(b) If, in addition, f satisfies LO, then f is a chain morphism.

Proof. It suffices to establish (a). Assume (i) (resp., (ii)). Consider any chain
X = fPi : i 2 Ig. By the above comments, we can choose Qi to be the unique maxi-
mal (resp., unique minimal) element of a f�1(Pi). Evidently, Y := fQi : i2 Ig covers
X . It remains only to verify that Y is a chain. In fact, if Pi � Pj, then if follows from
GU (resp., GD) and the maximality of Qj (resp., minimality of Qi) that Qi�Q j. 2

We pause to note additional topological interpretations for some conditions in
the statement of Theorem 2.3. Let f : A ! B be a ring homomorphism. Then a f
is closed in the Zariski (resp., flat) topology if and only if f satisfies GU (resp.,
GD) [4, Proposition 2.7]. It now seems natural to ask for “open” analogues of
the “closed” assertions in Theorem 2.3. We provide such analogues in Theorem
2.8, which is really just a corollary of Theorem 2.3. In order to give an alternate
approach to Theorem 2.8, we first develop some topological results. We also take
advantage of this opportunity to introduce some deeper results on chains that will
be useful in Section 3.

PROPOSITION 2.4. Let A be a ring and let X be a subset of Spec(A). Then:
(a) If X is a chain, then its patch closure Xc is also a chain.
(b) X is a chain if and only if there exist a ring homomorphism A ! V and a

chain Y in Spec(V ) such that V is a valuation domain and Y covers X.
(c) X is a local chain if and only if there exists a ring homomorphism f : A!V

and a local chain Y in Spec(V ) such that V is a valuation domain, Y covers X, and
f�1(U(Y )) = U(X).

Proof. (b) The “if” assertion is clear. Conversely, suppose that X is a chain. As
in the proof of [3, Remark(d)], there is no harm in replacing A with A=R (X), and
so we may suppose that A is an integral domain. The lifting result of Kang-Oh [9,
Theorem] provides a valuation domain V containing A and a chain Y in Spec(V )
that covers X .

(a) Let X ;V and A be as in the proof of (b). Let f be the composite A�
A=R (X) ,! V ; put Z := Im(a f ) � Spec(A). By definition of the patch (con-
structible) topology, Z is patch-closed; that is, Zc = Z. Moreover, Z is a chain
since V is quasilocal treed. As X � Z, we have Xc � Zc = Z. Then Xc, being a



subset of a chain, is itself a chain.
(c) The “if” assertion follows from Proposition 2.1 (a). The “only if” assertion

follows by combining (b) with Proposition 2.1 (b). 2

COROLLARY 2.5. Let A be a ring, X a chain in Spec(A), and P 2 Spec(A)
such that U(X) � P. Then there exist a ring homomorphism f : A ! V , a chain
Y in Spec(V ), and Q 2 Spec(V ) such that V is a valuation domain, Y covers X,
f�1(Q) = P, and U(Y )�Q.

Proof. Apply Proposition 2.4 (c) to the local chain X [fPg, to obtain a suitable
local chain Z in Spec(V ). It suffices to take Q := U(Z); and Y := Z (resp., ZnfQg)
if P 2 X (resp., P =2 X). 2

PROPOSITION 2.6. Let A be a ring and X a chain in Spec(A). Then:
(a) If X is a maximal chain in Spec(A), then X is stable under unions and inter-

sections and, moreover, X is a patch and a local chain.
(b) There exists a maximal chain X0 in Spec(A) such that X � X 0. For any such

X 0, there exist P 2 Spec(A) and a minimal valuation overring W of A=P such that
P� R (X) and Im(Spec(W )! Spec(A)) = X 0.

(c) Let f : A ! V be a ring homomorphism such that V is a valuation domain
and X � Im(a f ). Then there exist P 2 Spec(A) and a minimal valuation overring
W of A=P such that X � Im(Spec(W )! Spec(A)).

Proof. (a), (b): By the reasoning in [3, pp. 3888-3889], if X is any chain, then
X [fR (Z) : φ 6= Z � Xg is a chain. It follows that any maximal chain is stable
under intersections. By reasoning similarly with X [fU(Z) : φ 6= Z � Xg, we see
that any maximal chain is stable under unions. Of course, considering X [fU(X)g
shows that any maximal chain is a local chain.

It follows easily via Zorn’s Lemma that each chain X is contained in a maximal
chain. Consider any maximal chain X0 � X . By the proof of Proposition 2.4 (a),
there exists a valuation overring V of D := A=R (X0) so that the composite ring
homomorphism g: A� D ,!V satisfies X0 � Im(ag). By Zorn’s Lemma (cf. [6, p.
231]), V contains a minimal valuation overring W of D. If f denotes the composite
A� D ,!W , then Im(ag) � Im(a f ) since Spec(V ) � Spec(W ) (cf. [6, Theorem
26.1]). However, Im(a f ) is a chain (since W is quasilocal treed), and so X0 =
Im(a f ) by the maximality of X0. Then X 0 is a patch, by the definition of the patch
(constructible) topology. Finally, note that P := R (X0)� R (X).

(c) Observe that P := ker( f ) 2 Spec(A). Let k (resp., K) denote the quotient
field of A=P (resp., of V ). Then the canonical ring inclusion A=P ,! V extends to
an inclusion of fields, k ,! K. Since V \ k is a valuation overring of A=P, another
application of Zorn’s Lemma produces a minimal valuation overring W of A=P
such that W �V \ k. By hypothesis, X � Im(Spec(V \ k)! Spec(A)). It remains
only to note that Spec(V \ k)� Spec(W ). 2



LEMMA 2.7. Let f : A ! B be a ring homomorphism such that a f is open in the
flat topology and each reduced fiber of f is quasilocal. Then a subset X of Im(a f )
is irreducible in the flat topology on Spec(A) if and only if a f�1(X) is irreducible
in the flat topology on Spec(B).

Proof. By the above comments, a f�1(P) is irreducible in the flat topology, for all
P 2 Spec(A). Hence, by [7, Proposition 2.1.14, p. 54], we need only verify that a f
induces a map a f�1(X)! X that is continuous, surjective and open in the subspace
topology induced by the flat topology. Both “continuous” and “surjective” are clear.
As for “open”, consider any (flat-)open set U in Spec(B), and observe that

a f (U \ a f�1(X)) = a f (U)\X :

Since the hypothesis ensures that a f (U) is (flat-) open in Spec(A), the assertion
follows. 2

THEOREM 2.8. Let f be a ring homomorphism that satisfies at least one of the
following two conditions:

(i) a f is open in the flat topology and each reduced fiber of f is quasilocal;
(ii) a f is open in the Zariski topology and each reduced fiber of f is an integral

domain.
Then:
(a) For every chain X � Im(a f ), there exists a chain Y in Spec(B) such that Y

covers X.
(b) If, in addition, f satisfies LO, then f is a chain morphism.

Proof. (b) is an immediate consequence of (a). As for (a), if (ii) holds, the assertion
may be proved exactly as in Theorem 2.3 (ii), since Zariski-open a f entails going-
down f [7]. A parallel proof is also available if (i) holds, since flat-opena f entails
going-up f (that is, Zariski-closed f ) [13, Remarque, p. 2252].

Alternate, more topological proofs are available for Theorem(s 2.3 and) 2.8. We
illustrate such methods with another proof for case (i). As in the earlier proof, it
suffices to show that if Pi and Pj are distinct elements of a chain in Im(a f ) and if
Qi (resp., Qj) is the maximal element in a f�1(Pi) (resp., in a f�1(Pj)), then Qi and
Q j are comparable under inclusion. As Pi and Pj are comparable and flat-closed
sets are stable under generization [4, Lemma 2.1], it follows that Z := fPi;Pjg is
irreducible in the flat topology (cf. also [15, Proposition 2.4]). Hence, by Lemma
2.7, Y := a f�1(Z) is also irreducible in the flat topology. As Y is a patch (being
the spectral image of BPi=PiBPi �BPj=PjBPj ), [15, Lemme 2.5] ensures that Y is
directed via inclusion. Thus, Qi and Qj are each contained in some prime Q 2 Y
such that a f (Q) 2 fPi;Pjg. Without loss of generality, a f (Q) = Pi, whence Q� Qi

by choice of Qi. Then Qi = Q� Q j. 2



There are useful algebraic sufficient conditions for the “open” properties in the
statement of Theorem 2.8. For instance, if a ring homomorphism f is integral
(resp., flat) and of finite presentation, then a f is open in the flat (resp., Zariski)
topology, by [13, Proposition 6] (resp., [7, Corollaire 3.9.4(i), p. 254]). We close
the section by using this fact to give an application of Theorem 2.8.

COROLLARY 2.9. Let P1; : : : ;Pm 2 Z[X1; : : : ;Xn] be such that (P1; : : : ;Pm) is a
prime ideal in K[X1; : : : ;Xn] for any field K. Suppose that A is a ring and f : A !
B := A[X1; : : : ;Xn]=(P1; : : : ;Pm) is such that a f is open in the Zariski topology (for
instance, take f to be flat). Then each chain in Im(a f ) can be covered by a chain
in Spec(B).

Proof. The hypothesis ensures that each (reduced) fiber of f is an integral domain.
Apply Theorem 2.8 (a), using condition (ii). 2

A concrete illustration of Corollary 2.9 is provided by n = 2;m = 1;P1 = X2
1 �

X3
2 .

3 GENERALIZED GOING-DOWN

We begin with the key definition of this paper. A ring homomorphism f : A !
B is said to satisfy the generalized going-down property (GGD) if the following
holds: for each local chain X in Spec(A) and each Q2 Spec(B) such that f�1(Q) =
U(X), there exists a local chain Y in Spec(B) such that U(Y ) = Q and Y covers
X . Evidently, GGD ) GD. We next record the only instance of GGD that has
appeared in the literature.

PROPOSITION 3.1. (Dobbs [3, proof of Remark (a)]). Let A be a ring such that
each chain in Spec(A) is well-ordered via reverse inclusion. Then a ring homomor-
phism f : A! B satisfies GGD if (and only if) f satisfies GD.

In comparing Propositions 3.1 and 2.2 (iii), one suspects that the notions of
GGD and chain morphism are closely related. Proposition 3.2 states some evident
connections, with less evident connections in the subsequent results. Of course, the
two concepts are logically independent: if f is an injective integral ring homomor-
phism that does not satisfy GD, then f is a chain morphism that does not satisfy
GGD; and if S is a multiplicatively closed subset of a ring A such that S contains a
nonunit of A, then the canonical map A! AS satisfies GGD but (as it fails to have
LO) is not a chain morphism.

PROPOSITION 3.2. Let f : A! B be a ring homomorphism. Then:
(a) If f satisfies LO and GGD, then f is a chain morphism.
(b) If a f is injective and f is a chain morphism, then f satisfies GGD.

PROPOSITION 3.3. If B is a quasilocal treed ring and f : A! B is a chain mor-
phism, then f satisfies GGD.



Proof. Consider a local chain X = fPi : i 2 Ig in Spec(A) and Q 2 Spec(B) such
that f�1(Q) = U(X). Since f is a chain morphism, Proposition 2.1 (c) provides a
local chain Y = fQi : i 2 Ig in Spec(B) that covers X , with f�1(U(Y )) = U(X).
Choose (the unique) j 2 I such that Pj = U(X). Then Q j = U(Y ). If Q j = Q,
then Y is the desired local chain Z in Spec(B) such that U(Z) = Q and Z covers
X . If Q j � Q, then Z := (YnfQ jg)[ fQg suffices. Since B is quasilocal treed,
there is only one remaining case, namely, Q� Qj. For this case, it suffices to take
Z := fQi\Q : i 2 Ig. 2

COROLLARY 3.4. Let B be a quasilocal treed ring. Let f : A ! B be a ring ho-
momorphism that satisfies either GD or both LO and GU. Then f satisfies GGD.

Proof. If P 2 Im(a f ), then B quasilocal treed implies that a f�1(P) has a unique
maximal element and a unique minimal element; that is, each reduced fiber of f
is a quasilocal integral domain. The conclusion therefore follows by combining
Theorem 2.3 and the proof of Proposition 3.3. 2

By reworking the proof of Proposition 3.3, we next find two companion results.
Just as Corollary 3.4 issued from combining Proposition 3.3 with Theorem 2.3, one
can produce additional applications by combining part (a) or part (b) of Corollary
3.5 with Theorem 2.3. We leave such formulations to the reader.

COROLLARY 3.5. Let f : A ! B be a chain morphism that satisfies at least one
of the following two conditions:

(i) B is treed and each reduced fiber of f is quasilocal;
(ii) Each (Zariski-) irreducible component of Spec(B) is a chain (via inclusion)

and each reduced fiber of f is an integral domain.
Then f satisfies GGD.

Proof. We proceed to rework the proof of Proposition 3.3. It suffices to verify
that Qj and Q are comparable via inclusion. In case (i), this follows since B is
treed and Qj;Q are each contained in (any maximal ideal of B that contains) the
unique maximal element of a f�1(Pj). An essentially “dual” proof is available if
(ii) holds. Indeed, Qj;Q each contain the unique minimal element I of a f�1(Pj).
Using Zorn’s Lemma, choose a minimal prime ideal N of B such that N � I [10,
Theorem 10]. Then Qj;Q are each in the (Zariski-) irreducible set V (N), which is
a chain by hypothesis, whence Qj and Q are comparable. 2

COROLLARY 3.6. Let f : A! B be a ring homomorphism such that each reduced
fiber of f is an integral domain and f satisfies GD. Then f satisfies GGD.

Proof. Once again, we rework the proof of Proposition 3.3. Even if f is not a
chain morphism, the requisite chain Y = fQig is provided by Theorem 2.3 (with
emphasis on its condition (ii)). By taking Qi to be the unique minimal element of
a f�1(Pi), we are assured that Qj �Q, and so Z := (YnfQjg)[fQg suffices. 2



REMARK 3.7. (a) Recall from [4, pp. 567-568] that there is a “weak going down”
concept that can be used to characterize the flat topology. In a different vein, we
can also use an ostensibly “weaker” property to characterize GGD. Indeed, it is
not difficult to show that a ring homomorphism f : A! B satisfies GGD if and only
if the following holds: for each chain X in Spec(A), each P 2 Spec(A) such that
U(X) � P, and each Q 2 a f�1(P), there exists a chain Y in Spec(B) such that
U(Y )� Q and Y covers X .

(b) On the other hand, a related property that is ostensibly “stronger” than GGD
may actually be stronger. For instance, consider the following property, say (*),
that a ring homomorphism f : A! B can satisfy: for each chain X in Spec(A), with
P := U(X), and each Q 2 a f�1(P), there exists a chain Y in Spec(B) such that
U(Y ) = Q and Y covers X . It is straightforward to verify that property (*) implies
GGD. However, unlike the situation in (a), the converse is false. In other words,
GGD fails to imply property (*). To see this, take f to be an inclusion map A! B,
where B is a valuation domain with prime spectrum 0 = Q0 � Q1 � : : : � Qn �
: : : � Q0 � Q, such that B=Q0 is a K�algebra for some field K, and define A to be
the pullback B�B=Q0 K. Put P := Q\A(= Q0 \A). Then, by a standard gluing
argument, with X := Spec(A) n fPg, one checks that f fails to satisfy property
(*), for the only chain Y in Spec(B) that covers X is Y = Spec(B) n fQ0

;Qg, with
U(Y ) = Q0 6= Q.

Next, we collect some elementary but useful facts indicating that GGD behaves
rather similarly to known behavior of GD.

PROPOSITION 3.8. (a) Let f : A! B and g: B!C be ring homomorphisms. If f
and g each satisfies GGD, so does gÆ f . If g satisfies LO and gÆ f satisfies GGD,
then f satisfies GGD.
(b) If f is a ring homomorphism, then the following seven conditions are equiva-
lent:

(1) f satisfies GGD;
(2) fS: AS ! BS := B
A AS satisfies GGD for each multiplicatively

closed subset S of A;
(3) fP: AP ! BP := B
A AP satisfies GGD for each P 2 Spec(A);
(4) AP ! BQ satisfies GGD for each Q 2 Spec(B) and P := f�1(Q);
(5) A=I ! B=IB satisfies GGD for each ideal I of A;
(6) A=P! B=PB satisfies GGD for each minimal prime ideal P of A;
(7) fred satisfies GGD.

(c) Let fi: Ai ! Bi (i = 1; : : : ;n) be finitely many ring homomorphisms. Then the
induced map A1��� ��An ! B1��� ��Bn satisfies GGD if and only if fi satisfies
GGD for each i. If A1 = : : : = An =: A, then the induced map A ! B1� �� ��Bn

satisfies GGD if and only if fi satisfies GGD for each i.

A principal theme of this section is that the classic sources of going-down ho-



momorphisms (namely, going-down domains and flat maps) give rise to GGD be-
havior. We pursue this point somewhat more generally in Theorems 3.9 and 3.16
after giving some background material and applications.

Recall from [1] and [5] that an integral domain A is called a going-down domain
if A � B satisfies GD for each overring B of A. The most natural examples of
going-down domains are arbitrary valuation domains and the integral domains of
(Krull) dimension at most 1. As in [2], a ring A is called a going-down ring if
A=P is a going-down domain for each (equivalently, each minimal) prime ideal P
of A. Any integral domain is a going-down ring if and only if it is a going-down
domain [2, Remark (a), p. 4]; any ring of dimension at most 1 is a going-down
ring [2, Proposition 2.1 (c)]; a finite ring product A1 � �� � �An is a going-down
ring if and only if each Ai is a going-down ring [2, Proposition 2.1 (b)]; but there
exists a going-down ring A and an overring B of A such that A� B does not satisfy
GD [2, Example 1, p. 9]. Adapting terminology from [12], we say that a ring
homomorphism f : A! B is a min morphism if f�1(Q) is a minimal prime ideal of
A for each minimal prime ideal Q of B. It is evident that if a ring homomorphism f
satisfies GD, then f is a min morphism. In the theory of Krull domains, an example
of min morphisms is proved by the classical condition of pas d’́eclatement, PDE
(also known as no blowing up, NBU). Finally, recall that a ring A is said to be
locally irreducible if each maximal ideal of A contains a unique minimal prime
ideal of A.

THEOREM 3.9. Let A be a locally irreducible ring and a going-down ring and let
f : A! B be a ring homomorphism. Then the following conditions are equivalent:

(1) f is a min morphism;
(2) f satisfies GD;
(3) f satisfies GGD.

Proof. By the above comments, (3) ) (2) ) (1). It remains to show that if
f is a min morphism, X a local chain in Spec(A) and Q 2 Spec(B) such that
f�1(Q) = U(X), then there exists a local chain Y in Spec(B) such that U(Y ) = Q
and Y covers X . By [10, Theorem 10], Q contains some minimal prime ideal J of
B. Since f is a min morphism, I := J\A is a minimal prime ideal of A. Of course,
I �Q\A= U(X) and so, since A is locally irreducible, I is the only minimal prime
ideal of A that is contained in U(X). As each P2 X contains a minimal prime ideal
of A, it follows that I � P, whence I � R (X). There is no harm in replacing f
with A=I ,! B=J. Hence, without loss of generality, A � B are integral domains
and A is a going-down domain (cf. [2, Proposition 2.1 (b) and Remark (a), p. 4]).
Choose a valuation overring (V;N) of B such that N \B = Q (cf. [10, Theorem
56]). Of course, V is quasilocal and treed. Moreover, A�V satisfies GD since A is
a going-down domain. Hence, by Corollary 3.4, there exists a local chain Z = fQig
in Spec(V ) such that Z covers X . Then, by Proposition 2.1 (b), Y := fQi \Bg has
the desired properties. 2



Recall that A � B need not satisfy GD when B is an overring of a going-down
ring A [2, Example 1, p. 9]. By avoiding one feature of that example, we have the
following pleasant consequence.

COROLLARY 3.10. If f : A! B is an injective ring homomorphism such that A is
a going-down ring and B has a unique minimal prime ideal, then f satisfies GGD.

Proof. If P is a minimal prime ideal of A, then [10, Exercise 1, p. 41] ensures that
f�1(Q) = P for some prime ideal Q of B. By [10, Theorem 10], we can take Q to
be the unique minimal prime ideal Q0 of B. Hence, P is uniquely determined as
f�1(Q0); that is, A has a unique minimal prime ideal and f is a min morphism. In
particular, A is locally irreducible. An application of Theorem 3.9 completes the
proof. 2

COROLLARY 3.11. Let f : A ! B be a ring homomorphism such that A is a
going-down ring. Then f satisfies GGD if and only if f satisfies GD.

Proof. The “only if” assertion is valid even without the hypothesis on A. Con-
versely, suppose that f satisfies GD. It follows that if P2 Spec(A), then the induced
map g: A=P! B=PB is a min morphism (by the proof of [10, Exercise 37, p. 44]).
As A=P is a going-down ring [2, Proposition 2.1 (b)], Theorem 3.9 yields that g
satisfies GGD. By Proposition 3.8 (b), so does f . 2

Corollary 3.12 isolates the most important instance of Corollaries 3.10 and 3.11.
This result was actually established in the proof of Theorem 3.9.

COROLLARY 3.12. If A� B are integral domains and A is a going-down domain,
then A ,! B satisfies GGD.

Corollary 3.13 will present a more concrete application of Theorem 3.9 in the
context of rings with nontrivial zero-divisors. Recall that a ring A is called a weak
Baer ring if, for each a 2 A, the annihilator of A is generated by an idempotent;
that is, fb 2 A : ba = 0g = Ae for some e = e2 2 A. Among many known charac-
terizations is the following: A is a weak Baer ring if and only if A is a (necessarily
reduced) locally irreducible ring such that tq(A) is von Neumann regular. An ex-
ample of a weak Baer ring that is a going-down ring but not an integral domain
is provided by any finite product A1��� ��An where each Ai is a weak Baer ring
and a going-down ring (for instance, a going-down domain) and n� 2; to see this,
recall that the class of weak Baer rings (resp., going-down rings) is stable under
arbitrary (resp., finite) products [12, p. 28] (resp., [2, Proposition 2.1 (b)]).

COROLLARY 3.13. Let f : A! B be a ring homomorphism such that A is a weak
Baer ring and a going-down ring. Then f satisfies GGD if and only if f is a min
morphism.

Proof. Apply Theorem 3.9. 2



COROLLARY 3.14. (a) If A is a ring and B is an overring of A, then A ,! B is a
min morphism.
(b) Let A be a weak Baer ring. Then the following conditions are equivalent:

(1) A ,! B satisfies GD for each overring B of A;
(2) A ,! B satisfies GGD for each overring B of A;
(3) A is a going-down ring.

Proof. (a) Let B be an overring of A; that is, A � B � T := tq(A). Let P be a
minimal prime ideal of B. Then there exists a minimal prime ideal Q of T such that
Q\B = P (by [10, Exercise 1, p. 41 and Theorem 10]). As T is a ring of fractions
of A, it follows that T is A-flat, so that A ,! T satisfies GD (cf. [10, Exercise 37, p.
44]), whence P\A = Q\A is a minimal prime ideal of A, as desired.

(b) Since weak Baer rings are locally irreducible, (a) combines with Theorem
3.9 to yield that (3)) (2). As (2)) (1) trivially, it remains only to prove that
(1)) (3). Suppose (1). By [2, Proposition 2.1 (b)], it suffices to establish that if
P 2 Spec(R), then AP is a going-down ring. The hypothesis on A ensures that AP is
an integral domain, since A is reduced and locally irreducible. Therefore, by a char-
acterization of going-down domains (cf. [1], [5]), it is enough to show that AP ,! E
satisfies GD for each overring E of AP. Now, since T is von Neumann regular, [16,
Proposition 1.4(2)] gives an identification tq(AP) �= TP, whence E = BP for some
suitable overring B of A. Then AP ,! E inherits GD from A ,! B, to complete the
proof. 2

Recall from [1, Proposition 3.2] and [5, Theorem 1] that in order to determine
whether a given integral domain A is a going-down domain, it suffices to verify
that GD is satisfied by all inclusions A ,!V for which V is a valuation domain. In
this spirit, we next provide characterizations of the “universally chain morphism”
and “universally GGD” properties. Theorems 3.26 and 3.16 establish that these
properties are equivalent to “universally subtrusive” and “universally going-down,”
respectively.

PROPOSITION 3.15. Let f : A! B be a ring homomorphism. Then the following
conditions are equivalent:

(1) f is universally GGD (resp., is a universally chain morphism), in the sense
that the induced map D ! D
A B satisfies GGD (resp., is a chain morphism) for
all ring homomorphisms A! D;

(2) The induced map V ! V 
A B satisfies GGD (resp., is a chain morphism)
for all ring homomorphisms A!V for which V is a valuation domain.

Proof. We treat the assertion about “universally GGD” first. Of course, (1)) (2)
trivially. Assume (2). It suffices to show that f satisfies GGD. (Indeed, given ring
homomorphisms A ! D ! V , observe the canonical isomorphism V 
D (D
A

B) �= V 
A B:) Consider a local chain X in Spec(A) and Q 2 Spec(B) such that
f�1(Q) = U(X) =: P. Our task is to produce a local chain Y in Spec(B) such
that U(Y ) = Q and Y covers X . By Proposition 2.4 (c), there exists a ring ho-



momorphism g: A ! V and a local chain W in Spec(V ) such that V is a valuation
domain, W covers X , and g�1(U(W )) = P. Put E := V 
A B. In the category of
affine schemes, we have Spec(E)�= Spec(V )�Spec(A) Spec(B). Therefore, by a
property of pullbacks of schemes [7, Corollaire 3.2.7.1(i), p. 235], there exists J 2
Spec(E) such that J lies over U(W ) (in Spec(V )) and J lies over Q (in Spec(B)).
Moreover, by hypothesis, the induced map V ! E satisfies GGD. Therefore, there
exists a local chain Z in Spec(E) such that U(Z) = J and Z covers W . By applying
a(B !V 
A B) to the elements of Z, we obtain the elements of a chain Y with the
desired properties. To prove the assertion about a “universally chain morphism,”
adapt the above proof, replacing the appeal to Proposition 2.4 (c) with a citation of
Proposition 2.4 (b). 2

THEOREM 3.16. A ring homomorphism f : A! B is universally GGD if and only
if f is universally going-down.

Proof. As GGD)GD, the “only if” assertion is immediate. For the converse, sup-
pose that f is universally going-down. Consider any ring homomorphism A ! V
for which V is a valuation domain. By the hypothesis on f , the induced map
h: V !V
A B satisfies GD. Since V is a going-down ring, it follows from Corollary
3.11 (also from Theorem 3.9) that h satisfies GGD. An application of Proposition
3.14 yields that f is universally GGD, as desired. 2

As noted prior to Proposition 3.2, the structure map of any ring of fractions
A! AS satisfies GGD. We next obtain a substantial generalization of this fact.

COROLLARY 3.17. Each flat ring homomorphism satisfies (universally) GGD.

Proof. Each flat ring homomorphism is universally going-down (cf. [10, Exercise
37, p. 44]). Apply Theorem 3.16. 2

Proposition 3.18 will present another class of ring homomorphisms satisfying
GGD. First, we adapt some terminology introduced in [11, p. 123]. A ring ho-
momorphism f : A ! B is called a prime morphism if the following condition is
satisfied: if f (a)b 2 PB where a 2 A;b 2 B and P 2 Spec(A), then either a 2 P or
b 2 PB; equivalently, if B=PB is a torsion-free A=P-module for each P 2 Spec(A).
In general,

f is a flat ring-homomorphism ) f is a prime morphism ) f satisfies GD

(cf. [11, Proposition 2], [10, Exercise 37, p. 44]). An interesting example is
provided by g: A! A[T ]=(pT ) =: B, where p is a prime integer, A := Z=p2

Z and
T is an indeterminate. Indeed, g is not flat (since (p+ p2

Z)
(T+ pT ) is a nonzero
element of the kernel of pA
A B! B), g is a prime morphism, and g satisfies GGD
by Theorem 3.9. Finally, recall from [7, p. 145] that a normal ring is, by definition,
a ring A such that AP is an integrally closed integral domain for each P 2 Spec(A).



PROPOSITION 3.18. If A is a normal ring and a prime morphism f : A ! B is
integral, then f satisfies GGD.

Proof. By Proposition 3.8 (b), it suffices to show that if P is any minimal prime
ideal of A, then the induced map g: A=P! B=PB satisfies GGD. Observe that A=P
is an integrally closed integral domain since A is a normal ring [7, p. 145]; B=PB is
a torsion-free A=P-module since f is a prime morphism; and g is integral. Accord-
ingly, by Seydi’s generalization of the classical Going-down Theorem [19], g is
universally (Zariski-) open. It follows that g is universally going-down [7, Corol-
laire 3.9.4 (i), p. 254] and, hence, by Theorem 3.16, that g is (universally) GGD. 2

We say that a ring homomorphism f : A ! B is prime-producing if, for each
P 2 Spec(A), either PB 2 Spec(B) or PB = B. Examples of prime-producing maps
f include the structure maps of arbitrary rings of fractions A ! AS and the weak
content maps of Rush [17]. It is evident that if a prime-producing map f satisfies
LO, then f is a prime morphism and, hence, satisfies GD. A generalization of this
fact will be given in Proposition 3.19. First, it is convenient to say that a ring
homomorphism f : A! B satisfies the CNI property (so dubbed because it is a sort
of “dual” of the INC property) if the following condition is satisfied: whenever
P� Q are prime ideals of A such that PB = QB 6= B, then P = Q. It is clear that if
f satisfies LO, then f satisfies CNI (for then f�1(pB) = p for each p 2 Spec(A)).

PROPOSITION 3.19. If a ring homomorphism f : A! B is prime-producing and
satisfies CNI, then f satisfies GGD.

Proof. Consider a local chain X = fPi : i 2 Ig in Spec(A) and Q 2 Spec(B) such
that f�1(Q) = U(X) = Pj. We seek a local chain Y in Spec(B) such that U(Y ) = Q
and Y covers X . Now, for each i 2 I, we have PiB � PjB � Q � B. Hence,
PiB 2 Spec(B), since f is prime-producing. Moreover, the CNI property ensures
that Pi coincides with Qi := f�1(PiB), since Pi � Qi and PiB = QiB. It therefore
suffices to take Y := fPiB : i 2 I; i 6= jg[fQg. 2

Proposition 3.2 (b) illustrated that GGD-theoretic consequences can ensue in
the presence of a ring homomorphism f for which a f is injective. We next pur-
sue this theme by enhancing the set-theoretic restriction with a topological one.
Specifically, we say that a continuous function f : X ! Y of topological spaces is
a topological immersion if the induced map X ! f (X) is a homeomorphism (that
is, injective and either open or closed). It is straightforward to verify that a con-
tinuous map f : X ! Y is a topological immersion if and only if f is injective and
f�1( f (Z)) = Z for each subset Z of X . Our main interest here concerns ring homo-
morphisms f : A!B for which a f : Spec(B)!Spec(A) is a topological immersion
(relative to the Zariski topology); in such a case, we also call f a topological im-
mersion. There are many ring-theoretic characterizations of such f . A particularly
useful characterization is given next.



PROPOSITION 3.20. Let f : A! B be a ring homomorphism. Then:
(a) The following two conditions are equivalent:

(1) If Q1 and Q2 are prime ideals of B such that f�1(Q1)� f�1(Q2),
then Q1 � Q2;

(2) f is a topological immersion.
(b) Suppose that the equivalent conditions in (a) hold and that a subset Y of

Spec(B) covers a subset X of Spec(A). Then Y is a chain (resp., local chain) if and
only if X is a chain (resp., local chain).

Proof. (a) (2)) (1): Consider Q1;Q2 2 Spec(B), with f�1(Q1)� f�1(Q2). Then,
by the definition of the Zariski topology and the above characterization of topolog-
ical immersions, we have

Q2 2 a f�1( a f (Q2))� a f�1( a f (Q1)) = Q1;

that is, Q1 � Q2.
(1)) (2): Assume (1). If a f (Q1) =

a f (Q2), then (1) yields that Q1 � Q2 and
Q2 � Q1. Therefore, a f is injective. It remains to prove that if F is a (Zariski-
) closed subset of Spec(B), then G := a f (F) is (Zariski-) closed in Im(a f ). We
shall show, in fact, that G = G\ Im(a f ). One conclusion is obvious. For the
reverse inclusion, consider P 2 G\ Im(a f ); pick Q 2 Spec(B) such that f�1(Q) =
P. Now, observe that F is a patch (since Im(Spec(B=J)! Spec(B)) = V (J) for
each ideal J of B), and hence so is its spectral image, G. Thus, G is the union of the
specializations of the points of G [7, Corollaire 7.3.2, p. 339]. In particular, p� P
for some p 2 G. Pick q 2 F such that f�1(q) = p. Using (1), we infer that q� Q,
whence Q2 F , since Zariski-closed sets are stable under specialization. Therefore,
P = a f (Q) 2 a f (F) = G, as desired.

(b) In view of Proposition 2.1 (a),(b), it remains only to show that if X =: fPig
is a chain, then so is Y =: fQig. As f�1(Qi) = Pi for each i, the conclusion follows
from condition (1) in (a). 2

We next mention two families of examples of ring homomorphisms that in-
duce/are topological immersions; the verifications follow most readily by checking
condition (1) in Proposition 3.20. The first family consists of the flat epimorphisms
(that is, the flat maps A! B such that the induced multiplication map B
A B! B
is an isomorphism). In particular, the structure map of any ring of fractions A! AS

is a topological immersion. The second family consists of the ring homomor-
phisms f : A ! B with the following property: for each b 2 B, there exists a 2 A
and u 2 U(B) such that b = f (a)u. Besides rings of fractions, this second fam-
ily includes all surjective ring homomorphisms and, for each field k and analytic
indeterminate T , the inclusion map k[T ] ,! k[[T ]].

COROLLARY 3.21. Let f : A! B be a ring homomorphism. Then the following
conditions are equivalent:

(1) a f is injective and f satisfies GD;



(2) f is a topological immersion and satisfies GGD.

Proof. (2)) (1) trivially. Conversely, assume (1). One then readily verifies con-
dition (1) in Proposition 3.20, and so f is a topological immersion. Next, to verify
that f satisfies GGD, consider a local chain X = fPig in Spec(A) and Q 2 Spec(B)
such that f�1(Q) = U(X). For each i, take Qi to be the unique element of a f�1(Pi).
It follows from (1) that Pi � Pj entails Qi � Q j. Accordingly, Y := fQig is a local
chain in Spec(B) such that U(Y ) = Q and Y covers X , as desired. 2

COROLLARY 3.22. Let f : A ! B be a ring homomorphism such that a f is a
topological immersion with closed image. Then the induced inclusion of rings
A=ker( f ) ,! B satisfies GGD.

Proof. Put I := ker( f ). We begin with a fact that depends only on f being a
ring homomorphism, namely, that Im(a f ) = V (I). (To fashion a proof, recall that
minimal prime ideals of a base ring are lain over from any ring extension [10,
Exercise 1, p. 41] and Zariski-closed sets are stable under specialization.) Under
the given assumptions, it follows that Im(a f ) =V (I).

Our task is to show that if X is a local chain in Spec(A=I) and Q 2 Spec(B) lies
over U(X), then there exists a local chain Y in Spec(B) such that U(Y ) = Q and
Y covers X . Of course, X induces a local chain Z in Spec(A) such that Z � V (I)
and Q lies over U(Z). We shall show that Y := a f�1(Z) has the asserted proper-
ties. Indeed, since a f is a topological immersion, it follows via condition (1) in
Proposition 3.20 that Y is a chain. Moreover, Y is a local chain, with U(Y ) = Q.
Now, a f (Y ) = Z \ Im(a f ) = Z \V (I) = Z. Finally, Y covers X since Spec(B)!
Spec(A=I) is an injection. 2

COROLLARY 3.23. Let f be a ring homomorphism. Then:
(a) If f is an injection and a f is a topological immersion with closed image,

then f satisfies GGD.
(b) If f is an injection satisfying GU and a f is an injection, then f satisfies

GGD.
(c) Suppose that for all Q 2 Spec(B) and P := f�1(Q), the induced map AP !

BQ is an injection whose corresponding map Spec(BQ)! Spec(AP) is a topologi-
cal immersion with closed image. Then f satisfies GGD.

Proof. (a) is immediate from Corollary 3.22; (b) admits a simple direct proof but
can also be obtained as a corollary of (a); to prove (c), combine (a) and Proposition
3.8 (b). 2

For applications of the next result, it is useful to have examples of ring homo-
morphisms g: A ! D that are universally topological immersions. Among these,
we mention flat epimorphic g, surjective g, and g such that ag is a universal home-
omorphism.



COROLLARY 3.24. Let f : A! B be a ring homomorphism such that a f is injec-
tive and f satisfies GD. Let g: A! D be a ring homomorphism that is universally
a topological immersion. Then the induced ring homomorphism h: D ! D
A B
satisfies GGD.

Proof. Put E :=D
A B. Our task is to show that if X is a local chain in Spec(D) and
Q2 Spec(E) satisfies h�1(Q) = U(X), then there exists a local chain Y in Spec(E)
such that U(Y ) = Q and Y covers X . As ag is injective, it follows from Proposition
2.1 (a),(b) that W := ag(X) is a local chain in Spec(A) such that g�1(U(X)) =
U(W ). Now, since Corollary 3.21 ensures that f satisfies GGD, there exists a local
chain Z in Spec(B) such that f�1(U(Z)) = U(W ) and Z covers W . Next, since
X and Z have the same index set, we can use a result on pullbacks of schemes
[7, Corollaire 3.2.7.1(i), p. 235] to produce the individual elements of a subset
Y of Spec(E) such that Y covers X (relative to h) and Y covers Z (relative to the
canonical ring homomorphism j: B ! E). As the hypothesis on g ensures that
j is a topological immersion, Proposition 3.20 (b) yields that Y is a local chain.
Finally, we shall show that U(Y ) = Q. By Proposition 2.1 (b), j�1(U(Y )) = U(Z).
Therefore,

a( j Æ f )(U(Y )) = f�1( j�1(U(Y ))) = f�1(U(Z)) =

U(W ) = g�1(U(X)) = g�1(h�1(Q)) = a(hÆg)(Q) = a( j Æ f )(Q):

Since a( j Æ f ) = a f Æ a j is a composite of injections, U(Y ) = Q. 2

By analogy with the earlier definition of “chain morphism”, we say that a ring
homomorphism f : A! B is a 2-chain morphism (or, as in [14, p. 528], subtrusive)
if the following condition is satisfied: for all prime ideals P1 � P2 of A, there exist
prime ideals Q1 � Q2 of B such that f�1(Qi) = Pi for i = 1;2. It is easy to see that
any ring homomorphism f that satisfies LO and either GU or GD must be a 2-chain
morphism. As noted in [14, p. 538], examples of universally 2-chain morphisms
include the ring homomorphisms f that are pure; the f that satisfy LO and are
universally going-down; and the f that satisfy LO and are integral. For us, the most
important examples of universally 2-chain morphisms are special cases of the last
two classes just mentioned, namely, the faithfully flat ring homomorphisms and
(thanks to a result on pullbacks of schemes [7, Corollaire 3.2.7.1(i), p. 235] and the
Lying-over Theorem [10, Theorem 44]) the injective integral ring homomorphisms.

Before stating a useful characterization of universally 2-chain morphisms, we
recall the following definitions. If f : A! B is a ring homomorphism, the torsion
ideal of f is T ( f ) := fb2B : there exists a non-zero-divisor c2A such that cb= 0g;
and f is called torsion-free if T ( f ) = 0.

PROPOSITION 3.25. (Picavet [14, Théorème 37(a), p. 556 and Proposition 16,
p. 543]) Let f : A ! B be a ring homomorphism. Then the following conditions
are equivalent:



(1) If A ! V is a ring homomorphism for which V is a valuation domain and
the induced map V ! V 
A B =: E has torsion ideal T , then the induced ring
homomorphism V ! E=T is faithfully flat;

(2) f is a universally 2-chain morphism.

Observe that LO is a universal property (as can be seen via [7, Corollaire 3.2.7.1(i),
p. 235]); and, of course, so is “integral”. Accordingly, the proof of our motivat-
ing result Proposition 2.2 (i) in [3, Remark (d)] actually establishes that any integral
ring homomorphism that satisfies LO (for instance, any injective integral map) must
be a universally chain morphism. We next present a substantial generalization of
this fact.

THEOREM 3.26. A ring homomorphism f : A ! B is a universally chain mor-
phism if and only if f is a universally 2-chain morphism.

Proof. Any chain morphism is a 2-chain morphism, and so the “only if” assertion
is trivial. For the converse, it suffices to show that if f is a universally 2-chain
morphism, then f is a chain morphism. Our task is to show that if X is a chain in
Spec(A), then there exists a chain Y in Spec(B) such that Y covers X . By Proposi-
tion 2.4 (b), we find a valuation domain V and a ring homomorphism g: A!V such
that some chain W in Spec(V ) covers X . Put E :=V 
A B. By Proposition 3.25, the
induced ring homomorphism h: V ! E=T is faithfully flat, where T denotes the
torsion ideal of the canonical map V ! E . Accordingly, by Corollary 3.17, h satis-
fies GGD; and, being faithfully flat, h also satisfies LO. Therefore, by Proposition
3.2 (a), h is a chain morphism. In particular, some chain Z in Spec(E=T ) covers W .
If j denotes the composite B! E ! E=T , it follows from the fact that hÆg = j Æ f
and the functoriality of Spec that Y := a j(Z) covers X , as desired. 2

COROLLARY 3.27. Universally (2-) chain morphisms descend both GGD and
GD. More precisely: if f : A ! B is a ring homomorphism and g: A ! D is a
universally (2-) chain morphism such that the induced map h: D ! D
A B =: E
satisfies GGD (resp., GD), then f satisfies GGD (resp., GD).

Proof. We give a proof for the “GGD” assertion, as it carries over for the “GD” as-
sertion. Consider a local chain X in Spec(A) and Q 2 Spec(B) such that f�1(Q) =
U(X). Since g is a chain morphism, there exists a chain Z in Spec(D) such that Z
covers X . By Proposition 2.1 (b), Z is a local chain and g�1(U(Z)) = U(X). As
U(Z) and Q each lie over U(X), the oft-used fact about pullbacks of schemes [7,
Corollaire 3.2.7.1(i), p. 235] supplies J 2 Spec(E) such that J lies over U(Z) in
Spec(D) and J lies over Q in Spec(B). Since h satisfies GGD, there exists a local
chain W in Spec(E) such that U(W ) = J and W covers Z. If j denotes the canonical
ring homomorphism B ! E , then the chain Y := a j(W ) covers X . Moreover, by
Proposition 2.1 (b), Y is a local chain satisfying Q= j�1(J) = j�1(U(W )) =U(Y ).
Therefore, f satisfies GGD. 2



COROLLARY 3.28. Universally (2-) chain morphisms descend universally going-
down (universally GGD).

Proof. It follows from Corollary 3.27 via standard tensor product identities that
any universally (2-) chain morphism descends universally GGD. An application of
Theorem 3.16 permits the “universally going-down” formulation. 2

COROLLARY 3.29. Let f : A! B be a ring homomorphism, and let a1; : : :an be
finitely many elements of A such that (a1; : : : ;an) = A. Then f satisfies GGD if
and only if the induced ring homomorphism fi : Aai ! Bai satisfies GGD for all
i = 1; : : : ;n.

Proof. The “only if” assertion is immediate from Proposition 3.8 (b). For the
converse, assume that each fi satisfies GGD. By Proposition 3.8 (c), so does the
induced map ∏Aai ! ∏Bai . Of course, ∏Bai

�= (∏Aai)
A B; and A ! ∏Aai is
faithfully flat, hence a universally 2-chain morphism. Hence, by Corollary 3.27, f
satisfies GGD. 2

REMARK 3.30. In view of the diversity of contexts identified above which give
sufficient conditions for GGD, one might well ask if any traditional construction
can produce a ring A supporting a ring homomorphism f : A! B that satisfies GD
but not GGD. In this regard, one could consider A =C(X), the ring of continuous
real-valued functions defined on a topological space X . However, such A cannot
support f with the above properties. Indeed, any ring of the form C(X) is a real
closed ring, in the sense of Schwartz [18]. By [18, Propositions 1.4 and 1.5], it
follows that any real closed ring is a locally irreducible ring and a going-down ring.
Thus, if A is a real closed ring (for instance, a ring of the form C(X)) and a ring-
homomorphism f : A! B satisfies GD, then each of Theorem 3.9, Corollary 3.10,
Corollary 3.11 implies that f satisfies GGD.
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