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Abstract

In 1994, Matsuda and Okabe introduced the notion of semistar opera-

tion, extending the \classical" concept of star operation. In this paper, we

introduce and study the notions of semistar linkedness and semistar 
at-
ness which are natural generalizations, to the semistar setting, of their cor-

responding \classical" concepts. As an application, among other results,

we obtain a semistar version of Davis' and Richman's overring-theoretical
theorems of characterization of Pr�ufer domains for Pr�ufer semistar multi-

plication domains.

1 Introduction

Star operations have a central place in multiplicative ideal theory, this concept
arises from the classical theory of ideal systems, based on the work by W. Krull, E.

Noether, H. Pr�ufer, and P. Lorenzen (cf. [15], [22], [19]). Recently, new interest on

these theories has been originated by the work by R. Matsuda and A. Okabe [30], where
the notion of semistar operation was introduced, as a generalization of the notion of

star operation. This concept has been proven, regarding its 
exibility, extremely useful

in studying the structure of di�erent classes of integral domains (cf. for instance [28],
[8], [10], [11], [12], and [20]).

Recall that a domain D, on which a semistar operation ? is de�ned, is called a

Pr�ufer semistar multiplication domain (or P?MD), if each nonzero �nitely generated

�During the preparation of this work, the second named author was supported in part by

a research grant MIUR 2001/2002 (Co�n 2000-MM01192794).
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ideal F of D is ?f -invertible (i.e., (FF
�1)?f = D?), where ?f is the semistar operation

of �nite type associated to ? (cf. Section 2 for details). These domains generalize

Pr�ufer v{multiplication domains [15, page 427] (and, in particular, Pr�ufer and Krull

domains) to the semistar multiplication setting.

Among the various overring-theoretical characterization of Pr�ufer domains, the follow-

ing two have relevant consequences:

� Davis' characterization [4, Theorem 1]: a domain D is a Pr�ufer domain if and only
if each overring of D is integrally closed;

� Richman's characterization [33, Theorem 4 ]: a domain D is a Pr�ufer domain if and

only if each overring of D is D{
at.

The previous theorems have been extended to the case of Pr�ufer v{multiplication
domains (for short, PvMDs) in [6] and [26], respectively, by means of the v (or the

t){operation.

The purpose of the present work is to deepen the study of a general multiplica-
tive theory for the semistar context, with special emphasis to the linkedness and the


atness, and to pursue the study of Pr�ufer semistar multiplication domains (cf. [21],

[9]).

In Section 2 we recall the main de�nitions and we collect some background results on

semistar operations. In Section 3, we de�ne and study the notion of semistar linked

overring, which generalizes the notion of t{linked overring de�ned in [6]. Several
characterizations of this concept have been obtained. Section 4 is devoted to semistar


at overrings, a concept which extends the classical notion of 
at overring and gives

a very \
exible" general tool, preserving for the \semistar prime ideals" involved,

a similar behaviour as in the classical context. As an application, in Section 5, we

achieve the proofs for analogues of Davis' and Richman's theorems in the general case
of Pr�ufer semistar multiplication domains.

2 Background and preliminary results on semis-

tar operations
Let D be an integral domain with quotient �eld K. Let F (D) denote the set of all

nonzero D-submodules of K and let F (D) be the set of all nonzero fractional ideals

of D, i.e. all E 2 F (D) such that there exists a nonzero d 2 D with dE � D. Let
f(D) be the set of all nonzero �nitely generated D-submodules of K. Then, obviously

f(D) � F (D) � F (D) :

We recall that a mapping ? : F (D) ! F (D) ; E 7! E? is called a semistar
operation on D if, for x 2 K;x 6= 0, and E;F 2 F (D), the following properties hold:

(?1) (xE)? = xE? ;

(?2) E � F ) E?
� F ? ;

(?3) E � E? and E? = (E?)? =: E?? ,

cf. for instance [31], [30], [28], [27], [8] and [10].

When D? = D, the semistar operation ?, restricted to F (D), is \the classical" star

operation (cf. [15, Sections 32 and 34]). In this case, we will write that ? is a (semi)star
operation on D.
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Example 2.1 (1) The constant map E 7! Ee := K, E 2 F (D), de�nes a trivial
semistar operation e (or, eD) on D, called the e-operation.

(2) The map E 7! Ed := E, E 2 F (D), de�nes a (semi)star operation d (or, dD) on

D, called the d{operation or the identity semistar operation.

(3) For each E 2 F (D), set E�1 := (D :K E) := fx 2 K; xE � Dg. The map
E 7! Ev := (E�1)�1 de�nes a (semi)star operation on D, called the v{operation on

D (or the vD{operation). This operation, when restricted to F (D), is the classical

v{operation on D.

(4) Let fT� j � 2 �g be a family of overrings of D, and let �� be a semistar operation
on T�, for each � 2 �. Then E 7! E�� := \f(ET�)

�� j � 2 �g, is a semistar operation

on D. Moreover, (E��T�)
�� = (ET�)

�� , for each � 2 �. This semistar operation is

called the semistar operation induced by the family f(T�; ��) j � 2 �g (for the star case,
cf. [1, Theorem 2] and, for the semistar case, cf. [8, Example 1.3 (d)], [9, Example

2.1 (g)]). Note that, in general, D is a proper subset of D�� = \f(T�)
�� j � 2 �g. In

particular, if T is an overring of D, we denote by ?fTg the semistar operation induced
by f(T; dT )g. For example, we have that eD = ?fKg and dD = ?fDg.

(5) Spectral semistar operations constitute perhaps the most important class of semis-

tar operations of the type introduced in (4). Given a set � of prime ideals of an integral

domain D, the spectral semistar operation ?� on D associated to � is the semistar

operation on D induced by the family f(DP ; dDP ) j P 2 �g (cf. the previous Ex-

ample (4)); when � = ;, then we set ?; := eD. A spectral semistar operation on
D is a semistar operation ? on D such that there exists a set of prime ideals � of

D with ? = ?�. A spectral semistar operation ? is a stable semistar operation, i.e.,

(E \ F )? = (E?
\ F ?), for all E;F 2 F (D) (or, equivalently, (E : F )? = (E? : F ?),

for each E 2 F (D) and F 2 f(D)). For more details, see [8, Section 4].

(6) Let D be an integral domain and T an overring of D. Let ? be a semistar operation

on D, the map _?T : F (T )! F (T ), E _?T := E?, for E 2 F (T ) (� F (D)), is a semistar

operation on T . When T := D?, then we set simply _?, instead of _?D
?

, and we note

that _? is a (semi)star operation on D?.

Conversely, let � be a semistar operation on an overring T ofD and de�ne �.D: F (D)!

F (D), by setting E�.D := (ET )�, for each E 2 F (D). For each semistar operation �
on T , if we set ? := �.D, then we have that _?T = � [10, Corollary 2.10].

(7) Given a semistar operation ? on D, we can de�ne a new semistar operation on D,

by setting E 7! E?f := [fF ?
j F 2 f (D); F � Eg, for each E 2 F (D). The semistar

operation ?f is called the semistar operation of �nite type associated to ?. Note that

if E 2 f(D), then E? = E?f . A semistar operation ? is called a semistar operation of

�nite type if ? = ?f . Note that (?f )f = ?f .

An important example of semistar operation of �nite type is the (semi)star operation

of �nite type associated to the v-(semi)star operation, i.e. t := vf , called the t{
(semi)star operation on D (or the tD{operation). Note that the e{operation and the

identity operation d on D are of �nite type. A spectral semistar operation ? on D is

of �nite type if and only if ? = ?�, for some quasi{compact set of prime ideals of D
[8, Corollary 4.6 (2)].

If ?1 and ?2 are two semistar operations on an integral domain D, we say that
?1 � ?2 if , for each E 2 F (D), E?1 � E?2 ; in this case (E?1 )?2 = E?2 .

Note that, for each semistar operation ?, we have that ?f � ?. Moreover, for each
(semi)star operation ? on D, we have always that ? � v and, hence, ?f � t (easy
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consequence of [15, Theorem 34.1 (4)]).

Let I � D be a nonzero ideal of D and let ? be a semistar operation on D . We
say that I is a quasi{?{ideal (respectively, ?{ideal) of D if I? \D = I (respectively,

I? = I ). Similarly, we call a quasi{?{prime (respectively, a ?{prime ) of D a

quasi{?{ideal (respectively, ?{ideal) of D which is also a prime ideal. We call a
quasi{?{maximal (respectively, a ?{maximal ) of D a maximal element in the set of

all proper quasi{?{ideals (respectively, ?{ideals) of D :

Note that if I � D is a ?{ideal, it is also a quasi{?{ideal and, when D = D? , the
notions of quasi{?{ideal and ?{ideal coincide.

When D ( D? ( K we can \restrict" the semistar operation ? on D to the
(semi)star operation _? on D? (Example 2.1 (6)) and we have a strict relation between

the quasi{?{ideals of D and the _?{ideals of D? , as shown in the following result:

Lemma 2.2 [12, Lemma 2.2]. LetD be an integral domain and ? a semistar operation
on D and let _? be the (semi)star operation on D? associated to ?. Then:

(a) I is a quasi{?{ideal of D , I = L \D; whereL � D? is a _?{ideal of D?:

(b) If L � D? is a _?{prime ideal of D?; then L\D is a quasi{?{prime ideal of D:

2

Note that, in general, the restriction to D of a _?{maximal ideal of D? is a quasi{

?{prime ideal of D ; but not necessarily a quasi{?{maximal ideal of D ; and if L is

an ideal of D? and L \D is a quasi{?{prime ideal of D ; then L is not necessarily

a _?{prime ideal of D?, [12, Remark 3.6].

Lemma 2.3 Let ? be a semistar operation of an integral domain D . Assume that
? is not trivial and that ? = ?f . Then:

(a) Each proper quasi{?{ideal is contained in a quasi-?-maximal.

(b) Each quasi{?{maximal is a quasi{?-prime.

(c) If Q is a quasi{?{maximal ideal of D then Q = M \D ; for some _?{maximal
ideal M of D?:

(d) Each minimal prime over a quasi{?{ideal is a quasi{?{prime.

(e) Set
�? := fP 2 Spec(D) j P 6= 0 and P ?

\D 6= Dg ;

then each quasi{?-prime ofD belongs to �? and, moreover, the set of maximal el-
ements of �? is nonempty and coincides with the set of all the quasi{?-maximals

of D.

Proof. We give a proof of (d), for the other statements see [12, Lemma 2.3].

Let I be a quasi{?{ideal of D and let P a minimal prime ideal of D over I, hence

rad(IDP ) = PDP . Then, for each �nitely generated ideal J of D, with J � P , there

exists an integer n � 1 such that JnDP � IDP , i.e. sJn � I, for some s 2 D n P .
Therefore:

s(J?)n � s ((J?)n)? = s (Jn)? � I? )

s((J?)n \D) � s(J?)n \D � I? \D = I � P )

(J? \D)n � (J?)n \D � P )

J? \D � P :
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Since ? = ?f , then P ? = [fJ? j J 2 f(D) ; J � Pg and so P ?
\D = [fJ? \D j J 2

f(D) ; J � Pg � P ; thus P ?
\D = P . 2

We denote byM(?f ) the set of all the quasi{?f{maximals of D, which is nonempty

if and only if ?f 6= e, and we associate to the semistar operation ? on D a new semistar
operation ~? on D, which is of �nite type and spectral, de�ned as follows ~? := ?M(?f )

(explicitly, E~? := \fEDQ j Q 2 M(?f )g , for each E 2 F (D) ). Note that ~? � ?f
[12, Corollary 2.7].

We conclude this section by recalling the de�nition and the main properties of the

semistar Nagata rings.

Let D be an integral domain with �eld of quotients K and ? a semistar operation
on D. Let X be an indeterminate over K, for each f 2 D[X], we denote by c(f) the

content of f . Let ND(?) := fh 2 D[X] j h 6= 0 and c(h)? = D?
g. Then ND(?) =

D[X] n [fQ[X] j Q 2M(?f )g is a saturated multiplicative system of D[X]. The ring

of fractions:

Na(D;?) := D[X]ND(?)

is called the Nagata ring of D with respect to the semistar operation ? (cf. [12]).

Obviously, Na(D;?) = Na(D;?f ) and if ? = d, where d is the identity (semi)star

operation of D, then Na(D;d) coincides with the \classical" Nagata ring D(X) :=

ff=g j f; g 2 D[X] ; c(g) = Dg of D.

Lemma 2.4 [12, Corollary 2.7, Proposition 3.1 and 3.4, Corollary 3.5]. Let D be an

integral domain with quotient �eld K and let ? be a semistar operation on D. Then,
for each E 2 F (D), we have:

(a) E?f = \fE?fDQ j Q 2 M(?f )g.

(b) E~? = \fEDQ j Q 2M(?f )g.

(c) M(?f ) =M(~?).

(d) Na(D;?) = \fD[X]Q[X] j Q 2M(?f )g = \fDQ(X) j Q 2M(?f )g.

(e) Max(Na(D;?)) = fQ[X]ND(?) j Q 2 M(?f )g = fQDQ(X) \ Na(D;?) j Q 2

M(?f )g.

(f) ENa(D;?) = \fEDQ(X) j Q 2 M(?f )g.

(g) ENa(D;?) \K = \fEDQ j Q 2M(?f )g.

(h) E~? = ENa(D;?) \K.

(i) Na(D;?) = Na(D; ~?) = Na(D~?; _~?). 2

An easy consequence of the previous result (in particular, Lemma 2.4 (e)) is the

following:

Corollary 2.5 Let D be an integral domain and let ? be a semistar operation on D.

For each prime ideal P of D such that P ?
6= D?, Na(D;?)P Na(D;?) = DP (X).

2
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3 Semistar linkedness
Let D be an integral domain and T be an overring of D. Let ? (respectively, ?0)

be a semistar operation on D (respectively, on T ).

We say that T is (?; ?0){linked to D if:

F
? = D

?
) (FT )?

0

= T
?0

;

for each nonzero �nitely generated integral ideal F of D.

It is straightforward that T is (?; ?0){linked to D if and only if T is (?f ; ?
0

f ){linked to

D.

Obviously, T is (dD; ?
0){linked to D, for each semistar operation ?0 on T and T is

(?; eT ){linked to D, for each semistar operation ? on D; in particular, when T coin-

cides with the �eld of quotients K of D, then there exists a unique (trivial) semistar
operation eT = dT on T , hence T is (?; ?0){linked to D, for each semistar operation ?

on D and for each semistar operation ?0 on T .

We say that T is t{linked to (D;?) if T is (?; tT ){linked. In particular, the classical

notion \ T is t{linked to D" [6] coincides with the notion \ T is t{linked to (D; tD)"

(i.e. T is (tD; tT ){linked to D).

In the following result we collect some of the basic properties of the semistar

linkedness.

Lemma 3.1 Let S; T be two overrings of an integral domain D, with D � T � S.

(a) Let D = T and ?0; ?00 be two semistar operations on T . If ?0f � ?00f , then T is

(?0; ?00){linked to T .

(b) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, T , S).

Assume that S is (?0; ?00){linked to T and that T is (?; ?0){linked to D, then S

is (?; ?00){linked to D.

(c) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, two

semistar operations on T ). Assume that ?0f � ?00f . Then T is (?; ?0){linked to D
implies that T is (?; ?00){linked to D.

(d) If ?0 is a (semi)star operation on T (i.e. if T ?
0

= T ) and if T is (?; ?0){linked to

D then T is t{linked to (D;?).

(e) Let ? be a semistar operation on D then T is (?; _?T ){linked to D. In particular,

D? is (?; _?){linked to D.

(f) If ?0 is a semistar operation on T such that _?T � ?0, then T is (?; ?0){linked to

D. In particular, we deduce that:

_(tD)
T
� tT ) T is t{linked toD ; and more generally,�

_?T
�
f
� tT ) T is t{linked to (D;?) .

(g) Let ?0 be a semistar operation on T , then T is (?.
0

D; ?
0){linked to D.

(h) Let ?1 and ?2 be two semistar operations on D and let ?0 be a semistar operation

on T . If (?1)f � (?2)f and if T is (?2; ?
0){linked to D, then T is (?1; ?

0){linked

to D.

(i) Let ? (respectively, ?0) be a semistar operations on D (respectively, T ). If

? � ?.
0

D, then T is (?; ?0){linked to D.

6



Also, we have:

tD � (tT. )
D
) T is t{linked toD ; and, more generally,

?f � (tT. )
D
) T is t{linked to (D;?) .

(j) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, T , S).
Assume that S is (?; ?00){linked to D and that each quasi{?0f {maximal ideal of

T is the contraction of a quasi{?00f {maximal ideal of S, then T is (?; ?0){linked

to D.
In particular (Lemma 2.3 (c)), if we take S := T ?

0

and ?00 := _?0 (note that _?0 is

a (semi)star operation on T ?
0

), then T is (?; ?0){linked to D if and only if T ?
0

is (?; _?0){linked to D.

(k) Let fT� j � 2 �g be a family of overrings of D and let �� be a semistar

operation de�ned on T�, for � 2 �. Set T := \fT� j � 2 �g and let �� be

the semistar operation on T induced by the family fT� j � 2 �g (i.e. for each
E 2 F (T ), E�� := \f(ET�)

�� j � 2 �g). If T� is (?; ��){linked to D, for each

� 2 �, then T is (?; ��){linked to D.

Proof. Straightforward. 2

Let T; S be two overrings of an integral domain D, with D � T � S and let ?

(respectively, ?0, ?00) be a semistar operation on D (respectively, T , S). Assume that

S is (?; ?00){linked to D. When is S (?0; ?00){linked to T ? A partial answer to this

question will be given in Remark 3.13.

Proposition 3.2 Let D be an integral domain and T be an overring of D. Let ?

(respectively, ?0) be a semistar operation on D (respectively, on T ). The following are

equivalent:

(i) T is (?; ?0){linked to D;

(ii) for each nonzero ideal I of D, I?f = D?
) (IT )?

0
f = T ?

0

;

(iii) for each quasi{?0f {ideal J of T , with J 6= T , (J \D)?f 6= D?;

(iv) for each quasi{?0f {prime ideal Q of T , (Q \D)?f 6= D?;

(v) for each quasi{?0f {maximal ideal N of T , (N \D)?f 6= D?.

Proof. (i) ) (ii). Since D? = I?f = [fF ?
j F � I ; F 2 f(D)g, then D? = F ?, for

some F � I ; F 2 f(D). Therefore, we conclude T ?
0

= (FT )?
0

� (IT )?
0
f � T ?

0

.

(ii) ) (iii). Assume that, for some proper quasi{?0f {ideal J of T , the ideal I := J \D

is such that I?f = D?. By assumption, we have T ?
0

= (IT )?
0
f = ((J\D)T )?

0
f � J?

0
f �

T ?
0

, i.e. J?
0
f = T ?

0

. This fact contradicts the hypothesis that J is a quasi{?0f {ideal of
T , with J 6= T .

(iii) ) (iv) ) (v) are obvious.

(v) ) (i). Assume that, for some F 2 f(D), with F � D, we have F ? = D? and

(FT )?
0
f ( T ?

0

. Let N be a quasi{?0f {maximal ideal of T containing (FT )?
0
f \ T . By

hypothesis, we have (N \ D)?f 6= D?. On the other hand, F ?
� ((FT )?

0
f \ D)?f �

(N \D)?f and this contradicts the choice of F . 2

7



Remark 3.3 (a) It follows from Lemma 3.1 (b), (e) and (j) that, if T ?
0

is a ( _?; _?0){
linked overring of D?, then T is (?; ?0){linked to D. What about the converse? More

precisely, since it is not true in general that T ?
0

is an overring of D?, for \the converse"
we mean the following statement: Assume T ?

0

is an overring ofD? and that T is (?; ?0){

linked to D. Is it true that T ?
0

is ( _?; _?0){linked to D? ? The answer to this question is
negative, as the following example shows.

Let K be a �eld and X;Y be two indeterminates over K. Let R := K[X;Y ] and

M := (X;Y ). Set D := K[X;XY ] and T := RM . Let ? := (tR. )
D
and ?0 := dT . Then:

(1) T is (?; ?0){linked to D.

(2) D?
� T ?

0

, but T ?
0

is not (_?; _?0){linked to D?.

Clearly D? = R � T ?
0

= T .

(1) Set M 0 := MRM , then M 0 is the unique (?0{)maximal ideal of T . We have

M 0
\D =M \D � XR. Therefore, (M 0

\D)? � (XR)? = XR ( R = D?.

(2) Note that _? = tR (Example 2.1 (6)) and _?0 = ?0 = dT . Moreover, for the maximal

ideal M 0 of T ?
0

= T , we have (M 0
\D?) _? = (M 0

\R)tR =M tR = R = D?. Therefore,

T ?
0

is not (_?; _?0){linked to D? (Proposition 3.2 (v)).

A related question to the previous one will be examined in Theorem 3.8.

(b) If T is (?; ?0){linked to D, then, for each quasi{?0f {prime ideal Q of T , there exists

a quasi{?f {prime ideal P such that DP � TDnP � TQ. (Since (Q \D)?f 6= D?, take

a quasi{?f {prime ideal P of D such that Q \ D � P , and so (D n P ) � (T n Q).)

Therefore, if T is (?; ?0){linked to D, then De? � T
e?0 .

Example 3.4 (1) Let D be an integral domain and T be an overring of D. Let ?

be a semistar operation on D and let P be a quasi{?f {prime ideal of D. Then, TDnP
is (?; �){linked to D, for each semistar operation � on TDnP (equivalently, TDnP is

(?; dT;P ){linked to D, where dT;P is the identity (semi)star operation on TDnP ).

As a matter of fact, for each prime ideal N , in particular, for each quasi{�f {prime

ideal, of TDnP , N \ T is a prime ideal of T such that N \D � P = P ?f \D. Hence

(N \D)?f 6= D?.

(2) Given a semistar operation ? on an integral domain D, recall that on D we can

introduce a new semistar operation of �nite type, denoted by [?], called the semistar

integral closure of ?, by setting:

F
[?] := [f((H? : H?)F )?f j H 2 f(D)g ; for each F 2 f(D) ;

(and thus in general:

E
[?] := [fF

[?]
j F 2 f(D); F � Eg ; for each E 2 F (D) ):

It is known that ?f � [?] , hence D?
� D[?] , and that D[?] is integrally closed.

Therefore, it is obvious that if D? = D[?] then D? is integrally closed. The converse

is false, even when ? is a (semi)star operation on D. However, it is known that if ?f
is stable, then D? is integrally closed if and only if D? = D[?] ; (cf. [30, Proposition

34], [10, Proposition 4.3 and Proposition 4.5], [9, Example 2.1 (c)], [18]).

From Lemma 3.1 (e), (a) and (b), we have that D[?] is (?; _[?]){linked to D.

Assume that T := [fT� j � 2 �g is the direct union of a given direct family of
overrings fT� j � 2 �g of an integral domain D with �eld of quotients K (where � is

8



a directly ordered set by setting �0 � �00 if T�0 � T�00 ). Let �� be a semistar operation
de�ned on the overring T� of D, for each � 2 �. We say that the family f�� j � 2 �g

is a direct family of semistar operations (or, simply, that f(T�; ��) j � 2 �g is a direct

family), if �2 follows �1 inside � and if H 2 f(T�1 ), then H��1 � (HT�2 )
��2 .

For each � 2 �, let E� be a T�-submodule of K. We say that E = [fE� j � 2 �g is

a direct union, if for each pair �;� 2 �, and for each 
 2 � such that T� � T
 and

T� � T
 then E�T
 � E
 and E�T
 � E
 .

The following result generalizes [6, Proposition 2.2 (a)].

Lemma 3.5 Let ? be a semistar operation on an integral domain D. Given a direct

family f(T�; ��) j � 2 �g, as above. For each E 2 F (T ), set:

E
�
�

:= [fE
(��)f j � 2 �g :

(1) �
� is a semistar operation of �nite type on T .

(2) If T� is (?; ��){linked to D, for each � 2 �, then T is (?; ��){linked to D.

(3) If T� is (?; tT� ){linked to D, for each � 2 �, then T is (?; tT ){linked to D.

Proof. (1) The properties (?1) and (?2) are straightforward. Before proving (?3), we

show the following:

Claim. If E = [fE� j � 2 �g 2 F (T ) is a direct union, where E� is a T�-submodule

of K, then:

E
�
�

= [fE
(��)f
� j � 2 �g :

Given � 2 �, we have E = [fE�T� j � 2 �g is a direct union of T�-submodules. Since

(��)f is of �nite type and E 2 F (T�) (� F (T )), then E(��)f = [f(E�T�)
(��)f j � 2

�g. Let � 2 �, then there exists 
 2 � such that T� � T
 and T� � T
 and, E� � E

and E� � E
 . Hence (E�T�)

(��)f � E

(��)f � E


(�
)f (the second inclusion follows

from the fact that f(T�; ��) j � 2 �g is direct). So E(��)f � [fE
(��)f
� j � 2 �g, and

hence E�
�

� [fE
(��)f
� j � 2 �g. The other inclusion is trivial.

Now we prove (?3). Clearly, for each E 2 F (T ), E � E�
�

. On the other hand, we

have E�
�

= [fE(��)f j � 2 �g is a direct union of E(��)f 2 F (T�) and so, by the

Claim, (E�
�

)�
�

= [f(E(��)f )(��)f j � 2 �g = [fE(��)f j � 2 �g = E�
�

.

Finally, the fact that �� is of �nite type is an immediate consequence of the de�nition.

(2) Let I be a nonzero �nitely generated ideal of D such that I? = D?. Then, by the

Claim, (IT )�
�

= [f(IT�)
�� j � 2 �g. Since T� is (?; ��){linked to D, then (IT�)

�� =

T
��
� , for each � 2 �. Hence, again by the Claim, (IT )�

�

= [fT
��
� j � 2 �g = T �

�

.

(3) Let I be a nonzero �nitely generated ideal of D such that I? = D?, then for each

�, (IT�)
t = T�, i.e. (IT�)

�1 = T�. Let I := (x1; x2; : : : ; xn)D and z 2 (IT )�1. Then,

for each i, zxi 2 T�i , for some �i 2 � and so, for some �I 2 �, zI � T�I . Hence,
z 2 (IT�I )

�1 = T�I � T . Therefore, (IT )�1
� T and so (IT )�1 = T . 2

The following corollary generalizes [6, Corollary 2.3].

Corollary 3.6 Let ? be a semistar operation on an integral domain D. Then D[?] is

t{linked to (D;?). If, moreover (D : D?) 6= (0), then the complete integral closure eD
of D is t{linked to (D;?); in particular, the complete integral closure eD of D is always
t{linked to D.

9



Proof. The statement can be seen as an easy consequence of Example 3.4 (2) and

of the fact that _[?] � t
D[?] (Lemma 3.1 (c)). We give here another proof based on

the previous Lemma 3.5, which also shows that the semistar operation [?] is issued

from a semistar operation associated to a directed family of overrings and semistar

operations.

For each E 2 F (D), set TE := (E? : E?). Let �E denote the semistar operation
_?TE on TE . Then TE is an overring of D, which is (?; �E){linked to D (Lemma 3.1

(e)). Note that �E is a (semi)star operation on TE (since (TE )
�E = TE).

We claim that f(TF ; �F ) j F 2 f(D)g and f(TE ; �E) j E 2 F (D)g are direct families

(as in Lemma 3.5). To see this, note that:

(H?
1 : H?

1 ) � ((H1H2)
? : (H1H2)

?) � (H?
2 : H?

2 );

for all H1;H2 2 F (D).

Therefore, as in Lemma 3.5 (1), f(TF ; �F ) j F 2 f(D)g (respectively, f(TE ; �E) j E 2

F (D)g) de�nes a (semi)star operation of �nite type �f(D) (respectively, �F (D)) on

D[?] = [f(F ? : F ?) j F 2 f(D)g (respectively, on Dh?i := [f(E? : E?) j E 2 F (D)g).

Note that D[?] is (?; �f(D)){linked to D (Lemma 3.5 (2)) and that �f(D)
� tD[?] (since

�
f(D) is a (semi)star operation of �nite type on D[?]). We conclude, by Lemma 3.1

(c), that D[?] is t{linked to (D;?).

For the last statement, note that eD = [f(E : E) j E 2 F (D)g � [f(E? : E) j

E 2 F (D)g = [f(E? : E?) j E 2 F (D)g = Dh?i
� [f(H : H) j H 2 F (D?)g = fD?.

If (D : D?) 6= (0) then eD = fD? = Dh?i = [fTE j E 2 F (D)g. Arguing as above,

we have that eD is (?; �F (D)){linked to D, and �F (D)
� t

eD (since �F (D) is a (semi)star

operation of �nite type on Dh?i = eD). Again from Lemma 3.1 (c), we conclude thateD is t{linked to (D;?). 2

Remark 3.7 Let ? be a semistar operation on an integral domain D.

(a) Let �f(D) be the (semi)star operation of �nite type over D
[?
f
]
(= D[?]), associated

to the semistar operation of �nite type ?f and de�ned, in general for any semistar

operation, in the proof of the previous corollary. Then:

[?] =
�
�
f(D)

�
. D

:

As a matter of fact, �rst, note that in this case TH = (H
?
f : H

?
f ) = (H? : H?), for

each H 2 f(D) and let now �H denote the semistar operation of �nite type _?TH
f

on

TH . For each E 2 F (D), we have:

ED[?] = E ([f(H? : H?) j H 2 f(D)g) = [fE(H? : H?) j H 2 f(D)g ;

thus, using the Claim of the proof of Lemma 3.5, we have:

(ED[?])�
f(D)

= ([fE(H? : H?) j H 2 f(D)g)�
f(D)

=

= [f(E (H? : H?))?f j H 2 f(D)g :

In particular, F [?] = (FD[?])�
f(D)

, for each F 2 f(D).

As a consequence we have that, for each E 2 F (D):

E
[?] = [f(E (H? : H?))

?f j H 2 f(D)g :

10



(b) If we set:

h?i :=
�
�
F (D)

�
. D

;

then h?i is a semistar operation of �nite type on D, with Dh?i = [f(E? : E?) j E 2

F (D)g. Moreover,

?f � [?] � h?i and D
?
� D

[?]
� D

h?i
� fD? :

Theorem 3.8 Let D be an integral domain with quotient �eld K and let T be an

overring of D. Let ? (respectively, ?0) be a semistar operation on D (respectively, on
T ). The following are equivalent:

(i) T is (?; ?0){linked to D;

(ii) Na(D;?) � Na(T; ?0);

(iii) ~? � (e?0). D
;

(iv) T is an (~?; e?0){linked overring of D;

(v) T
e?0 is an ( _~?;

_e?0){linked overring of D~?.

Proof. (i) ) (ii). Let g 2 D[X] such that (cD(g))
? = D?. Then, by the assumption,

(cT (g))
?0 = (cD(g)T )

?0 = T ?
0

. Hence Na(D;?) � Na(T; ?0).

(ii))(iii). Let E 2 F (D). Then ENa(D;?) � ENa(T; ?0). Hence (Lemma 2.4 (h))

E~? = ENa(D;?)\K � ENa(T; ?0)\K = (ET )
e?0 and so we conclude that ~? � (e?0). D

.

(iii) ) (iv). It follows from Lemma 3.1 (i).

(iv) ) (ii) follows from (i) ) (ii) and from Lemma 2.4 (i).

(ii) ) (i). Let G be a nonzero �nitely generated integral ideal of D such that G? = D?

and let g 2 D[X] be such that cD(g) = G. From the fact that (cD(g))
? = D?, we have

that g is a unit in Na(D;?) and so, by assumption, g is also a unit in Na(T; ?0). This

implies that (cT (g))
?0 = (cD(g)T )

?0 = T ?
0

, i.e. (GT )?
0

= T ?
0

.

(ii) , (v) is an easy consequence of (ii) , (i) and of Lemma 2.4 (i). 2

The next result characterizes domains such that each overring is semistar linked
and generalizes [6, Theorem 2.6].

Theorem 3.9 Let D be an integral domain and ? a semistar operation on D. The

following statements are equivalent:

(i) for each overring T of D and for each semistar operation ?0 on T , T is (?; ?0){

linked to D;

(ii) each overring T of D is (?; dT ){linked to D;

(iii) each overring T of D is t{linked to (D;?);

(iv) for each valuation overring V of D there exists a (semi)star operation �V on V ,

such that V is (?; �V ){linked to D;

(v) each maximal ideal of D is a quasi{?f {maximal ideal;

(vi) for each proper ideal I of D, I?f ( D?;

11



(vii) for each proper �nitely generated ideal I of D, I? ( D?;

(viii) for each proper ?f{invertible ideal I ofD (i.e. (II�1)?f = D?), I?f ( D? (hence,

each proper ?f {invertible ideal I of D is contained in the proper quasi{?f {ideal
I? \D of D).

Proof. (i) ) (ii) is obvious. (ii) ) (iii) is a consequence of the fact that dT � tT and

Lemma 3.1 (c). (iii) ) (iv) is obvious, taking �V = tV .

(iv) ) (v). If M is a maximal ideal of D such that M ( M?f = D? then, for

some nonzero �nitely generated ideal I � M , we have I? = D?. Let (V;N) be a

valuation overring of D such that N \D = M . Then (IV )(�V )f = V �V = V . Since a
nonzero �nitely generated ideal of a valuation domain is principal and �V is a (semi)star

operation on V , then V = V �V = (IV )(�V )f = IV . This is a contradiction, because

IV � N ( V .

(v) ) (vi) )(vii) are obvious.

(vii) ) (viii). If (II�1)?f = D? and II�1 ( D then, for some nonzero �nitely

generated ideal F � II�1 ( D, we have F ? = D? and this contradicts the assumption.

Since I is invertible then, in particular, I is a �nitely generated proper ideal of D and
so, by assumption and (vii), I? \D is a proper quasi{?f {ideal of D containing I.

(viii) ) (v). Assume that, for some maximal ideal M of D, M ( M?f = D?. Then

(MM�1)?f = (MM�1)? = D?, because D?f � (MM�1)?f = (M?f (M�1)?f )?f =
(D?f (M�1)?f )?f = (M�1)?f � D?f = D?. Hence, by assumption, M?f ( D?, but

this contradicts the choice of M .

(v)) (i). Assume that, for some overring T of D, for some semistar operation ?0 on T

and for some quasi{?0f {maximal ideal N of T , we have (N \D)?f = D? (Proposition

3.2 ((i) , (v))). Note that, from the assumption, N \D �M = M?f \D, for some

(quasi{?f {)maximal ideal M of D, and so we reach immediately a contradiction. 2

Remark 3.10 Note that the proof of (vii) ) (viii) (Theorem 3.9) shows that, in an

integral domain verifying the conditions of Theorem 3.9, each ?f{invertible ideal is

invertible.

Example 3.11 Let ? be a semistar operation on an integral domain D. Assume that

D? is faithfully 
at on D (for instance, assume that ? is a (semi)star operation on D).
In this situation, every principal ideal of D is a quasi{?{ideal of D. If Spec(D) is a

tree (e.g., dim(D) = 1 or D is a GD-domain, in particular, D is a Pr�ufer domain),

then every overring T of D is t{linked to (D;?).

In order to apply Theorem 3.9 ((v) ) (iii)), we show that each maximal ideal M

of D is a quasi{?f {ideal of D. For each nonzero x 2M , xD is a quasi{?f {ideal of D,
hence a minimal prime ideal P of xD is a quasi{?f {prime ideal of D (cf. Lemma 2.3

(d)). Since Spec(D) is a tree, M is a direct union of a family fP�g of quasi{?f {prime

ideals of D. If M?f = D?, then 1 2M?f = ([�fP�g)
?f = ([�f(P�)

?f g)?f thus, from
the �niteness of ?f , we deduce that 1 2 (P�)

?f \ D = P�, for some �, and this is a

contradiction.

Our next goal is the study of a new semistar operation strictly related to semistar

linkedness.
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Let D be an integral domain, ? a semistar operation on D, and T an overring of D.
We de�ne the semistar operation `?;T (or, simply, `) on T , in the following way:

E
`?;T := E

` := \fETDnP j P is a quasi{?f {prime ideal of Dg ;

for each E 2 F (T ).

Note that if T = D, then `?;D = ~? (Lemma 2.4 (b)). Moreover, note that `?;T is the

semistar operation on T induced, in the sense described in Example 2.1 (4), by the

family of overrings fTDnP j P is a quasi{?f {prime ideal of Dg of D (where TDnP is

endowed with the identity dT;P (semi)star operation) .

The following proposition collects some interesting properties of the semistar op-
eration `?;T .

Proposition 3.12 Let D be an integral domain, ? a semistar operation on D, T an
overring of D and ?0 a semistar operation on T .

(1) `?;T is a stable semistar operation of T .

(2) Assume that T is (?; ?0){linked to D. Then `?;T � e?0 (� ?0f ); in particular T is

(`?;T ; ?0){linked to T .

(3) T is (?; `?;T ){linked to D, for each semistar operation ? on D; in particular, D

is (?; ~?){linked to D, for each semistar operation ? on D.

(4) `?;T is a semistar operation of �nite type on T and g̀
?;T = `?;T .

(5) `?;T is the unique minimal element in set of semistar operations ?0f , where ?
0 is

a semistar operation on T such that T is (?; ?0){linked to D.

(6) T is (?; ?0){linked to D if and only if T is (`?;T ; ?0){linked to T (and T is
(?; `?;T ){linked to D).

(7) T is (?; ?0){linked to D if and only if `?;T � ?0f .

Proof. (1) This is a straightforward consequence of the fact that TDnP is 
at over

T , for each prime ideal P of D.

(2) For each quasi{?0f {prime ideal Q of T , there exists a quasi{?f {prime ideal P of

D, such that TDnP � TQ (Remark 3.3 (b)), and so also ETDnP � ETQ, for each

E 2 F (T ); from this we deduce that `?;T � e?0. The last statement follows from
Lemma 3.1 (a).

(3) If I?f = D?, then I 6� P , i.e. IDP = DP , and this implies that ITDnP = TDnP ,

for each quasi{?f {prime ideal P of D. Therefore (IT )`?;T = T `?;T .

(4) From (3), we have that T is (?; `?;T ){linked to D. From (2) (for ?0 = `?;T ), we

deduce that (`?;T )f � `?;T � g̀
?;T � (`?;T )f .

(5) follows from (2) and (3).

(6) It is a direct consequence of (2), (3) and Lemma 3.1 (b).

(7) is equivalent to (6), by (2) and Lemma 3.1 (a). 2

Remark 3.13 Let T; S be two overrings of an integral domain D, with D � T � S

and let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, T , S).
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Assume that S is (?; ?00){linked to D. If T is (?0; `?;T ){linked to T (e.g. if ?0f � `?;T ),
then S is (?0; ?00){linked to T . As a matter of fact, let Q be a quasi-?00f -prime ideal of

S, then (Q \D)?f 6= D?, and hence, by de�nition of T `?;T , (Q \ T )`?;T 6= T `?;T . So

(Q \ T )?
0
f 6= T ?

0

.

In general, for any nontrivial semistar operation ?00 on S, we can construct a

nontrivial semistar operation ?0 on T such that S is not (?0; ?00)-linked to T : Let Q be

a quasi{?00f {prime ideal of S, and let 0 6= q 2 Q \ T . Let Tq be the ring of fractions of

T with respect to its multiplicative set fqn j n � 0g and let ?0 := ?fTqg. Then S is

not (?0; ?00)-linked to T , since (Q \ T )?
0
f = (Q \ T )Tq = Tq = T ?

0

.

In [6], the authors showed that the equality T `tD;T = T characterizes t{linkedness
of T to D. The next goal is to investigate the analogous question in semistar setting.

Lemma 3.14 Let D be an integral domain, Tan overring of D, ? a semistar operation

on D and ?0 a (semi)star operation on T . If T is (?; ?0){linked to D, then T `?;T = T .

Proof. Since ?0 is a (semi)star operation on T , then T = T
e?0 = T ?

0

. Therefore, by

Proposition 3.12 (2), we have T � T `?;T � T
e?0 = T , and so T `?;T = T . 2

However, \a general converse" of the previous lemma fails to be true as the following
example shows.

Example 3.15 Let K be a �eld and X;Y two indeterminates over K. Let D :=

K[X;Y ] and M := (X;Y ). Set T := DM . Then D � T is t{linked (since D � T is


at [6, Proposition 2.2 (c)]). Hence T
`tD;T = T , by [6, Proposition 2.13 (a)]. On the

other hand, we have MT 6= T and M tD = D. Hence T is not (tD; dT ){linked to D.

A generalization of [6, Proposition 2.13 (a)] is given next, by showing that the
converse of Lemma 3.14 holds when ?0 = tT .

Proposition 3.16 Let ? be a semistar operation on the integral domain D and T an

overring of D. Then T is t{linked to (D;?) if and only if T `?;T = T .

Proof. Assume that T `?;T = T , that is `?;T is a (semi)star operation of �nite type on

T (Proposition 3.12 (4)). In this situation, we have `?;T � tT and thus T is (`?;T ; tT ){

linked to T . By Proposition 3.12 (3), T is (?; `?;T ){linked to D. By transitivity

(Lemma 3.1 (b)), we conclude that T is t{linked to (D;?). 2

4 Semistar 
atness

Let D be an integral domain and T be an overring of D and let ? (respectively, ?0)

be a semistar operation on D (respectively, on T ). We say that T is (?; ?0){
at over

D if, for each quasi{?0f {prime ideal Q of T , (Q\D)?f 6= D? (i.e. T is (?; ?0){linked to

D) and, moreover, DQ\D = TQ.

We say that T is t{
at over D, if T is (tD; tT ){
at over D. Note that, from [26,

Remark 2.3], this de�nition of t{
atness coincides with that introduced in [26]. More
generally, we say that T is t-
at over (D;?) if T is (?; tT ){
at over D.
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Remark 4.1 (a) If ? := dD (respectively, ?0 := dT ) the identity (semi)star operation
on D (respectively, T ), then T is (dD; dT ){
at over D if and only if T is 
at over D.

(b) Note that T is t-
at over (D;?) implies T is t{
at over D (for a converse see the

following Lemma 4.2 (e)). As a matter of fact, for each Q 2 M(tT ), DQ\D = TQ and

thus, by [26], T is a t{
at overring of D.

(c) Recall that an example given by Fossum [13, page 32] shows that, even for a Krull

domain (hence, in particular, for a PvMD), t{
atness does not imply 
atness (cf. also

[26, Remark 2.12]).

The proof of the following lemma, in which we collect some preliminary properties

of semistar 
atness, is straightforward.

Lemma 4.2 Let T; S be two overrings of an integral domain D, with D � T � S.

(a) Let D = T and ?0; ?00 be two semistar operations on T . Then T is (?0; ?00){
at

over T if and only if T is (?0; ?00){linked to T . This happens when ?0f � ?00f .

(b) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, T , S).

Assume that S is (?0; ?00){
at over T and that T is (?; ?0){
at over D, then S is

(?; ?00){
at over D.

(c) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, two

semistars operations on T ). Assume that ?0f � ?00f . If T is (?; ?0){
at over D,

then T is also (?; ?00){
at over D.

(d) Let ? be a semistar operation on D and let ?0 be a (semi)star operation on T

(hence, ?0f � tT ). If T is (?; ?0){
at over D then T is t{
at over (D;?).

(e) Let ?1 and ?2 be two semistar operations on D and let ?0 be a semistar operation

on T . Assume that (?1)f � (?2)f . If T is (?2; ?
0){
at over D, then T is (?1; ?

0){


at over D. In particular (cf. also Remark 4.1 (b)), if ? is a (semi)star operation

on D (hence ?f � tD), then T is t{
at over (D;?) if and only if T is t{
at over

D.

(f) Let ? (respectively, ?0) be a semistar operation on D (respectively, T ). The

overring T is (?; ?0){
at over D if and only if, for each quasi{?0f {maximal ideal

N of T , (N \D)?f 6= D? and DN\D = TN .

(g) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, T , S).
Assume that S is (?; ?00){
at over D and that each quasi{?0f {maximal ideal of T

is the contraction of a quasi{?00f {(maximal)ideal of S, then T is (?; ?0){
at over

D.

(h) Let ? (respectively, ?0, ?00) be a semistar operation on D (respectively, T , S).
Assume that S is (?; ?00){
at over D. Then S is (?0; ?00){
at over T if and only

if S is (?0; ?00){linked with T . 2

Remark 4.3 (a) When ? is a proper semistar operation on D (that is D?
6= D), the

equivalence of the second part of statement (e) in the previous lemma fails to be true

in general. Indeed, if ? = eD then each t{
at overring T of D is not t{
at over (D;eD),
since T is not (eD; tT ){linked with D. An example in case ? 6= eD is given next.

Let D be a Pr�ufer domain with two prime ideals P 6� Q. Let T := DP and consider
? := ?fDQg as a semistar operation of �nite type on D. Then T is t{
at over D (since
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T is 
at over D), but T is not t{
at over (D;?). Indeed, we have that M := PDP is
a t{ideal of T and (M \D)? = P ? = PDQ = DQ = D?.

(b) Note that, for each semistar operation ? on D, D? is (?; _?){linked to D (Lemma

3.1 (e)), but in general D? is not (?; _?){
at over D. For instance, if T is a proper non-


at overring of D and if ? := ?fTg, then D? = T , _? = dT and T is not (?fTg; dT ){
at
over D.

(c) Let fT� j � 2 �g be a family of overrings of D and let �� be a semistar operation

de�ned on T�, for � 2 �. Set T := \fT� j � 2 �g and denote by �� the semistar
operation on T associated to the family f(T�; ��) j � 2 �g (Example 2.1 (4)). If T�
is (?; ��){
at over D, for each � 2 �, is T (?; ��){
at over D ?

The answer is negative, in general. For instance, let V := C + M be a valuation
domain with unbranched maximal ideal M and let D :=R+M � V . By [15, Exercise

5 (a), p. 340], the domain D has the QQR{property, but it is not a Pr�ufer domain.

By [26, Proposition 2.8], there exists an overring T of D which is not t{
at (note that,

necessarily, T = \fDP j P 2 �g for some subset � of the prime spectrum of D). Let

? := tD and let �P := tDP , for each P 2 �. Then, obviously, DP is ((?; �P ){)
at over

D, for each P 2 �, but T is not (?; ��){
at over D. Indeed, we have (��)f � tT , so if

T was (?; ��){
at over D, then T would be t{
at over D (Lemma 4.2 (d)).

Let ? be a semistar operation on an integral domain D with �eld of quotients K,

if � is a multiplicative system of ideals of D, then we set �? := fI? j I 2 �g. It is

easy to verify that �? is a _?-multiplicative system of _?-ideals of D? (i.e., if I?; J? 2 �?

then (I? � J?) _? = (I � J)? 2 �?).

If � is a multiplicative system of ideals of D, then:

D
?
�? := fz 2 K j zI

?
� D

?
; for some I 2 �g

is an overring of D? (and of D� := fz 2 K j zI � D ; for some I 2 �g), called the

generalized ring of fractions of D? with respect to the _?-multiplicative system �?.

Proposition 4.4 Let D be an integral domain and T be an overring of D. Let ?
(respectively, ?0) be a semistar operation on D (respectively, on T ). The following

statements are equivalent:

(i) T is (?; ?0){
at over D;

(ii) T is (?; ?0){linked with D and, for each prime ideal P of D, either (PT )?
0
f = T ?

0

or T � DP ;

(iii) T is (?; ?0){linked with D and, for each x 2 T , x 6= 0, ((D :D xD)T )?
0
f = T ?

0

;

(iv) T is (?; ?0){linked with D and T
e?0 = \fDQ\D j Q 2M(?0f )g;

(v) T is (?; ?0){linked with D and, there exists a multiplicative system of ideals �

in D such that T
e?0 = D~?

�~? and (IT )?
0
f = T ?

0

for each I 2 �.

Moreover, each of the previous statement is a consequence of the following:

(vi) T is (?; ?0){linked with D and, for each quasi{?f {prime ideal P of D, TDnP is


at over DP .
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Proof. (i) ) (ii). Let P be a prime ideal of D. Assume that (PT )?
0
f 6= T ?

0

then
there exists Q 2 M(?0f ) such that PT � Q, and so P � Q \ D. Therefore, by the

assumption, DP � DQ\D = TQ � T .

(ii) ) (iii). Let 0 6= x 2 T . Assume that ((D :D xD)T )?
0
f 6= T ?

0

, then there exists

Q 2 M(?0f ) such that (D :D xD)T � Q. We have (D :D xD) � Q \ D =: P and

(PT )?
0
f 6= T ?

0

. Hence, by assumption, T � DP . Write x = d

s
, for some d 2 D and

s 2 D n P . Then s 2 (D :D xD) � P , which is impossible.

(iii) ) (iv). By the de�nition of e?0 we have that T
e?0 = \fTQ j Q 2 M(?0f)g, and

hence \fDQ\D j Q 2 M(?0f )g � T
e?0 . For the reverse inclusion, let x 2 T , x 6= 0,

then ((D :D xD)T )?
0
f = T ?

0

. Let Q 2 M(?0f ). Then (D :D xD)T 6� Q, that is
(D :D xD) 6� Q \ D. So x 2 DQ\D. Thus T � DQ\D, and hence TQ = DQ\D.

Therefore T
e?0
� DQ\D for each Q 2M(?0f ) and so we conclude that T

e?0 = \fDQ\D j

Q 2 M(?0f )g.

(iv) ) (i). Let Q 2M(?0f ). Then T � T
e?0
� DQ\D. Hence TQ � DQ\D. The reverse

inclusion is trivial.

(ii) ) (v). Let � := fI nonzero ideal of D j (IT )?
0
f = T ?

0

g. The set � is a multi-
plicative system of ideals of D. Hence �~? = fI~? j I 2 �g is a _~?{multiplicative system

of _~?{ideals of D~?. Let x 2 D~?
�~?. Then xI � xI~? � D~?, for some I 2 �. Since

D~?
� T

e?0 (Remark 3.3 (b)), then xIT � T
e?0 , and hence x(IT )

e?0
� T

e?0 . On the other

hand, since (IT )?
0
f = T ?

0

, then necessarily (IT )
e?0 = T

e?0 . Hence xT
e?0
� T

e?0 and so

x 2 T
e?0 . Therefore D~?

�~? � T
e?0 .

For the opposite inclusion, let 0 6= x 2 T
e?0 . Set I := (D :D xD). We claim that

(IT )?
0
f = T ?

0

(i.e. I 2 �). Otherwise, as in the proof of (ii) ) (iii), there exists

Q 2 M(?0f ) such that I � Q \D and T � DQ\D. Hence T
e?0
� TQ � DQ\D. Write

x = d

s
for some d 2 D and s 2 D n (Q \D). Therefore s 2 (D :D xD) � Q \D, which

is impossible.
Finally, in general, we have xIe? = (xI)e? � (x(D :K xD))e? = De?. So x 2 D~?

�~? (i.e.

T
e?0
� D~?

�~?), hence we conclude that T
e?0 = D~?

�~? .

(v) ) (iv). The inclusion \fDQ\D j Q 2 M(?0f )g � T
e?0 is clear. Now, let x 2

T
e?0 = D~?

�~? . Then there exists a nonzero ideal I 2 � such that xI � De?. Let

Q 2 M(?0f ). Since I 2 � then, by assumption, (IT )?
0
f = T ?

0

and, thus, I 6� Q \D.

Let s 2 I n (Q \ D), then sx 2 De?. On the other hand, since (Q \ D)?f 6= D?

(Proposition 3.2), there exists M 2M(?f ) such that Q \D �M . Therefore we have

that De? � DM � DQ\D and so sx 2 DQ\D, thus x 2 DQ\D. Hence we conclude that

T
e?0
� \fDQ\D j Q 2M(?0f )g.

(vi) )(i). Let Q be a quasi{?0f {prime ideal, and let P be a quasi{?f {prime of D such
that (Q \ D)?f � P (Proposition 3.2). Since QTDnP is a prime ideal of TDnP such

that QTDnP \DP = (Q \D)DP and, by assumption, TDnP is 
at over DP , then we

conclude that DQ\D = (DP )(Q\D)DP
= (TDnP )QTDnP

= TQ.
2

Theorem 4.5 Let D be an integral domain and T be an overring of D. Let ? (respec-

tively, ?0) be a semistar operation on D (respectively, on T ). The following statements
are equivalent:
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(i) T is (?; ?0){
at over D;

(ii) Na(T; ?0) is a 
at overring of Na(D;?);

(iii) T is (e?; e?0){
at over D;

(iv) T
e?0 is a ( _~?;

_e?0){
at overring of D~?.

Proof. Since Na(D;?) = Na(D;e?) = Na(De?; _e?) and, similarly, Na(T; ?0) = Na(T; e?0)
= Na(T

e?0 ;
_e?0) (Lemma 2.4 (i)), it suÆces to show that (i) , (ii).

(i) ) (ii). Since T is (?; ?0){linked to D, then Na(D;?) � Na(T; ?0), by Theo-

rem 3.8. Now, let N be a maximal ideal of Na(T; ?0). Then N = QNa(T; ?0) =

QTQ(X)\Na(T; ?0), for some Q 2 M(?0f ) (cf. also Lemma 2.4 (e)), and Na(T; ?0)N =
Na(T; ?0)QNa(T;?0) = TQ(X) = DQ\D(X), because of Corollary 2.5 and, by assump-

tion, DQ\D = TQ . On the other hand, by semistar linkedness, (Q \ D)?f 6= D?

(Proposition 3.2) then we have that Na(D;?)(Q\D)Na(D;?) = DQ\D(X) (Corollary 2.5).

One can easily check that N \Na(D;?) = (Q \D)Na(D;?). Therefore Na(T; ?0)N =

Na(D;?)N\Na(D;?), as desired.

(ii) ) (i). Since Na(D;?) � Na(T; ?0), then T is (?; ?0){linked to D (Theorem 3.8).
Let Q be a quasi{?0f {maximal ideal of T and set N := QNa(T; ?0), then Na(T; ?0)N =

Na(T; ?0)QNa(T;?0) = TQ(X) (Corollary 2.5). On the other hand, by 
atness, we have

Na(T; ?0)N = Na(D;?)N\Na(D;?) = Na(D;?)(Q\D)Na(D;?). Since, by semistar linked-
ness, (Q \D)?f 6= D? (Proposition 3.2), then we have that Na(D;?)(Q\D)Na(D;?) =

DQ\D(X) (Corollary 2.5). Therefore TQ(X) = DQ\D(X) and so TQ = DQ\D. Hence

T is (?; ?0){
at over D. 2

The following result sheds new light on the statement (vi) of Proposition 4.4.

Proposition 4.6 Let D be an integral domain and T be an overring of D. Let ? be
a semistar operation on D and let ` := `?;T be the semistar operation on T introduced

in Section 3. The following statements are equivalent:

(i) T is (?; `){
at over D;

(ii) for each prime ideal P of D, either (PT )` = T ` or T � DP ;

(iii) for each x 2 T , x 6= 0, ((D :D xD)T )` = T `;

(iv) T ` = \fDN\D j N is a prime ideal of T ; maximal with the property

(N \D)?f 6= D?
g;

(v) for each prime ideal Q of T such that (Q \D)?f 6= D?, then DQ\D = TQ;

(vi) for each prime ideal N of T , maximal with respect to the property (N\D)?f 6=

D?, then DN\D = TN ;

(vii) for each quasi{?f {prime ideal P of D, TDnP is 
at over DP ;

(viii) for each nonzero �nitely generated fractional ideal F of D, ((D :K F )T )` =

(T ` :K FT ).

Proof. Note that the set of quasi{`{prime (respectively, quasi{`{maximal) ideals of T

coincides with the set of prime ideals Q of T such that (Q \D)?f 6= D? (respectively,

the set of prime ideals N of T , maximal with the property (N\D)?f 6= D?). Therefore,
the statements (i) { (vi) are equivalent by Proposition 4.4 and Proposition 3.12 (3).
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(v)) (vii). Let P be a quasi{?f {prime ideal of D. Let N be a maximal ideal of TDnP .
Then N \D � P and, hence, ((N\T )\D)?f 6= D?. So DN\D = TN\T . On the other

hand, we have (TDnP )N = TN\T , and (DP )N\DP = (DP )(N\D)DP
= DN\D. Hence

(DP )N\DP = (TDnP )N , as desired.

(vii) ) (viii). We have ((D :K F )T )` = \f(D :K F )TDnP j P is a quasi{?f { prime
of Dg. As TDnP is DP {
at (hence, TDnP is also D{
at) and F is �nitely generated,

then (D :K F )TDnP = (TDnP :K FTDnP ) = (T :K FT )TDnP , for each quasi{?f {prime

P of D. Hence ((D :K F )T )` = \f(T :K FT )TDnP j P is a quasi{?f {prime of Dg

= (T :K FT )` = (T ` :K FT ) (since ` is stable; Example 2.1 (5) and Proposition 3.12

(1)).

(viii) ) (iii). Take F := D+ xD. 2

It is well-known that a domain with all its overrings 
at (or, equivalently, with all its
overrings t{
at) coincides with a Pr�ufer domain (cf. [33, Theorem 4], [26, Proposition

2.8]). The following proposition deals with a similar question in the semistar case.

Theorem 4.7 Let D be an integral domain and ? a semistar operation on D. The

following statements are equivalent:

(i) For each overring T ofD and for each semistar operation ?0 on T , T is (?; ?0){
at

over D;

(ii) Each overring T of D is (?; dT ){
at over D;

(iii) Each overring T of D is t{
at over (D;?);

(iv) D is a Pr�ufer domain in which each maximal ideal is a quasi{?f {maximal ideal.

Proof. (i) ) (ii) is obvious.

(ii) ) (iii) is a consequence of dT � tT (Lemma 4.2 (c)).

(iii) ) (iv). Since semistar 
atness implies semistar linkedness, then, by Theorem 3.9,

each maximal ideal is a quasi{?f {maximal ideal. On the other hand, since an overring

t{
at over (D;?) is also t{
at over D (Remark 4.1 (b)), then each overring of D is

t{
at over D. Hence, by [26, Proposition 2.8], D is a Pr�ufer domain.

(iv) ) (i). Let T be an overring of D and ?0 a semistar operation on T . Let Q be a

quasi{?0f {prime ideal of T . Then Q \D is contained in a maximal ideal of D which

is, by assumption, a quasi{?f {maximal ideal of D. Therefore (Q\D)?f 6= D?, and so

T is (?; ?0){linked with D. The equality TQ = DQ\D is a consequence of the fact that

T is an overring of the Pr�ufer domain D [15, Theorem 26.1]. 2

5 Pr�ufer semistar multiplication domains

As an application of the previous sections, our goal is to give new characterizations

of Pr�ufer semistar multiplication domains, in terms of semistar linked overrings and

semistar 
atness.

Let D be an integral domain and ? a semistar operation on D. Recall that D

is a P?MD (Pr�ufer ?{multiplication domain), if each F 2 f(D) is ?f -invertible (i.e.,
(FF�1)?f = D?).
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The notion of P?MD is a generalization of the notion of Pr�ufer v{multiplication domain
(cf. [15, page 427], [17], [29]) and so, in particular, of Pr�ufer domain. When ? = d

(where d is the identity (semi)star operation on D) the PdMDs are just the Pr�ufer

domains. If ? = v (where v is the v-(semi)star operation on D), we obtain the notion
of PvMD.

Remark 5.1 (a) The notions of P?MD and P?fMD coicide. In particular, a PvMD
coincides with a PtMD.

(b) Let ?1 and ?2 be two semistar operations on D such that ?1 � ?2. If D is a

P?1MD, then D is also a P?2MD. In particular, if ? is a (semi)star operation on D,

and hence ? � v [15, Theorem 34.1 (4)], then a P?MD is a PvMD. Also, since d � ? for
any semistar operation ?, then a Pr�ufer domain is a P?MD for any arbitrary semistar

operation ? on D.

(c) In the semistar case (i.e. if ? is a proper semistar operation), a P?MD is not
necessarily integrally closed [9, Example 3.10].

We recall some of the characterizations of P?MDs proved in [9]:

Theorem 5.2 [9, Theorem 3.1, Remark 3.2] Let D be an integral domain and ? a

semistar operation on D. The following statements are equivalent:

(i) D is a P?MD;

(ii) DQ is a valuation domain, for each Q 2M(?f );

(iii) Na(D;?) is a Pr�ufer domain;

(iv) D is a P~?MD.

Moreover, if D is a P?MD, then ~? = ?f . 2

The following theorem is \a semistar version" of a characterization of the Pr�ufer

domains proved by E. Davis [4, Theorem 1]. It generalizes properly [6, Theorem 2.10],

stated in the case of t-operations (cf. also [29, Theorem 5.1] and [23, Corollary 3.9]).

Recall that an integral domain D, with �eld of quotients K, is seminormal if, whenever

x 2 K satis�es x2; x3 2 D, then x 2 D, [16].

Theorem 5.3 Let D be an integral domain , T an overring of D, ? a semistar oper-

ation on D and let ` := `?;T be the semistar operation on T introduced in Section 3.
The following statements are equivalent:

(i) For each overring T and for each semistar operation ?0 such that T is (?; ?0){

linked to D, T
e?0 is integrally closed.

(ii) For each overring T of D, T `?;T is integrally closed.

(iii) Each overring T , t{linked to (D;?), is integrally closed.

(iv) Each overring T , (?; dT )-linked to D, is integrally closed.

(v) De? is integrally closed and, for each overring T and for each semistar operation

?0 on T such that T is (?; ?0){linked to D, T
e?0 is seminormal.
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(vi) De? is integrally closed and each overring T , t{linked to (D;?), is seminormal.

(vii) De? is integrally closed and each overring T , (?; dT )-linked to D, is seminormal.

(viii) D is a P?MD.

Proof. (i) ) (ii). It follows from Proposition 3.12 (3) and (4), by taking ?0 = `?;T .

(ii) ) (iii) follows from Proposition 3.16.

(iii) ) (iv). Obvious since dT � tT (Lemma 3.1 (c)).

(iv)) (v). Let (T; ?0) be such that T is (?; ?0){linked toD. Let P be a quasi{?f {prime

ideal of D. By Example 3.4 (1), TDnP is (?; dT;P ){linked to D. Hence, by assumption,

TDnP is integrally closed. In particular (for (T; ?0) = (D;?)), DP is integrally closed,

and hence De? is integrally closed. On the other hand, if Q is a quasi{?0f {prime ideal

of T , there exists P a quasi{?f {prime ideal of D such that Q \D � P (Proposition

3.2). Hence TDnP � TQ and so TQ is integrally closed, since TDnP is. Therefore, T
e?0

is integrally closed; in particular, T
e?0 is seminormal.

(v) ) (vi) is obvious and (vi) ) (vii) is a consequence of dT � tT (Lemma 3.1 (c)).

(vii) ) (viii). We want to show that, for each quasi{?f {maximal ideal P of D, DP is a

valuation domain (Theorem 5.2), i.e., if x is a nonzero element of the quotient �eld K

of D, then either x or x�1 is in DP . Note that, from the assumption, it follows that

DP = D~?
PDP\D

~? is integrally closed. If we set T := D[x2; x3] then (by Example 3.4

(1)) TDnP = D[x2; x3]DnP = DP [x
2; x3] is (?; dT;P ){linked to D thus, by assumption,

DP [x
2; x3] is seminormal, i.e., x 2 DP [x

2; x3]. Hence x is the root of some polynomial
f with coeÆcients in DP and with the coeÆcient of the linear term equal to 1. This

implies that either x or x�1 is in DP , by [24, Theorem 67].

(viii) ) (i). Let T be an overring of D (?; ?0){linked to D. For each quasi{?0f {maximal

ideal N of T , let P be a quasi{?f {maximal ideal P of D, such that N \ D � P

(Proposition 3.2), thus DP � TDnP � TN . Since D is a P?MD, then DP is a valuation

domain, hence TN is also a valuation domain and so T
e?0 = \fTN j N 2 M(?0f )g is

integrally closed. 2

The following result generalizes [29, Theorem 5.1] (cf. also [23, Corollary 3.9]).

Corollary 5.4 Let D be an integral domain and T be an overring of D. Let ?

(respectively, ?0) be a semistar operation on D (respectively, on T ). Assume that D

is a P?MD and that T is (?; ?0){linked to D, then T is a P?0MD.

Proof. If S is an overring of T and ?00 a semistar operation on S such that S is

(?0; ?00){linked to T , then S is (?; ?00){linked to D (Lemma 3.1 (b)). By Theorem 5.3

((viii) ) (i)) S
f?00 is integrally closed. The conclusion follows from Theorem 5.3 ((i)

) (viii)). 2

Corollary 5.5 Let D be P?MD for some semistar operation ? on D. Then:

(a) For each overring T of D, T is a P _?TMD.

(b) Each t{linked overring to (D;?) is a PvMD. In particular, D[?] is a PvMD and if,

moreover, (D : D?) 6= 0, then the complete integral closure eD of D is a PvMD.
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Proof. (a) follows from Corollary 5.4 and Lemma 3.1 (e). The �rst statement in (b)

is a particular case of Corollary 5.4; the remaining part is a consequence of the �rst

part and of Corollary 3.6. 2

Note that Corollary 5.5 (b) generalizes the fact that the pseudo{integral closure,

D[v], of a PvMD, D, is still a PvMD [3, Proposition 1.3].

Remark 5.6 The integral closure D0 of an integral domain D is not in general t-linked
over D [5, Example 4.1]. But, each domain D has a smallest integrally closed t-linked

overring, namely D0 `t
D
;D0

= \fD0
DnP j P is a t � prime ideal of Dg [6, Proposition

2.13 (b)].

In the semistar case, D0 is always (?; `?;D0 ){linked to D, for any semistar operation

? on D (Proposition 3.12 (3)). Also note that `?;D0 is the unique minimal semistar

operation in the set of semistar operations ?0f , where ?
0 is a semistar operation on D0

such that D0 is (?; ?0){linked to D (Proposition 3.12 (5)). Therefore, D0 is t{linked

over D if and only if `t
D
;D0 � tD0 (Lemma 3.1 (c)) or, equivalently, if and only if

`t
D
;D0 is a (semi)star operation on D0 (i.e. D0 = D0 `t

D
;D0

).

The next theorem of characterization of P?MDs is a \semistar analogue" of Rich-

man's 
at-theoretic theorem of characterization of Pr�ufer domains [33, Theorem 4]. A
special case of the following result, concerning the t-operations, was obtained in [26,

Proposition 2.10].

Theorem 5.7 Let D be an integral domain, ? a semistar operation on D, T an

overring of D and let ` := `?;T be the semistar operation on T introduced in Section
3. The following statements are equivalent:

(i) D is a P?MD.

(ii) For each overring T of D and for each semistar operation ?0 such that T is

(?; ?0){linked to D, T is (?; ?0){
at over D.

(iii) For each overring T of D, T is (?; `?;T )-
at over D.

(iv) For each overring T of D, t{linked to (D;?), T is t{
at over (D;?).

(v) For each overring T of D such that T is (?; dT )-linked to D, T is (?; dT ){
at

over D.

Proof. (i) ) (ii). Let T be an overring and ?0 a semistar operation on T such that

T is (?; ?0){linked to D. Let Q be a quasi{?0f {prime of T such that (Q \D)?f 6= D?.

Then Q \D � P for some quasi{?f {maximal ideal P of D. Thus DP � DQ\D � TQ.
Since D is a P?MD, then DP is a valuation domain (Theorem 5.2), hence TQ is also

a valuation domain and TQ = DQ\D. Hence T is (?; ?0){
at over D.

(ii) ) (iii) is a trivial consequence of Proposition 3.12 (3).

(iii) ) (ii). Let T be an overring and ?0 a semistar operation on T such that T is

(?; ?0){linked to D. Then `?;T � ?0f (Proposition 3.12 (5)). Hence T is (?; ?0){
at over

D (Lemma 4.2 (c)).

(ii) ) (iv) is obvious.
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(iv) ) (v). Let T be an overring (?; dT )-linked to D, and let Q be a prime ideal of T .
We have (Q \D)?f 6= D? (Proposition 3.2). Let P be a quasi{?f {maximal ideal of D

such that Q\D � P , thus DP � TDnP � TQ. Let (V;M) be a valuation overring of D

such that M \D = P . Then D � VDnP = V is t{linked with (D;?) (Example 3.4 (1)),
and hence V is t{
at over (D;?), by assumption. So V = DM\D = DP . Therefore

TQ (� DP ) is also a valuation domain and TQ = DQ\D, thus T is (?; dT )-
at over D.

(v) ) (i). Let P be a quasi{?f {prime ideal of D. Let T be an overring of DP (and

hence of D). Note that, in this situation, T = TDnP . Hence T is (?; dT ){linked to
D (Example 3.4 (1)). So T is (?; dT ){
at over D, by assumption. Therefore, if N is

a maximal ideal of T , then TN = DN\D. Hence TN = (DP )(N\D)DP
= (DP )N\DP

(since N \D � P ). That is, T is DP {
at. By a result proved by Richman [33, Lemma
4], we deduce that DP is a valuation domain. Hence D is a P?MD (Theorem 5.2). 2
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