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Kaplansky Ideal Transform: A Survey

Marco Fontana  Universita degli Studi “Roma Tre”, Italy

0 INTRODUCTION

In 1956, M. Nagata [N1] introduced the ideal transform Tg(I) = Up(R : I™) of an
integral domain R with respect to an ideal I of R (cf. (3.3)). This transform proved
very useful in his series of papers on the Fourteenth Problem of Hilbert (cf. [N1],
[N2], [N3], [N4] and [N5]).

Hilbert’s XIV'" Problem
Let k be a field, z1,z9,...,, algebraically independent elements over k and let L be
a subfield of k(xy,xa,...,z,) containing k. Is the ring klxy,z2,...,2,) N L finitely
generated over k?

Hilbert’s problem was motivated by the following problem of invariant theory:

Hilbert’s XIV*" Problem (strict form)

Let k be a field, x1,z,,...,x, algebraically independent elements over k and let G be
a subgroup of GL(n,k). Is the ring of invariants, klxy, z2,. ..,zn]G, subring of the
polynomial ring klxy,xa,. .., z,], finitely generated over k?

Positive answers to the Hilbert’s XIV'" problem were given, in particular cases, by
D. Hilbert, E. Fischer, E. Noether and H. Weyl (cf. for instance [N5, Chapter 0]).
The next significant contributions were made after Zariski generalized, in 1954, the
original form of the problem in the following way:

Zariski’s Problem [Z]
Let k be a field and A a finitely generated and integrally closed k-algebra with quotient
field K. Let L be a subfield of K containing k. Is ANL a finitely generated k-algebra?

Zariski answered this question, in the affirmative, when tr.degiL < 2 and D. Rees
in 1957 [Re] gave a counterexample when tr.degi L = 3. Finally, in 1959, Nagata [N2)]
gave a counterexample to Hilbert's XIVt" Problem, when tr.deg, L = 4.

One of the key steps for a negative solution to this type of problem, made by Nagata
[N1], lies in the following result that shows clearly the réle of the ideal transform:
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A finitely generated field extension L of a given field k is called a Zariski field over k,
if for each finitely generated and integrally closed k-algebra A with quotient field K
and K 2 L, then AN L is a finitely generated k-algebra. Then, L is a Zariski field if
and only if, for each finitely generated and integrally closed k-algebra B, with quotient
field L, and for each ideal I of B, the ideal transform Tg(I) is finitely generated over
B.

Ideal transforms have been proved to be very useful in other contexts of commu-
tative algebra.

Nagata [N7] noted that the ideal transform Tr(I) may be used in the study of the
Catenary Chain Conditions.

Brewer [Br] introduced the ideal transform in the study of the overrings of an inte-
gral domain. After his work, several authors pursued the investigation of overrings by
related means (cf., for instance, Brewer-Gilmer [BrG], Arnold-Brewer [AB|, Heinzer-
Ohm-Pendleton [HOP]|, Gilmer-Huckaba [GHu|, Hedstrom [Hel], [He2], Hays [Hy],
Anderson-Bouvier [AnB]|, Fontana-Popescu [FP3], Fontana-Houston [FH]).

The ideal transform was also studied intensively in the not necessarily integral
domain setting and the problem of when Tg(I) is finitely generated, flat or integral
over R was investigated by Anderson [A], Brodmann [Bro|, Jitem [J], Katz [Ka],
Kiyek [Ki], McAdam-Ratliff [MR], Matijevic [Ma], Nishimura [Ni], Schenzel [S1], [S2],
Zoschinger [Z3)].

Ideal transform are also closely tied in with local cohomology and with affineness
of the open subspaces of the prime spectrum (cf. Hartshorne [Ha], Serre [Se], Arezzo-
Ramella [AR], Ohi [O] and the following Section 4).

However, outside of Noetherian setting, the behaviour of the ideal transform, as
defined by Nagata, is not entirely satisfactory. For instance, in the study of the
overrings, Brewer and Gilmer [BrG] obtained complete results, when considering ideal
transforms with respect to finitely generated ideals, but only partial results (and
conjectures) in the general case. Another aspect of the non satisfactory behaviour
of the ideal transform, as defined by Nagata, will be examined in this paper when,
in Section 4, we will look for a general result on the affineness of the open subspace
D(I) := {P € Spec(R): P 2 I}.

In the case of a non finitely generated ideal I of an integral domain R with quotient
field K, a variant of the notion of ideal transform was introduced by Kaplansky [K2].
We call the Kaplansky (ideal) transform of R with respect to an ideal I of R the
following overring of R:

Qr(I):={z€e K:rad(R:g 2R) 2 I} .

Note that 2g([) is an overring of the Nagata (ideal) transform of R with respect to
I, since
Tr(I) ={z€ K : (R:g zR) 2 I" for some n > 1}

and, if I is finitely generated, Qg(I) = Tr(I).

A natural and general approach to ideal transforms is to use multiplicative systems
of ideals and generalized ring of fractions. This is the point of view that will be used
in the present paper.

In Section 1, we review and complete some properties, concerning localizing systems
of ideals and flatness, partially contained in [FHP, Chapter 5], in [HOP] and in a
paper by Gabelli (Ga] published in this volume. In particular, we focus our attention
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on spectral localizing systems and to related overring properties (e.g. QQR, GQR,
FQR).

The second section is devoted to the study of flatness and finiteness of the overrings
of an integral domain, by means of localizing systems. In particular, in this section we
introduce and study a new class of saturated multiplicative systems of ideals, defined
as follows: given a family of ideals of a domain R, T := {I, : a € A}, consider
K(Z) := {J : rad(J) 2 [Ti; Iax, where n > 1 and {a1,a2,...,a,} C A}. The
multiplicative system of ideals K(T), in several relevant cases, is a localizing system.
Furthermore, in the Noetherian case, every localizing system is of the type X(I), for
some family of ideals 7 (Lemma 2.9). Among other results, following the lines of a
paper by E.L. Popescu [Po], we recover, in the integral domain case, a result proved
by Schenzel [S3] on when a flat algebra is of finite type (Theorem 2.11).

In Section 3, we introduce the Kaplansky transform Qg(I) of an ideal I in a integral
domain R as the ring of fractions of R with respect to the spectral localizing system
associated to the open set D(I) = {P € Spec(R) : P 2 I}. After verifying that
this definition is equivalent to the classical one, given above [K2, p. 57], we recover
the principal properties of the Kaplansky transform and its links with the Nagata
transform. Following some ideas of Hays [Hy] (also developed later by Rhodes [Rh]),
we study the Q-ideal I? (i.e. the unique maximal element in the set of the ideals J
of R such that Q(J) = Q(I)). Among other properties, we give in Proposition 3.17
a “topological” interpretation of I', when considering the Zariski topological space
Loc(R) of the localizations of R [ZS]. From this topological point of view, we are led
to consider the following radical ideal of R, associated to each R-submodule E of the
quotient field of R:

Q7 (E) := () rad((R :r zR)) .
zEE

We show that the operators {2 and 2~ establish a “sort of duality” between radical
ideals and overrings of R (Theorem 3.26). In particular, we reobtain, for the integral
domain case, some of the results proved by Rhodes [Rh] in the commutative ring case.

In the last section, we start by recalling a “geometric” interpretation of the Nagata
transform. More precisely, if R is a Noetherian domain, Spec(Tr(I)) is canonically
homeomorphic to the open subspace D(I) = {P € Spec(R) : P 2 I} if and only
if ITR(I) = Tr(I) (Proposition 4.1). If R is not Noetherian, D(I) may be an affine
space even if ITr(I) # Tr(I). The main result of this section is a generalization of the
characterization of the affineness of the open subspace D(I) in the non (necessarily)
Noetherian setting, by using the Kaplansky transform Qg(I) instead of the Nagata
transform Tr(I) (Theorem 4.4).

1 SPECTRAL LOCALIZING SYSTEMS

Let R be an integral domain with quotient field K. A multiplicative system (of ideals)
of R is a set S of integral ideals of R closed under multiplication. The overring

(1.1) Rs:={zeK:zI C Rforsomel €S} =U{(R:I):1I¢€ S}

is called the generalized transform or the (generalized) ring of fractions of R with
respect to S (cf. [HOP], [H], [AB], [BS]). Note that, if S is a multiplicative system of
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R, then also

(1.2) 8 :={J: J an ideal of R such that J D I for some I € S}
is a multiplicative system of R, called the saturation of S, and, moreover
(1.3) Rz =Rs .

Obviously, a saturated multiplicative system is a multiplicative system S such that
S = S. We will concentrate our attention on the case where S is non-trivial i.e.
S # 0 and (0) ¢ S (or, equivalently, S is a non-trivial subset of ideals of R).

Given a multiplicative system of ideals S of R and a fractional ideal I of R, we set

(1.4) Is:=U{(I:J):Je S}.
It is easy to see that Is is a fractional ideal of Rs and
(1.5) IRs Cls .

LEMMA 1.1. Let S be a multiplicative system of ideals of R and S the saturation
of §. SetT := Rz and T := {JT : J € S}, then T is a multiplicative system of ideals
of T. Let T be the saturation of T and set:

V(S):={P € Spec(R): P¢S}, V(T):={Q € Spec(T):Q ¢ T} .

Then
(1) If I is an ideal of R B
Is=Rs&1€eSs.

(2) The map
V(S) —V(T), P~ Ps

is an order-preserving bijection, with inverse map Q — Q N R.
Moreover, Rp = Tp, for each P € V(3).

Proof: [Ga, Lemma 1.1] and [AB, Theorem 1.1].
a

We will say that a multiplicative system of ideals S of R is finitely generated if, for
each I € S, there exists a finitely generated ideal J of R such that J C I and J € S.

A distinguished class of multiplicative systems of ideals is given by the localizing
(or topologizing) system of ideals introduced by Gabriel [Gb] (cf. also [B, Ch. 2
p.157], [P] and [St]). We recall that a localizing system (of ideals) F of R is a set of
integral ideals of R verifying the following conditions:

(LS1) IeFandICJ=JE€F
(LS2) I eF, Janideal of R such that (J:griR) € F, foreachi€ I,= J € F.

To avoid uninteresting cases, we will consider in general only non trivial localizing
systems, i.e. localizing systems F such that F # 0 and (0) ¢ F.

Since a localizing system F of R is a saturated multiplicative system of ideals of
R [FHP, Proposition 5.1.11], we can consider the (generalized) ring of fractions Rz
of R with respect to F. It can be shown that an overring of R can be a (generalized)
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ring of fractions with respect to a multiplicative system, but not with respect to a
localizing system (Example 1.18; cf. also [FP3, Theorem 2.5)).
If P is a prime ideal of R, we set

(1.6) F(P):={I:Ianidealof R, I ¢ P},

then it is easy to see that F(P) is a localizing system of R and Rr(py = Rp [FHP,
(5.1d)]. More generally, for each nonempty set A of prime ideals of R, we can consider

(1.7) F(A) :=n{F(P): Pe A}.
Since the intersection of localizing systems is a localizing system, we have [FHP,
Proposition 5.1.4]:

LEMMA 1.2. For each nonempty set A of prime idzals of an integral domain R,
F(A) is a localizing system of R and Rray = N{Rp : P € A}.

0

A localizing system F of R is called a spectral localizing system of R if F = F(A)
for some set A of prime ideals of R. Not every localizing system is spectral (Example
1.10).

LEMMA 1.3. Let A be a nonempty subset of Spec(R). If we denote by
(1.8) A':= {Q € Spec(R) : Q C P for some P € A}

the closure under generizations of A inside Spec(R), then for each set A, with A C
A C A, we have

(1.9) F(A) = F(A) (in particular, Rr(p) = Rr(a)) -

Proof: Since A C A, then F(A) C F(A). If I € F(A), then I € P for each P € A,
thus a fortiori I € Q for each Q € A, because A C A!. Therefore, I € F(A).
0O

By standard arguments on partially ordered sets [AM, Proposition 6.1], we have:

LEMMA 1.4. The following conditions are equivalent:
(i) each nonempty subset A of Spec(R) has a maximal element;
(ii) R satisfies the acc on prime ideals.

a

LEMMA 1.5. Let R be an integral domain satisfying the acc on prime ideals. If A
is a nonempty subset of Spec(R) and if Ag is the (nonempty) subset consisting of the

mazimal elements of A, then
F(A) = F(Ao) .

Proof: Since A' = A}, the conclusion follows from Lemma 1.3.
o

If we start from a nontrivial localizing system F of R, we can associate to F the
following nonempty subset of Spec(R):

(1.10) V(F):={P € Spec(R): P ¢ F} .
It is easy to see that V(F) = V(F)! and [FHP, (5.1¢)]:
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LEMMA 1.6. For each nontrivial localizing system F of R,
F CF(V(F) .

a
Conversely, if we start from a nonempty subset A of Spec(R), we have:

LEMMA 1.7. Let F = F(A) be a spectral localizing system of an integral domain
R, then

(1) V(F) = AL

(2) F=F(V(F).

Proof: (1) If we show that A C V(F) C A', then the conclusion will follow because
V(F) = V(F)!. Since, for each prime ideal P, P ¢ F(P), then it is clear that
PceA=s>P¢F(A)=PeV(F).

Moreover, if @ € V(F) then Q ¢ F = N{F(P) : P € A}, hence there exists P € A
such that @ ¢ F(P). Therefore Q C P for some P € A.
(2) follows from (1) and Lemma 1.3.
O

COROLLARY 1.8. For each integral domain R, the map
{F : F is a spectral localizing system of R} — {A C Spec(R) : A = A}, F s V(F)

s an order—reversing bijection.

O

Given a spectral localizing system F = F(A), we say that A is irredundant for F
if F(A) # F(A N P) for each P € A.

We say that F is an irredundant spectral localizing system if there exists A C
Spec(R) such that 7 = F(A) and A is irredundant for F. A nonempty subset A of
Spec(R) is called 0-dimensional if, for each pair of distinct prime ideals P and Q in
A PZQ.

EXAMPLE 1.9. A spectral localizing system which is not irredundant.
Let V be a valuation domain, having the following prime spectrum:
(0):P0cP1cP2c---cP,,c~-cM=u{P,,:n20}.
Let 7 = N{F(Pp) :n > 0} = {M,V}. Clearly F is a spectral localizing system of V'
and V(F) = Spec(V) ~ {M}. It is easy to see that F is not irredundant.
EXAMPLE 1.10. A localizing system which is not spectral.

Let V be a n—dimensional valuation domain, with n > 2. Suppose that the maximal
ideal M of V' is idempotent. Then F = {M,V} is a non-spectral localizing system of
V, since F(M) = {V} and F(P) 2 {M,V} for each prime ideal P £ M.

The following result is due to S. Gabelli [Ga]:
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LEMMA 1.11. Let A be a nonempty subset of Spec(R), ordered under the set theo-
retical inclusion. Then A is irredundant for F(A) if and only if A is 0-dimensional.

O

COROLLARY 1.12. Let F be a nontrivial localizing system of R. Then F is
an irredundant spectral localizing system if and only if each prime ideal of V(F) is
contained in a mazimal element (of V(F)).

Proof: By Lemma 1.11, F is an irredundant spectral localizing system if and only
if there exists a O-dimensional subset A of Spec(R) such that F = F(A). Since
Al = V(F) (Lemma 1.7), then each Q € V(F) is contained in some P € A C
V(F). Therefore A necessarily coincides with the set of maximal elements of A(F).
Conversely, if Vg is the set of maximal elements of V(F), V, is obviously a 0-
dimensional subset of Spec(R) and F(V,) = F(V(F)) = F (Lemma 1.7 (2)).

a

COROLLARY 1.13. If R is an integral domain with acc on prime ideals, then each
spectral localizing system is irredundant.

Proof: This is an easy consequence of Corollary 1.12 and Lemma 1.4.
O

A relevant class of irredundant spectral localizing systems is the class of the finitely
generated localizing systems. We recall that a localizing system F is finitely generated
if, for each I € F, there exists a finitely generated ideal J € F with J C I. Every
finitely generated localizing system is spectral, in fact:

LEMMA 1.14. Let F be a localizing system of R. The following statements are
equivalent:
(i) F is a spectral localizing system of R;
(i) F = n{Fa : @ € A}, where F, is a finitely generalized localizing system of R,
for each a € A;
(iii) for each ideal I of R with I ¢ F, there erists a prime ideal P of R such that
ICPandP ¢F.

Proof: [FHP, Proposition 5.1.7].

From the previous lemma we can deduce the following:

COROLLARY 1.15. If F is a finitely generated loca[zzmg system, then F is a
spectral irredundant localizing system.

Proof: From Lemma 1.14 ((ii) = (i)), it is obvious that F is spectral and, from
Lemma 1.14 ((ii) = (iii)), we reobtain that F = F(V(F)) (cf. also Lemma 1.7). The
conclusion will follow from Corollary 1.12, if we show that every chain of prime ideals
of V(F) has an upper bound (in V(F)). In fact, if {P, : A € A} is a chain in V(F)
and if UyPy € F, then there exists a finitely generated ideal J C Uy Py with J € F.
It follows easily that J C P; for some A € A, and hence P; € F: a contradiction.

O

We note that not every irredundant spectral localizing system is finitely generated.
This fact is a consequence of the following:
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LEMMA 1.16. Let F be a localizing system of an integral domain R. The following
are equivalent:
(i) F is a finitely generated localizing system;
(ii) there exists a quasi-compact subspace A (i.c., every open covering of A has a
finite sub—covering) of Spec(R) such that F = F(A);
(iii) each prime ideal of V(F) is contained in a prime ideal of Vg := {P € V(F) :
P is a maximal element of V(F)} and V is a quasi-compact subspace of Spec(R).

Proof: [FHP, Proposition 5.1.8].
O

EXAMPLE 1.17. An irredundant spectral localizing system which is not finitely
generated.

Let R be a 1-dimensional Priifer domain with Max(R) = {M, : n > 0}, where
M, is principal for each n > 1 and My is not the radical of a finitely generated
ideal (for an explicit example cf. [FHP, Theorems 8.2.1, 8.2.2 and 4.1.6]). Let A :=
Max(R) ~ {Mo}. Then, clearly F := F(A) is an irredundant localizing system of R,
since A is O-dimensional (Lemma 1.11). But F is not finitely generated, since My € F
because My € M, for each n > 1; moreover, if I € F and I is finitely generated
with I C My, then I € M, for each n > 1, because F = N{F(M,) : n > 1}, hence
Mo = rad(I) and we reach a contradiction. In a different terminology, we can say that
A coincides with V(F) \ {0} and it is a O-dimensional non quasi-compact subspace
of Spec(R), because each point M,, € A is open and closed in the Zariski topology of
Spec(R), for n > 1.

For each overring T of R, we can consider
(1.11) A=AT):={NnR:N e Max(T)}

which is a quasi-compact subspace of Spec(R), being the continuous image of a quasi-
compact space. Therefore we can consider the finitely generated (irredundant spec-
tral) localizing system F(A) of R. Since Rynr C T, for each N € Max(T), it follows
easily that:

(1.12) RrpyCT.

It is natural to ask when Rz(5) = T. This is a particular case of the question of when
an overring is an intersection of localizations. We introduce some terminology.

A QR-overring (respectively: QQR-overring; GQR-overring; F QR-overring) T of
an integral domain R is an overring such that T = Rg (respectively: T = N{Rp:Pe
Y}; T = Rs; T = Ry) for some multiplicative set S of elements of R (respectively: for
some subset ¥ of Spec(R); for some multiplicative system S of ideals of R; for some
localizing system F of R). We call a P-domain an integral domain for which every
overring is a P-overring, where P € {QR,QQR,GQR, FQR}. 1t is rather obvious
that:

QR-domain = QQR-domain = FQR-domain = GQR-domain
and it is well known that:
Bézout domain = QR-domain = Priifer domain = QQR-domain

(cf. [G4], [GO], [R], [GH], [M], [Pe] and [D]). Moreover, in the integrally closed case,
Priifer domains, QQR-domains, FQR-domains and GQR-domains coincide (cf. [H,
Theorem 2.4], [FP2, Corollary 2.7] and [He3)).
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In [FP2, Proposition 2.10], it is proved that each overring of a FQR-domain is
still a #Q R-domain. The following example, due to Heinzer [H, Example 2.9], shows
not only that an overring of a GQ R-domain is not necessarily a GQR-domain, as
Heinzer proved, but also that there may exist an overring T of an integral domain R
such that T' = Rg, for some multiplicative system of ideals S of R, but T # Rz for
all localizing systems F of R.

EXAMPLE 1.18. A (generalized) ring of fractions Rs of an integral domain R
with respect to a multiplicative system of ideals S of R, which is not a (generalized)
ring of fractions Rx of R with respect to some localizing system F of R.

Let k C K be a proper minimal extension of fields and let Y be an indeterminate
over K. Pick a countable family of elements z; = Y, z5,z3,... in K[[Y]] algebraically
independent over K and set F':= K(x1,%2,%3,...,%n,...). We can consider

Ww:=K[Y]|nF =K+ M,, withMy:=YK[Y]|nF
which is a 1-dimensional discrete valuation domain with quotient field F'. Set

Ky :=K(zi,z2,...,Tp)
Fa=K({z;:i#n i>1})
W, = K[[Y”ﬂFﬁ=VoﬁFﬁ.

Let V,, be the 1-dimensional valuation domain of F, associated to the valuation v,
obtained extending to F' the valuation w,, (associated to W,,) by setting v,(z,) = ,
where 7 is a positive irrational number. It is easy to see that Vy ¢ {V,, : n > 1} and
VonK, =V,,NK, if m >n. Let

Ry:=k+My, S:=n{V,:n>1}, R:=RynS, T:=VnNS.

It is not difficult to prove that the integral closure of R is T, which is a 1-dimensional
Priifer domain. Furthermore, My = (R : Vp), Vo = (Mp : Mp) = (Ro : Myp) and
if So := {M{} : k > 1} then (Ro)s, = F, since NgM§ = (0). Therefore, V is not
a GQR-overring of Ry, since every proper saturated multiplicative system of ideals
of Ry contains Sg. However, Heinzer proved that R is a GQR-domain, even though
Ro = Rpynr is not GQR-domain. By [FP2, Proposition 2.10], we obtain that R is
not a F@R-domain because Ry = Rps,ng is not a FQR-domain. More explicitly,
set Py := My N R, then

Claim. V; = Rgs, where S is the multiplicative system of ideals of R given by {P¥I :
I ideal of R with I € Py and k > 0}, but Vo # Rg for each localizing system F of R.

The first part of the claim is proved in [H, p. 147]. Suppose that V; = Rx. Note
that Py € F, otherwise we would have Rp, = Vj (Lemma 1.1 (2)). Let

G :={J is an ideal of Ry : J 2 IRy for some I € F} .

It is easy to prove that G is a localizing system of Rgy. In fact, if H is an ideal of Ry
and I, I' € F are such that (H :p, iRg) 2 I'Rg for each ¢ € I, then ((HNR) :p
iR) = (H :g, iR0)NR 2O I'"RyNR D I' hence HNR € F and thus H € G. Moreover,
(Ro)¢ € Rr = Wy, because if 21 Ry C Ry for some I € F, then ©] C (zxIRg)NRC R
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and hence z € Rr. On the other hand, since Py € F, we have that PyRy = Mye g
and thus (Rg)g = F and this fact leads to a contradiction.

We return to the problem of when the equality holds in (1.12). For this purpose,
we consider the following relevant localizing system of R associated to an overring T
of R:

(1.13) Fo = Fo(T) := {I: I ideal of R such that IT =T} .

It is easy to see that Fy is a finitely generated (spectral irredundant) localizing system
of R and, if A := A(T'), Fo € F(A), hence in particular

(1.14) Ry, C R}.-(A) cT.

LEMMA 1.19. Let F be a given localizing system of R. Set T := Rz, A := A(T),
V :=V(F) and Fy := Fo(T).
(1) If F is a spectral localizing system of R, then

F(A) CF (in particular, Fy C F) .

(2) If F = Fo then F(A) = F.

Proof: By Lemma 1.1, each P € V is contained in some Q := NN R ¢ A, where
N € Max(T). Therefore V C A! and thus, by Lemma 1.3 and 1.7,

FA=FAYCFV)=F.

Since we have already observed that, in general, 7o C F (A), then clearly Fy C F
and, if o = F, we obviously have F(A) = F.
O

From the previous results, we easily deduce a sufficient condition for equality in
(1.12):

COROLLARY 1.20. Let T be an overring of an integral domain R. Set A := A(T)
and Fo := Fo(T). The following conditions are equivalent:
(1) Rf'u = TJ'
(ii) T is R—flat;
(iii) Fo= }-(A) and R.’F(A) =T.

Proof: The equivalence (i) < (ii) is well known (cf. [FHP, Remark 5.1.11 (b)] and
also [Ak1] and [AB]).

(iii) = (i) is trivial.

(ii) = (iii). By [R, Theorem 2], we deduce that Rz =T. Since we already know
that (i) < (ii), then T = Rz, = Rz(s). The conclusion follows by applying Lemma
1.19 to the (spectral) localizing system Fp.

O

In order to make the references easier, in the next result due to Gabelli (Gal, we
will collect some equivalent conditions, each of them will imply, in particular, the
equality in (1.12).
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PROPOSITION 1.21. Let S be a nontrivial multiplicative system of ideals of an
integral domain R. Set T := Rg, A := A(T), Fo := Fo(T), V := V(S) and let Vg be
the set of mazimal elements inside V. The following conditions are equivalent:
(i) IT = Igs, for each ideal I of R;
(i) JT =T, for each tdeal J € S;
(iii) S = Fo;
(iv) S = F(A);
(v) V& =V and Max(T) = {QT : Q € Vo};
(vi) Vo =A;
(vii) for each ideal H of T, H = (HNR)T = (HN R)s;
(viii) Spec(T) = {PT: P e V}.
In particular, when these conditions are satisfied T is R-flat.

Proof: In [Ga, Proposition 1.2] the equivalence of all the conditions except (vi) is
proved. It is obvious that (v) = (vi) (cf. also Lemma 1.1).

(vi) = (iv). We have already noticed that I € S if and only if Is = T (Lemma
1.1 (1)). Let I be an ideal of R with I ¢ S. Then Is C N for some N € Max(T),
whence I € NN R and thus I ¢ F(A) = F(V). Conversely, if I ¢ F(Vy) = F(A)
then I C N N R for some N € Max(T). This fact implies that Is C (N N R)s. Since
NNRe A=V, (NNR)s is a prime ideal of T (Lemma 1.1 (2)). Therefore Is # T,
whence 7 ¢ S (Lemma 1.1 (1)).

O

EXAMPLE 1.22. A (non finitely generated) localizing system F and a prime ideal
P in an integral domain R such that PRy # Pr.

Let V, M and F be as in Example 1.10. Then, in this case, Ve = (V: M) =V =
(M : M) =Mz and MVr = MV = M. Note that M ¢ V(F) (Lemma 1.1).
COROLLARY 1.23. Let F be a localizing system of an integral domain R. Set
T := Rg, A:= A(T), Fo := Fo(T). The following conditions are equivalent:

(i) Fo = F;
(ii) F(A) = F;
(iii) Fo = F(A) = F.

Proof: This is an easy consequence of Proposition 1.21.

We will see later (Example 4.7) that Fy may be equal to F(A), but Fo & F.
The following corollary is also due to Gabelli [Ga, Theorem 1.3]:

COROLLARY 1.24. Let R be a Priifer domain and let S be a multiplicative system
of ideals of R. Set T := Rs and Fy := Fo(T). Then:

S is finitely generated if and only if S = Fy .

Therefore, in the Priifer case, conditions (i)-(viii) of Proposition 1.21 are equivalent
to the following:
(ix) S is finitely generated.

O

As a consequence of the previous corollary, we recover the following result proved
in [FHP, Theorem 5.1.15]:
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COROLLARY 1.25. Let R be a Priifer domain. For each overring T of R there
exists a unique non trivial finitely generated localizing system F of R such that T =
Rg.

a

2 FLATNESS, FINITENESS AND LOCALIZING SYSTEMS

In some relevant cases, the link between flatness and the finitely generated property
for overrings can be studied by using localizing systems. This point of view was
developed by E.L. Popescu [Po], in order to extend some results of Schentzel [S3]. We
begin by recalling the following characterizations of flat overrings:

LEMMA 2.1. LetT be an overring of an integral domain R. The statements (i)-(iii)
of Corollary 1.20 are equivalent to the following statements:

(iv) (R:ryR)T =T, for eachy € T;

(v) for each Q € Spec(T), Rgnr = Tq;

(vi) P € Suppr(T/R) = PT =T.

Proof: The equivalences (ii) < (iv) ¢ (v) are well known and proved in [R, Theorems
1 and 2].

(v) = (vi). Let P € Suppr(T/R) and assume that PT # T. Let Q € Spec(T') such
that @ 2 PT and let P := QN R. By assumption, we deduce that Rp=Trp=Ty
and thus (T/R)s = 0, hence P ¢ Suppg(T/R). This leads to a contradiction since
P C P and (T/R)p #0.

(vi) = (v). Assume that there exists a prime ideal Q of T such that Rp # Tg,
where P := QN R. This fact implies that Rp # Tr.p and thus P € Suppr(T/R).
By assumption it follows that PT = T and this is a contradiction, since PT C Q.

O

COROLLARY 2.2. Let T be an overring of an integral domain R. Then
T is R-flat = Suppgr(T/R) = {P € Spec(R) : PT =T} .

Proof: The inclusion Suppr(T/R) C {P € Spec(R) : PT = T} follows from
Lemma 2.1 ((ii) = (vi)). Let P € Spec(R) be such that PT = T. Assume that
P ¢ Suppr(T/R). Then Rp = Tr.p and thus PRp = PTr.p # Trp and this
contradicts the assumption PT = T.

O

COROLLARY 2.3. Let R be a Noetherian domain and T an overring of R.
T is R-flat < Assgp(T/R) C {P € Spec(R) : PT =T} .

Proof: (=) is a consequence of Corollary 2.2 and of the fact that Assgp(T/R) C
Suppr(T/R), since R is Noetherian [B, Ch. IV § 1 N.3 Corollaire 1].

(¢=). In order to prove that T is R-flat, we show that condition (vi) of Lemma
2.1 holds. Let P € Suppgr(T/R). Since R is Noetherian, there exists a prime ideal
P C P such that P € Assg(T/R) [B, Ch. IV § 1 N.3 Proposition 7]. By assumption,
PT =T and thus PT =T. O
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REMARK 2.4. Corollary 2.3 can be generalized outside the Noetherian setting,
by using the notion of weak associated prime [B, Ch. IV § 1 Exercise 17], since it is
known that if E is a R-module, a prime ideal P of R belongs to Suppgr(E) if and

only if contains a prime ideal P inside Ass%(E), the set of all the weakly associated
primes of E.

Mutatis mutandis, it can be shown that if R is an integral domain and T is an
overring of R, then

T is R—flat & Assy(T/R) C {P € Spec(R): PT =T} .
COROLLARY 2.5. If R is a Noetherian domain and T' an overring of R, then
T is R—flat = T 1is Noetherian .

Proof: From the equivalence (ii) < (v) of Lemma 2.1, it follows that for each prime
ideal Q of T', (QNR)T = Q. Since R is Noetherian, @ N R is finitely generated. Thus
Q is finitely generated, hence T' is Noetherian [K1, Theorem 8].

O

We have shown that a flat overring of a Noetherian domain is Noetherian, even if,
in general, it is not finitely generated (e.g. the quotient field of an integral Noetherian
domain which is not a G-domain, i.e. an integral domain R for which (0) is different
from its pseudo—radical (0)* := N{P : P € Spec(R), P # 0} [K1, Theorem 18]). Our
next goal is to characterize, in the general setting, the flat overrings that are finitely
generated in terms of localizing systems.

Let T := {I, : @ € A} be a given nonempty family of ideals of a domain R. Set

n
K(Z) := {J : J ideal of R such that rad(J) 2 [ Zas.,
k=1
where {aj,...,a,} is a finite subset of A} .

LEMMA 2.6. LetT = {I, : a € A} be a nonempty family of ideals of a domain R.
Then

(1) K(I) is a saturated multiplicative system of ideals of R.

(2) If T is a finite family or if each ideal in T is finitely generated, then K(I) is a
localizing system of R.

(3) If each ideal in T is finitely generated, then K(Z) is a localizing system of R and

K(T) = {J : J ideal of R such that J 2 ] I¢, where
k=1
{a1,...,an} is a finite subset of A and e > 1} .

Proof: (1) is an easy consequence of the fact that rad(J'J"”) = rad(J') Nnrad(J") D
rad(J )rad(J").

(2). It is obvious that K(T) satisfies condition (LS1) of the definition of localizing
system. Let H be an ideal of R such that (H :g jR) € K(ZI), for each j € J, where
J € K(T), we claim that H € K(T).

Case 1: Each ideal in 7 is finitely generated.
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If rad(J)5 [Ti—; Jax and if iq, € I4,, then by the finiteness assumption there exists
N >> 0 such that .
[T, e
k=1

Therefore, rad ((H :r ([Tx=; i%,) R)) 2 [Th=, I5, for some finite subset {31, ..., B}
of A. By the ﬁmteness assumption, we can take the same set {f3i,...,05,,} for all
elements [];_, Y, . If ig, € Is,, then as above, there exists M > 0 such that

m
[T
h=1

This fact implies that [Ty, In, [}, o, € rad(H) and thus H € K(Z).

Case 2: T ={I},I,...,I;}.

If J € K(I) then rad(J) 2 [], Ix. Let ix € Ix and let H be an ideal of R such that
rad((H :r szkR) ) 2 [I Ix. We can find an integer N > 0 (depending on [], ix)
such that ([T, i)™ € (H :gr [, ixR). We conclude that (ITx ix)N** C H and thus
1, Ik C rad(H).

(3) If rad(J) 2 [1i—; fax and I, is a finitely generated ideal of R for each ay, then
there exists an integer e >> 0 such that J 2 ([Tp_; Ta, ) Conversely, if J 2 [1ee;

then rad(J) 2 rad ([T;_, 12,) = rad ([Tr_, au)DHk 1 oy -
O

If 7 is the set of all the maximal ideals of R, the ring of fractions of R with respect
to the saturated multiplicative system of ideals X(Z) is the global transform of R.
This ring was introduced in the case of Noetherian rings (not necessarily domains)
by Matijevic [Ma] (cf. also [A] and [Zd]).

If 7 = {I}, where I is an ideal of R, we denote simply by X(I) the localizing system
K({I}) of R.

COROLLARY 2.7. Let I be an ideal of an integral domain R.
(1) K(I) = {J : J is an ideal of R such that rad(I) = rad(J N 1I)}.
(2) If I is finitely generated, then:

K(I) = {J : J ideal of R such that J D I¢ for some e > 1} .
Proof: (1) follows from the fact that

rad(I) = rad(I N J) = rad(f) Nrad(J) & rad(J) C rad(J)
& ICrad(J)

(2) is a particular case of Lemma 2.6 (3).
a

PROPOSITION 2.8. Let T be an overring of an integral domain R and let T :=
{(R:ryR):y€T}. Then

T is R-flat & Fo(T) = K(I) .
Proof: (=). Note that if J is an ideal of R then

rad(J)T =T JT =T .
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Since T is R-flat, by Lemma 2.1 ((ii) = (iv)) it follows that the saturated multiplica-
tive system K(Z) is contained in Fo(7"). The conclusion follows from Proposition 1.21
((ii) = (iii)).

(«<). Since, for each y € T, (R :g yR) € K(I) then, by assumption,
(R :r yR) € Fo(T) and this is equivalent to (R :g yR)T = T. The conclusion
follows from Lemma 2.1 ((iv) = (ii)).

O

The following result is due essentially to E.L. Popescu [Po, Theorem 5:

PROPOSITION 2.9. Let T be an overring of an integral domain R. Then the
following statements are equivalent:

(i) T is flat and finitely generated over R;

(ii) there exists a (finiteiy generated) ideal I of R such that Fo(T) = K(I) and T =

Proof: (i) = (ii). Let T' = R[y1,...,yn) and set
I'=(R:g y1R)(R:r y2R) - (R:r yaR) .

Since T is R-flat, then IT = T (Lemma 2.1 ((ii) = (iv))) thus I € Fo(T) and, hence,
K(I) € Fo(T). Conversely if JT = T, then }_|_, jktk = 1 with ji € J and tx € T.
Since each tx € Ryi,...,yn) then there exists N > 0 such that t, IV C R for each k,
1 < k < r. Therefore

V=1V 1=1VY Gkt =Y Gtk € J
k=1 k=1
and whence J € K(I) (Corollary 2.7 (2)).

Furthermore, since we have proved that X(I) = F¢(T) and T is R-flat then, by
Corolla:y 12[}, T = R}'O(T] = RKU)‘

If I is not a finitely generated ideal of R, we can find a finitely generated ideal I,
such that I, C I and I, € K(I) = Fo(T). This fact implies that X(I) C X(I,). On
the other hand, since I, € Fo(T'), it is easy to see that K(I.) C Fo(T). We conclude
immediately that K(I) = K(I,) = Fo(T).

(ii) = (i). By the previous argument, we can assume that I is finitely generated.
Let I = (i1,...,1,). Since I € K(I), then by assumption IT = T. Therefore 1 =
S h—1inyn for yn € T. We claim that Ry),...,ys] = T. We observe that, from
the assumption, we have T = Rx(;y = Rxgyr) and hence T is R-flat (Corollary
1.20). Let t € T = Rg(y), then (R :g tR) € K(I) and hence there exists e > 1
such that I* C (R :g tR) (Corollary 2.7 (2)). On the other hand we know that
IR[y1,...,ys] = Rly1,...,ys). Thus also I°R[y;,...,ys] = R[v1,...,s], hence

-
1= Zbkzk with tx € I® and zx € R[y1,...,ys), r>1,
k=1

and so .
t = Z(!‘kt)zk € R{yl yoroe !ys} )
k=1

because ¢, € ¢ and I°t C R.
O

In the case of Noetherian domains, we can describe every localizing system in terms
of localizing systems of type K(Z), for some family of (prime) ideals 7.
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LEMMA 2.10. Let R be a Noetherian domain and F a localizing system of R.
Then, there exists a quasi-compact subspace A of Spec(R) such that, if T :={Q ¢
Spec(R) \ A}, then
F=F(A)=K(T) .

Proof: Since every localizing system of a Noetherian domain is finitely generated,
then 7 = F(A) where A := {P € Spec(R) : P ¢ F} (Lemma 1.16 and Lemma
1.7). It is obvious that if Q € T = Spec(R) ~ A then Q € F(A) = F and thus
K(Z) € F = F(A) (Lemma 2.6 (3)). Conversely, if J € F is a proper ideal then
the minimal primes of J do not belong to A. The conclusion follows since, in a
Noetherian ring, every ideal contains a power of its radical, so that there exists e >1
and Ql,...,Qt € T such that Q? Qf c J.

O

COROLLARY 2.11. Let T be an overring of a Noetherian integral domain. Then
the following statements are equivalent:

(i) T is R-flat;

(ii) Fo(T) = K(Suppr(T/R)).

Proof: (ii) = (i). Since every P € Suppgr(T/R) belongs to K(Suppgr(T/R)) and,
in the Noetherian case, Assp(T/R) C Suppgr(T/R) B, Ch. IV § 1 N.3 Corollaire 1],
then every P € Assp(T/R) belongs to Fy(T). Therefore T is R-flat by Corollary 2.3.
(i) = (ii) is a consequence of (the proof of) Lemma 2.10, applied to the localizing

system Fo(T'), and Corollary 2.2.
O

Now, we are in condition to recover a result proved by Schenzel [S3, Theorem 1]
(cf. also [Po, Theorem 8)).

THEOREM 2.12. Let R be a Noetherian domain and T a flat overring of R. Then,
the following statements are equivalent:

(i) T is finitely generated over R;

(ii) there exists a nonzero element x € R such that RC T CR;.

Proof: It is obvious that (i) = (ii), since T = R[z,/z, ..., z,/z] for some z, . .., Tn,T
€ Rand z # 0.

(ii) = (i). We claim that there exists a (finitely generated) ideal I of R such that
Fo(T) = K(I). We note that Assg(T/R) is finite, since Assp(T/R) C Assg(R;/R) =
Assp(R/x™R) = Assgr(R/zR), for each n > 1, and Assp(R/zR) is finite [B, Ch. IV
§ 1 N.4 Corollaire p. 137]. Let I be the product of all the (finitely many) minimal
primes of Assp(T/R). By (B, Ch. IV § 1 N.3 Corollaire 1] I is also the product of all
the (finitely many) minimal prime ideals of Suppg(T/R). Thus, by Corollary 2.7 (2),
P € K(I) if and only if P contains a minimal prime ideal of Suppr(T/R). Therefore
from Lemma 2.6 (3), we deduce that K(I) = K(Suppg(T/R)). By Corollary 2.11,
since T is R-flat we have K(I) = Fo(T). The conclusion follows immediately from
Proposition 2.9.

O

3 THE KAPLANSKY TRANSFORM

The spectral localizing systems of an integral domain R are parameterized by the
subsets of Spec(R) stable under generizations (Corollary 1.8). A relevant class of
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subsets stable under generizations are the open subspaces of Spec(R). Let I be a
nonzero ideal of R and let

D(I):={P € Spec(R): P21} .
We can consider
(3.1) F=F(DU))=n{F(P): Pe D)} .
By [K2, Theorem 277] (or [Hy, Theorem 1.7] and [FHP, Proposition 3.2.2])

(3.2) Rr =Qr(I):={z€ K:Yae€l, za" € R for some n > 1} =
={z€ K :rad(R :g zR) 2 I}

where Qg(I) (or, simply, (1)) is called the Kaplansky transform of R with respect
to I.

Note that, when I = R, Q(R) = R. In this case D(I) = Spec(R) and F(Spec(R))
= {R}. If I = (0), then Q((0)) coincides with the quotient field K of R. On the other
hand, D((0)) = @ and we assume that (@) is the trivial localizing system consisting
of all the ideals of R, whence Rg(g) = K.

We collect in the following lemma some easy facts concerning F(D(I)) and 2(I)
(cf. also [Hy]).

LEMMA 3.1. Let I be an ideal of an integral domain R.
(a) F(D(I)) ={J : J an ideal of R and rad(J) 2 rad(I)} =
= {J : J an ideal of R and rad(J) D I}.

(b) Q) =U{(R:J):rad(J) 2 I}.

(c) 2(I) = rad(1)).

(d) For eacha€ R, a+#0, QaR) = R,.

(e) If J is an ideal of R and I C J, then Q(I) 2 Q(J).

(f) If {Io : a € A} is a nonempty family of ideals of R, then
QUZals) = NaN(ly) ;
QNals) 2 Taf2(1,) .

(g) If I # (0), then
Q) =n{QaR):a€cl, a#0}.

(h) If J is another ideal of R,
QINJT)=QUJ) 2QNQT) 2 Q) +Q(J) .
(i) If J is an ideal of R and I C J (or, more generally, if Q(J) C Q(I)) then
QUIT) =QNJT) =) +Q(J) .
(j) If J is an invertible ideal of R and I is finitely generated then

QUIT) = QNAT) .
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Qr(I)=N{Rp:P 21} =
= 0{Qr,(IRp) : P € Spec(R)} = N{Qg,, (IRn) : M € Max(R)} .

(1) If S is an overring of R, with R C S C Qg(I), then
Qs(I8) =Qgr(I) .

Proof: (a) is proved in [FHP, Remark 5.8.5 (a)].

(b) follows from (a) and from (3.2).

(c) is an easy consequence of (b).

(d) follows directly from the definition of Q(aR).

(e), (f) and (h) are straightforward, since the fractional ideal QINQJ) is the
smallest overring of R containing (1) and Q(J).

(g) follows from the first equality of (f).

(i) is a consequence of (h) and of the fact that Q(J) C Q(I) implies that QI +
QJ) = QI).

(j). From (h), we only need to prove that Q(IJ) C Q(I)Q(J). Let z € Q1)
and let I = (iy,i2,...,ip)R and J = (J1,J2,--.,Jm)R. For each iyjx € IJ there
exists an integer r = r(h, k) > 0 such that z(injx)” € R. Henceforth, for a suitable
T 2sup{r(h,k): 1<h<n, 1<k<m}, 2(IJ)T = 2J7IT C R, and so 2J7 C Q(I),
ie. z € J7TQUI) C QJ)Q).

(k) follows easily from (3.1), (3.2) and the properties of the localizations, since, by
Lemma 1.2,

Q(I) = R;(D(])) = ﬂ{RP :Pe Spec(R),P 2 I} .

(I) is an easy consequence of the definition (cf. also [FHP, Theorem 3.3.2)).
O

Note that the inclusions in Lemma 3.1 (f) and (h) may be strict. An example of a
Priifer domain R with two ideals I and J such that Q(1.J) S QINJI) = Q) +Q(J)
is given in [FHP, Example 8.2.4 and Remark 8.2.5).

The Kaplansky transform is intimately related to the ideal transform introduced
by Nagata [N1], [N4].

We recall that the Nagata (ideal) transform of an integral domain R with respect
to an ideal I of R is the following overring of R:

(3.3) Tr(I) =T(I):=U{(R:I"):n >0} .
With the terminology, introduced in Section 1, if (I) is the multiplicative system

{I™ : n > 0} of the powers of the ideal I, then Tg(I) is the (generalized) ring of
fractions of R with respect to JU(I):

(3.4) Tr(I) = Royyy -

From the fact that (1) C F(D(I)), it follows immediately that the Nagata transform
is a subring of the Kaplansky transform. More precisely:
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LEMMA 3.2. Let I be an ideal of an integral domain R.
(1) F(D(I)) = K(I) = {J : J ideal of R such that rad(7) = rad(J N 1I)}.

(2) J € M(I) = rad(J) =rad(I N J).
(3) If I is a finitely generated ideal, then

D) = F(D()) .

Proof: (a) follows easily from Corollary 2.7 (1) and Lemma 3.1 (a), since rad(INJ) =
rad(/) Nrad(J).

(b) is obvious because, if I™ C J, then rad(I™) = rad(I) C rad(J).

(¢). By (a) and (b), M(I) € F(D(I)). Reciprocally, if J € F(D(I)) then I C
rad(J) (Lemma 3.1 (a)). Therefore, since I is finitely generated, we have I"™ C J for
some n > 0.

ad

COROLLARY 3.3. Let I be an ideal of an integral domain R.

(1) T(1) € ().

(2) If there exists a finitely generated ideal J of R and an integer n > 1 such that
I™ C J C I (in particular, if I is finitely generated), then T'(I) = Q(I).

Proof: (1) follows from Lemma 3.2 (1) and (2).
(2). It is easy to see (by Lemma 3.1 (c) and Lemma 3.2 (3)) that

OI) = QJ) = T(J) CTI™) = T(I) .

The conclusion follows from (1).

Given an ideal I of an integral domain R, we set as usual
I,:=(R:(R: 1)),
Iy := U{J, : J is finitely generated, J C I} .
It is obvious that I C I, C I,. The next result is due to Anderson and Bouvier [AnB|.

PROPOSITION 3.4. Let I be an ideal of an integral domain R.
(1) T(I) = T(1,).
(2) 1) = Q1)

Proof: (1) is obvious, since (R : I") = (R : I}}) for each n > 1.
(2). For each finitely generated ideal J of R, we have
QJy) € ) =T(J) = T(Jy) € Qo) ,
hence Q(J,) = Q(J). Therefore, by Lemma 3.1 (e) and (f), we have:
QL) = QU{J, : J finitely generated, J C I}) =

= N{Q(Jy) : J finitely generated, J C I} =

= N{Q(J) : J finitely generated, J C I} 2 Q(T) .
The conclusion follows immediately, since in general (Lemma 3.1 (e)) (1) € Q(I).

O

From the previous result and from the fact that, in a Krull domain (respectively, a
UFD), for each nonzero ideal I there exists a finitely generated (respectively, principal)
ideal J such that I, = J, [G3, Corollaries 44.3 and 44.5], we recover in particular a
result due to Nagata [N4, Lemma 2.4]. '
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COROLLARY 3.5. Let I be an ideal in a Krull domain R. Then:
(1) T(1) = (1);
(2) if, moreover, R is a UFD and I is a nonzero ideal, then there exists f € I,, such
that
T(I)=QI)= Ry .

Proof: (1). Let J be a finitely generated ideal of R such that J, = I,. Note that
I = J, = I, since the t-ideals coincide with the v-ideals in a Krull domain [Bo,
Lemma 3 (a)]. Therefore:

T(I) = T(L,) = L) = QL) = () .

(2) follows from Lemma 3.1 (d) and from the previous statement (1) (and its proof).
O

EXAMPLE 3.6. An integral domain R for which there exists an ideal I such that
QI) # Q1)

Let (V, M) be a 1-dimensional valuation domain with M = M?2. In this case,
M, =V [FHP, Corollary 3.1.3], therefore Q(M,) = Q(V) =T(V) =V = T(M,) =
T(M). On the other hand, by (Lemma 3.1 (k)), Q(M) = Vioy = qf(V), hence
QUM,) G Q(M).

EXAMPLE 3.7. An integral domain R for which there exists an ideal I such that
T(I) G QI). Moreover, T(I) is not a QQR-overring of R.

Let (V, M) be a 1-dimensional valuation domain such that M = M? and V =
K + M where K =2 V/M. Let k be a proper subfield of K and set R := k + M. It
is easy to see that M is the conductor of R C V and, hence V = (M : M) = (R :
M) = Tr(M). On the other hand, by (3.2), Qr(M) = Ry = ¢f(R) = qf(V), hence
Tr(M) G Qr(M). Note also that Spec(R) = {(0), M} and hence Tr(M) is not an
intersection of localizations of R.

We have already observed that, given an ideal I of R, there are several ideals J
of R such that Q(J) = Q(I). Set J = J(Qr(I)) := {J : J ideal of R such that
QJ) = QI)}. By Lemma 3.1 (f), if {Js : @« € A} C J then £,J, € J. Therefore,
as already observed by Hays [Hy, Theorem 2.3], and by Rhodes [Rh, § 2] in the non
integral domain case, in 7 there exists a unique maximal element that we denote by
I?. We say that an ideal H of R is a Q-ideal if H = I?, for some ideal I of R. It is
obvious that R? = R. We will see in a moment that, (0)® may be larger than (0).

Our next goal is to deepen the study of 2-ideals.

PROPOSITION 3.8. Let I and J be two ideals of an integral domain R. Then
(1) (IM® = 1%

(2) I? = (rad(1))? = rad(I);

(3) 17 = (1)" = (I7);

(4) I ={z € R: R, 2Q(I)};

(5) ICI=I1"CJ%,

(6) (aR)® =rad(aR), for each nonzero element a € R.

Proof: (1), (2) and (3) are straightforward consequences of the definition of a Q-ideal,
Lemma 3.1 (¢) and Proposition 3.4 (2).

(4). If z € I, = # 0, then R; = Q(zR) 2 QI?) = Q(I) (Lemma 3.1 (d) and
(e)). If x = 0, then assuming that R, = K (because the saturated multiplicative set
containing 0 is R), trivially R, = K D Q(I).
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On the other hand if z ¢ I, then Q(I) = Q(I*") 2 Q=R+ 1Y) = Q(zR) N Q1)
(Lemma 3.1 (f)), whence R, = Q(zR) 2 Q(I).

(5) follows immediately from {4) and Lemma 3.1 (e).

(6). Clearly, by (2), rad(aR) C (aR)?. Let 2 € (aR)?, = # 0. Then R, = Q(zR) 2
2(aR) = R,, hence 1/a = r/z™ for some r € R and for some integer n > 1, and so
™ € alt.

O

For each ideal I of R, we call the Q-radical of I the following radical ideal of R:
rad(I) := N{P € Spec(R) : Rp 2 Q(I)} .
It is obvious that rad®(I) = rad®(I®*). The following result is due to Hays:
THEOREM 3.9. For each ideal I of R, we have
It = rad}(I) .

Proof: From the definition of Kaplansky transform (3.2), for each ideal J of R and
for each prime ideal @ of R, we have

(3.9.1) Ro20(J)=Q2J.
We deduce immediately that
I = rad(I®*) = N{P € Spec(R) : P2 I’} C
C N{P € Spec(R) : Rp 2 QUI?) = Q(I)} = rad®*(J)
and hence
QI = QI 2 Q(rad®(1)) .

The conclusion will follow if we show that Q(I) C 2(rad®®(I)). Suppose that Q is a
prime ideal of R with Q 2 rad®*(I).

Then it is easy to see that Rg 2 Q(/). Henceforth

Q) €N {Rq:Q 2 rad®(I)} = Q(rad™(I)) ,
as desired.
O

For each prime ideal P of R we denote by P* the pseudo-radical of P, ie. P*:=
N{Q € Spec(R) : Q 2 P} [G1].
COROLLARY 3.10. Let R be an integral domain.
(1) (0)® = (0)*.
(2) If M is a maximal ideal,

M =M RG QM) & Ry 20{Rp: P €Spec(R) ~ {M}} .

Proof: (1). Let P be a prime ideal of R. Note that Rp 2 K = 2((0)) if and only if
P #(0).
(2). Note that Q(M) = N{Rp : P € Spec(R) ~ {M}}.
O

Theorem 3.9 shows that there exists a link between the ()-ideals of an integral
domain R and the space Loc(R) := {Rp : P € Spec(R)}, endowed with the Zariski
topology |ZS, Ch. VI § 17]. Recall that the Zariski topology on Loc(R) is defined as
follows. For each R-submodule E of K, we can consider

L(E):={Rp € Loc(R): Rp 2 E} .

It is easy to prove the following:
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LEMMA 3.11. Let E,, E and F be R-submodules of K where a belongs to a
nonempty set A.

(1) EC F = £(F) C £(E);

(2) L(EaqEq) = NaL(EL);

(3) L(E)=n{L(zR) : z € E};

(4) £(NaFa) 2 Ual(Ea).

d

By the previous lemma, it follows in particular that the subsets L(E), where E is
a finitely generated R-submodule of K, form a basis for the open sets in Loc(R). The
induced topology is called the Zariski topology of Loc(R).

It is easy to prove that Spec(R) and Loc(R) (with their Zariski topologies) are
canonically homeomorphic. More precisely:

LEMMA 3.12. Let ¢ : Loc(R) — Spec(R) be the canonical bijection defined by
Rp— PRpNR=P.

(1) For each element x € R, p~!(D(zR)) = L(R,).

(2) For each element z € K,

©(L(zR)) = {P € Spec(R) : P 2 (R :r zR)} = D((R :5 zR)).

(3) ¢ is a homeomorphism.
]

REMARK 3.13 (a) Let E be a R-submodule of K. If we denote by R[E] the
smallest overring of R generated by E, then it is clear that

L(E) = L(R[E)) .

Obviously, if E is a finitely generated R—module then R[E] is a finitely generated
R-algebra. Conversely, if S is an overring of R and S is a finitely generated R-
algebra, then there exist y1,y2,...,y, € S such that § = Rly1,y2,...,yn). Let
E:=y1R+yaR+--+ ynR, then E is a finitely generated R~module and S = R[E].

(b) If z is a nonzero element of R, then R, = R[1/z] and (R :5 (1/z)R) = zR,
and hence £((1/z)R) = ¢~!(D(zR)) (Lemma 3.12 (1)).

(c) If E = (21,...,2)R is a nonzero finitely generated R-submodule of K then, by
Lemma 3.11 (2) and 3.12 (2), the basic open set £(E) of Loc(R) is homeomorphic to
the open set D(Ig) of Spec(R), where

t t
Ip:=()(R:r zR) = (R ‘R Zz,-R) =E"'nR.
i=1

i=1

Since D(Ig) = D(rad(Ig)) and rad(Ig) is the largest ideal containing I with this
property, it is natural to associate to the basic open set £(E) of Loc(R) the radical
ideal rad(Ig) of R. If E = 2R, then rad(/g) = rad((R :g zR)). By using Lemma
3.11 (1) and 3.12 ((1) and (3)) it is easy to see that:

rzerad(lg) & R, D F .
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Motivated by Lemma 3.12 (2) and Remark 3.13 (c), in an integral domain R with
quotient field K we introduce, for each element z € K and for each R-submodule E
of K, the following radical ideals of R:

Qgr(zR) = Q7 (2R) :=rad((R :r zR)) ,
QR(E)=Q7(E):=n{Q(2R) : z€ E} .
We note that, if € R and = # 0, then
7 ((1/z)R) = rad(zR) = (zR)" .
Moreover, 27 (0R) = Q~(R) = R. The following properties are easy consequence of
the definitions:

LEMMA 3.14. Let E and F be two R-submodules of K, {E, : @ € A} a family of
R-submodules of K and I an ideal of R. Then:
(1) Q" (E)={reR:R, DFE}={z € R:Q(zR) D E}.
(2) ECF=Q (F)CQ (E).
(3) = (I)=R.
(4) 27 (K) = (0)*.
(5) rad(E"'N R) C Q™ (E) and, if E is finitely generated, then
rad(ET'NR) =0 (E) .
(6) Q= (2(I)) = I andrad((R : Q(I))) C I?; moreover, if Q(I) is finitely generated,
then rad((R : Q(I))) = I
() O (ZaFa) = NaQ (Ea).
(8) O (NaEa) 2 Tt~ (Ea).

The following result gives another useful representation of Q= (E):
COROLLARY 3.15. Let E be a R-submodule of K, then
27 (E) =n{P € Spec(R) : Rp 2 E} .
Proof: For each z € K, from (3.9.2) we have:
Q7 (2R) = N{P € Spec(R) : Rp Az}
and thus
Q7 (E)=n{Q2 (2R): z€ E} =N{P € Spec(R) : Rp 2 E} .

COROLLARY 3.16. Let R be an integral domain.
(1) For each ideal I of R,
ICQ () and Q(I)=QQ (2))) .
(2) For each R-submodule E of K,
ECQ@(F) and Q7 (E)=Q7 (20 (B)) .
Proof: (1) follows from Lemma 3.14 (6).

(2). Foreachz € E,zRC (R: (R:g 2R)) CQ((R:g 2R)) = Qrad((R :g zR))) =
Q27 (zR)) € Q(Q7(E)) and thus E C Q(Q7(E)). Moreover, by Lemma 3.14 (2),
Q7 (E) 2 27 ((2(27(£)))). The conclusion follows, since by (1) for I := Q~(E) we
have Q- (E) C Q- (Q(Q (E))).

O

As a consequence of the previous results we obtain a deeper understanding of the
homeomorphism between Loc(R) and Spec(R):
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PROPOSITION 3.17. Let R be an integral and ¢ : Loc(R) — Spec(R) the canon-
tcal homeomorphism (Lemma 3.12). Then

(1) For each R-submodule E of K, ¢~ (D(Q~(E))) coincides with the interior of
the subspace L(E) of Loc(R), i.e.

¢~ H(D(Q" (E))) = Int(L(E)) .
(2) For each ideal I of R,
¢~ H(DI%) = Int(L(Q]))) .
(3) If E is a finitely generated R-submodule of K,
¢~ {(D(Q7(E))) = L(E) .
(4) If I is an ideal of R such that Q(I) is a finitely generated R-algebra, then
e~ (D(I) = L((I)) .
Proof: (1). Note that D(Q~ (E)) C ¢(L(E)), since
PZ2Q (EY=Rp2E (Corollary 3.15) .
On the other hand, the closure cl(Y') of a subspace Y of Spec(R) coincides with V(Jy)
where Jy := N{Q € Y}. Therefore,
el(Spec(R) \ p(L(E))) = V(J)
where
J:=nN{P € Spec(R) \ ¢(L(E))} = N{P € p(Loc(R) ~ L(E)} =
=N{PeSpec(R): Rp 2 E} =0 (E) .
We deduce that Int(p(L(E))) = D(Q~(E)).
(2). By Lemma 3.14 (6), this statement is a particular case of (1) for E = Q).

(3) is a consequence of (1) and of the fact that, in the present situation, L(E) is
an open subspace of Loc(R).

(4) is a consequence of (2) and (3) (cf. also Remark 3.13 (a)).
a

COROLLARY 3.18. Let I be an ideal of R such that Q(I) is a finitely generated
R-algebra. Then S

(3.18.1) Rp DN{R.:z €I} = Rp D Ry for somey e I? .

Proof: In general, by Proposition 3.17 (2), for each ideal I of R, we have
(3.18.2) ¢~ H(D(IM) € L)) .

Moreover, by Lemma 3.1 (g) and Lemma 3.12, equality in (3.18.2) holds if and only
if (3.18.1) is verified. The conclusion is a consequence of Proposition 3.17 (4).

O
REMARK 3.19. If I is a nonzero principal ideal of R, ] = zR, then Q(I) =
Rz = R[1/z] is a finitely generated R-algebra and hence, by Proposition 3.17 (4), we
reobtain that ¢~!(D(zR)) = L(R,) (Lemma 3.12 (1)). It is also easy to see that if
T,y € R are nonzero elements, then

L(Rz) N L(Ry) = ¢~ (D(zR) N D(yR)) = L(Ry,) .

Therefore, the family {L(R.) : € R = # 0} is a basis for the Zariski topology of
Loc(R).

From the previous results we can obtain a characterization of the Q-ideals of R:
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COROLLARY 3.20. Let R be an integral domain and I an ideal of R. The follow-
ing statements are equivalent:
(1) I is a Q2-ideal;
(i) I = 1%
(iii) I = Q= (E), for some R-submodule E of K;
(iv) I =Q°(T), for some overring T of R.

Proof: (ii) = (i) = (iv) = (iii) are obvious (cf. also Lemma 3.14 (6)).
(iii) = (ii). By Corollary 3.16 (2), we have

I=0Q7(E)=0Q (U (E)) =0~ (Q)) =I".

We collect in the following proposition some properties of 2-ideals.

PROPOSITION 3.21. Let {I, : a € A} be a family of ideals of an integral domain
R. Then:

(1) (EaIa)Q = (ZQIE;‘)“.

(2) NIt = (N ISHS.

(3) If each I, is a Q-ideal, for a € A, then NgI, is also a N-ideal.

Proof: (1). From the following easy inclusions (Proposition 3.8 (5)):
e} Q o8
Tala C Bl C (Zala)” C (Zaly)

we deduce the statement.
(2). It is obvious that
Nalg C (Nald)”

and, by Proposition 3.8 (1),
(NeINH C(IH? =17, foreacha€ A.

The conclusion follows immediately.
(3) is a consequence of (2).
O

COROLLARY 3.22. Let I and J be two nonzero ideals of an integral domain R.
Then
(IN? =(InnH)".

Proof: Recall that Q(IJ) = Q(I N J) (Lemma 3.1 (h)). The conclusion follows from
Lemma 3.14 (6).
0

For each overring T of R, we set
To = Q(Q~(T)) = N{Rp : P 207 (1)},

where Ty is an overring of T and 2 (T) = Q7 (T) (Corollary 3.16 (2)). We say that
an overring S of R is a Q-overring of R if S = Ty, for some overring T' of R.
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PROPOSITION 3.23. Let R be an integral domain and T on overring of R. The
following conditions are equivalent:
(i) T is a Q-overring of R;
(ii) T = Tq;
(iii) T = QI), for some ideal I of R.

Proof: It is obvious that (iii) = (i) = (i) (cf. also Corollary 3.16 (1)).
(i) = (iii). If T = S for some overring S of R, then T' = Q(I) where I := Q~(8) =
Q- (Sa) = Q- (T).
O
Let {T,, : @ € A} be a family of overrings of an integral domain R. We denote by

VaTo the smallest overring of R containing UaTo. In the case of a finite family of
overrings {T; : 1 < i < n}, it is obvious that

n r
VT = HT* = {Ztgk)tgk) et t‘(k) €T, r> 1} _
i=1 k=1

PROPOSITION 3.24. Let {T,:a € A} be a family of overrings of R. Then
(1) (VaTn)ﬂ = (Va(Ta)Q)n'
(2) ﬂa(Ta)ﬂ = (na(Ta)ﬂ)n-
(3) If each T, is a Q-overring of R, then NaT. is also a Q-overring of R.
Proof: Mutatis mutandis (in particular using Corollary 3.16 (2) instead of Corollary
3.16 (1) and the fact that T C Tjq, (Ta)a = Tq and Sq C Tk, for each pair of overrings
S,T of R with S C T, the proof is analogous to that of Proposition 3.21.
O

COROLLARY 3.25. Let S and T be two overrings of an integral domain R. Then
(5T)a = ($aT)a = (STa)a = (SaTa)a -

Proof: We have already observed that SV T = ST, hence the statement follows
easily from Proposition 3.24 (1).

a

From a “global” point of view, some of the results proved above can be restated in
the following way:

THEOREM 3.26. Let R be an integral domain. Set I%R) := {I ideal of R: I? =
I} and Oq(R) := {T overring of R: Tn = T}. The map

Q:I%R) — Oq(R), I~ Q)
s an order-reversing bijection, with inverse map
Q7 :0a(R) —I%R), T—Q (T).
Proof: The statement is a consequence of Proposition 3.8 (5), Lemma 3.14 ((2) and

(6)), Corollary 3.20 and Proposition 3.23.
O
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If R is not a field, it is not possible that every ideal of R is a f2-ideal. In fact, if z
is a nonzero element of R, and if every ideal of R is a Q-ideal, then

z’R = (z?R)® = (rad(z2R))® = (rad(zR))® = (zR)? = zR

and thus z is invertible. It would be interesting to study the integral domains such
that every nonzero radical ideal is a Q-ideal.

On the other hand, it is possible that each overring of R is a Q-overring. For
instance, if V' is a finite dimensional valuation domain and if

(0)=P0CP1CP2C'--CPn:M
is the chain of all its prime ideals, then

Ve, = U Pr+1) , for0<k<n-1,
V=Q(uV), whereu e VN M,

and thus every overring of V' is a Q-overring. In this case, every nonzero prime
(radical) ideal of V' is a §-ideal, since Peyy = Q7 (Vp,) for 0 < k < n — 1. Note also
that the inclusion in Lemma 3.14 (6) may be proper

rad((V : (Pi41))) =rad((V : Vp,)) = P & Pl =Py, for0<k<n-1.

Integral domains with the property that each overring is a Nagata ideal transform
were studied in [Br], [BrG], [Hel] and [He2].

The integral domains with the property that each overring is a Q-overring are
characterized in [FH]; in particular, a domain of this type is always semilocal with
Priifer integral closure. Note that, if T" is an overring of an integral domain R, then:

TCN{Rp:Rp 2T} CTq
since if P 2 Q7 (T) then Rp 2 T (Corollary 3.15).
PROPOSITION 3.27. If R is an integral domain and if S C T are two overrings
of R, then
QR(T) =Qx(S)NQg(T) .
Proof: It is obvious, by Lemma 3.14 (1), that
QR(T) € QR(S) N5 (T) .

Conversely, if x € Qz(S) N Qg(T) then R, 2 S and S; O T. On the other hand
Ry = Sz, since R, D Swithz e RC S, thus R; O T and hence ¢ € QR(T).
O

The previous result was proved, in a more general setting, by Rhodes (Rh].

4 A GEOMETRIC INTERPRETATION OF THE KAPLANSKY
TRANSFORM

An interesting property of the Nagata (ideal) transform is its “geometric” interpreta-
tion. For an ideal I in a Noetherian integral domain R, the Nagata transform Tr([)
is the ring of global sections over the open subspace D(I) of Spec(R). More precisely,
from classical results by Chevalley [EGA, 1.6.7.1], Nagata [N1] and Hartshorne [Ha]
(cf. also Arezzo and Ramella [AR] and Theorem 2.11], the following can be shown:
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PROPOSITION 4.1. Let R be a Noetherian integral domain and I an ideal of R.
Set X := Spec(R), Y :=D(I) ={Pe X :P 2 I} and Z := Spec(T(I)). The
following statements are equivalent:

(i) Y is an affine open subspace of X ;

(ii) the canonical morphism:

(ZaOZ)_’(KOY)a QMQQR,

ts a scheme-isomorphism;
(iii) IT(I) =T().
In particular, when the previous statements hold, T(I) is flat and finitely generated
over R.

O

REMARK 4.2. (a) If R is a Noetherian domain, it is easy to see that the image of
the canonical map

Spec(T(I)) — Spec(R), Q—QnNR

contains D(T), and if T'(I) is R-flat, then this image coincides with D(1,) [L, Proposi-
tion 4.4]; therefore if T(I) is R-flat then D(I,) is an affine open subspace of Spec(R).
Furthermore, it is known that the statements (1)-(iii) of Proposition 4.1 are equiv-
alent to the following:
(iv) T(I) is R-flat and there erists a divisorial ideal J such that D(J) = D(I);
(v) T(I) is R-flat and D(I) = D(I,);
(vi) T(I) is R-flat and rad(I) = rad(I),.
[L, Proposition 4.3].
(b) Note that for each nonzero ideal I of R and for each nonzero element z € I,
we have:

RCT(I)C Q) C QzR) = R, .

When R is Noetherian and T'(I) = Q(I) is R-flat then, by Theorem 2.12, T'(I) is also
finitely generated over R.

Reciprocally, Schenzel proved that if R C T C R, for some nonzero element z of
a Noetherian ring R and if T is R-flat, then there exists an ideal I of R such that
T =T(I) and IT(I) = T(I) [S3, Corollary 3.

(c) We will see in Example 4.11 that T'(I) may be finitely generated over R without
being R-flat. The finiteness of T'(I) was studied in several papers (cf., for instance,
[Bro], [EHKR] and [Ki)).

If R is not a Noetherian domain, D(I) may be affine with IT(I) # T(I) and
Spec(T'(I)) non isomorphic to D(I). Take, for instance, R = V to be a 2-dimensional
valuation domain with idempotent maximal ideal M. Set I := M; in this case
D(M) = Spec(V) \ V(M) is canonically isomorphic to Spec(Vy) with f € M \ P,
where P is the height 1 prime ideal of V. On the other hand, T(M) = (V : M) =
(M : M) =V, since M = M?, whence MT(M) = M # T(M) = V. Furthermore,
Spec(T'(M)) = Spec(V) is obviously not isomorphic to D(M).

Our next goal is to generalize Proposition 4.1 to a not necessarily Noetherian
context.
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LEMMA 4.3. Let I be an ideal of an integral domain R and let Q(I) be the Kaplan-
sky transform of R with respect to I. Set X := Spec(R) and Y := D(I). The ring of
global sections over the open subspace Y of X, I'(Y,Ox|y) coincides with Q(I).

Proof: It follows immediately from (3.1) and (3.2) that

QUI) = Rempay) ="{Rp: P21} =T(Y,0xly) .

THEOREM 4.4. Let R be an integral domain and I an ideal of R. Set X :=
Spec(R), Y := D(I) and W := Spec(Q(I)).
The following statements are equivalent:
(i) Y is an affine open subspace of X ;
(ii) the canonical morphism

U’V,OW)"“*(Y,OY), QHQOR:

18 a scheme-isomorphism,
(iii) IQ(1) = Q((1);
(iv) Q1) is R-flat and, for each P € Spec(R) with P D I, Rp 2 )(I);
(v) Q(I) is R-flat and, for each P € Spec(R) with P D I, PQ(I) = Q(I);
(vi) Fo(Qu(I)) = F(D(I)).
In particular, if the previous conditions are verified then §2(I) is a finitely generated
R-algebra.

Proof: Let Y’ := Dw (I2(I)). We need the following fact proved in [FHP, Theorem
3.3.2),

(4.4.1) the canonical map Y' =Y, Q — QN R, is a bijection
and Ronr = Q(I)q, for each Q€Y' .

(i) « (ii). By Lemma 4.3, Y is an affine subspace of X if and only if the canonical
map Y — Spec(['(Y,Ox|y)) = W [EGA, 1.2.3.2] defines a scheme isomorphism.

(ii) « (iii). It is a straightforward consequence of (4.4.1), since IQU(I) = Q(I) if
and only if Y/ = W.

(iii) = (iv). The flatness of £2(I) follows immediately from [R, Theorem 2] and
(4.4.1). Moreover if, for some prime ideal P of R with P D I, it happens that Rp D
(1), then PRp N Q1) is a prime ideal of (I) containing IQ(I). This contradicts
(ii).

(iv) = (iii). If there exists a maximal ideal Q of Q(I) such that @ D I2(I) then
QN R DI and the hypothesis then yields QI) € Ronr. On the other hand, by the
flatness of (1) over R, we have that Rgnr = Q(I)g and this leads to a contradiction.

(iv) < (v). Under the assumption that Q(I) is R-flat, we claim that, for each
prime ideal P of R with P D I,

(4.4.2) Q) € Rp & PQI) = Q) .

In fact, if PQ(I) G () then there exists a maximal ideal Q of Q(I) with Q D PQ(I),
so that Q)¢ = Rgnr € Rp, and Q(I) € Rp. Conversely, if Q(I) € Rp then
PQ(I) € PRp NI S Q(I). _

(vi) = (iii). It is sufficient to note that I € F(D(I)).
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(iii) = (vi). Denote simply by F; the localizing system Fo(UI)) = {J : Jideal of R
such that JQ(I) = Q(I)} and by K the localizing system F(D(I)). Since we know
already that (iii) implies that Q(I) is R-flat, then we have R = QUI) = Ry, and
Fo € K (Lemma 1.19 (1), Corollary 1.20 and (3.2)). Moreover, if J € K then
I C rad(I) = rad(J N I) C rad(J) (Lemma 3.2 (1)) and thus rad(J) € Fy, because
I'€ Fo by assumption. On the other hand, it is easy to see that rad(J)Q(1) = Q(I)
if and only if JQ(I) = Q(I), whence rad(J) € Fy is equivalent to J € Fo.

The last statement follows from Proposition 2.9 ((ii) = (i)) (cf. also [FHP, Propo-
sition 3.3.5]).

COROLLARY 4.5. Let I be an ideal in an integral domain R such that I Q) =
QI), and write

1= Zihyh with ip € I and y,, € QI .
h=1
Set I, := 3"} _1inR and E := 35 _, yaR. Then
(1) QI) =Q(1,) = T(1.).
(2) I = rad([).
(3) I? = I = rad(l.) = rad(I.), = rad(E-' N R).
(4) D(I) is a quasi-compact affine (open) subspace of Spec(R).

Proof: (1). As in the proof of Proposition 2.8, we have that Q(I) = R[E] and
K(I) = K(1,) and thus Q(I) = Q(I,) (Lemma 3.2 (1), (3.1) and (3.2)). Since I, is
finitely generated T'(1,) = Q(1.) (Corollary 3.3 (2)).

(2). From Theorem 4.4 ((iii) = (iv)) we deduce that rad(I) = rad¥(I) = I9.

(3). Since Q(I) = Q(IL.), I = I? and, by (2), I? = rad(,). Moreover, by (1),
Q(I,) = R[E] thus I} = Q~(E) = rad(E~! N R) (Lemma 3.14 (5)). Since I'is a
t-ideal (Proposition 3.8 (3)), then necessarily rad(I,) = rad(l.);.

(4). In this situation, by Theorem 4.4 ((ii)) = (ii)), D(I.) = Spec((I,)) =
Spec(Q(I)) = D(I), whence rad(I) = rad(l,) with I, finitely generated.

O

COROLLARY 4.6. If I is an ideal of an integral domain R such that rad(I) is
locally the radical of a nonzero principal ideal (e.g. I is invertible), then D(I) is a
quasi-compact affine (open) subspace of Spec(R).

Proof: Note that IQ(I) = Q(I) if (and only if) IRpQ(IRp) = QIRp), for each
prime ideal P of R.

As a matter of fact, if IQ(I) # Q(I) then there exists a prime ideal Q of Q(I) such
that I)(I) C Q. Let P := QN R. Then Qg(l)g = g, (IRp) because Rp C Q(I)q
(Lemma 3.1 (1)). By the choice of Q, we have IN(I)q # Q(I)q. This fact leads to a
contradiction since, by assumption, IRpQg, (IRp) = Qr,(IRp).

The conclusion will follow from Corollary 4.5 if we show that if, given a prime
ideal P of R, rad(IRp) = rad(zRp) for some z € Rp, z #0, then IRpQR, (IRp) =
QRP(IRP). Note that QHF (IRP) = QRP(rad(:cRp)) = QRP(IRP) = Rp[l/.’.l’}],
then zRp[l/z] = Rp[l/z] and thus rad(/Rp)Qg,(IRp) = rad(zRp)Rp[l/z]) =
Rp[l/I] = QRF (IRP). Therefore, IRPQRP (IRP) = QRF (IRP)

|
The previous result was proved, in the Noetherian setting, by Hartshorne [Ha, § 2

Example 2], making use of cohomological techniques, (cf. also [Se, Theorem 1] and
[N1, Theorem 5]).
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COROLLARY 4.7. (1) IfI is a nonzero finitely generated ideal in a Prifer domain,
then D(I) is affine.
(2) For each nonzero ideal I in a Dedekind domain, D(I) is affine.

Proof: (1). Note that, in a Priifer domain, a nonzero finitely generated ideal is
invertible [G3, Theorem 22.1].
(2) follows from (1), since a Dedekind domain is a Noetherian Priifer domain.
O

Note that it is not difficult to prove that statement (2) of Corollary 4.7 holds more
generally for each nonzero ideal in a 1-dimensional domain with the property that
each nonzero element lies in only finitely many maximal ideals.

We close with some examples.

EXAMPLE 4.8. Let F be a localizing system of an integral domain R. Set Fy :=
Fo(Rz) = {I:Iideal of Rand IRr = R}, A:= A(Rr) = {NNR: N € Max(Rr)}
and F(A) = N{F(Q) : Q € A}.

We give an ezample of an integral domain R having a localizing system F such that
Fo = F(A), but Fo # F.

Claim. If I is an ideal of an integral domain R such that QU(I) is R-flat, then
Fo(QI)) = F(AQ(I)))-

In fact, by flatness Q(J) = Rz, (an) (Corollary 1.20) and, by Lemma 1.19 (2), we
conclude that F(A(2(1))) = Fo(02(1)).

Let R = V be a valuation domain having an ascending chain of prime ideals of the
following type:

PPCP,C---CP,C---CP, with UPn=P.
n>1

In this case, Q(P) = (),>; V. = Vp is trivially V-flat, hence Fo = Fo(2(P)) =
F(A(Q(P))) = F(P). On the other hand, if K = K(P) = F(D(P)), then we know
that Rx = Q(P).

Note that Fy G K, because if I € Fo then I 2 P and thus I € K; moreover P € K
but P ¢ Fo. Furthermore, Vg, = Q(P) = Vi and thus K is a nonfinitely generated
localizing system (Corollary 1.25).

PROPOSITION 4.9. Let I be an ideal of an integral domain R. The localizing
system F(D(I)) is a finitely generated localizing system of R if and only if D(I) is a
quasi-compact (open) subspace of Spec(R).

Proof: (=). Since I € F(D(I)) and F(D(I)) is finitely generated, there exists a
finitely generated ideal J C I with J € F(D(I)). This fact implies that rad(J) =
rad(J N I) = rad(I) (Corollary 2.7 (1) or Lemma 3.2 (1)) and hence D(J) = D(I) is
quasi-compact [EGA 1.1.1.4].
(«<). This implication is a particular case of Lemma 1.16.
O

EXAMPLE 4.10. An ideal I of an integral domain R such that F(D(I)) is a finitely
generated localizing system of R, but Fo(SU(I)) # F(D(I)) (in other words, D(I) is
quasi-compact but not affine; cf. Theorem 4.4 and Proposition 4.9).

Let (R, M) be a local integrally closed Noetherian domain of dimension 2. In this
case, since M is finitely generated, D(M) is obviously a quasi-compact open subspace
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of Spec(R). On the other hand, Q(M) = T(M) =n{Rp : P € Spec(R) P # M} = R,
because R is a Krull domain. Therefore MQ(M) = MR = M # (M) and thus
D(M) is not affine.

Note that, in this case, (M) is trivially finitely generated over R, but MQ(M) #
Q(M).

EXAMPLE 4.11. An ideal I of an integral domain R such that QI) is a finitely
generated proper overring of R, but Q(I) is not R-flat.

Let K be a field and X,Y two indeterminates over K. Let (V,M = V) be a
1-dimensional discrete valuation domain of F := K(X,Y) dominating the local ring
K[X,Y](x,y) and with residue field K. Let W := K[X,Y](x-1,y), let N be the
maximal ideal of W and set

R=VnwW.

It is easy to see that R is a . semilocal Noetherian integrally closed domain with two
maximal ideals m := M N R and n:= NNR such that Ry = V, Rp = W. Let
J(R) = M NN =mN be the Jacobson radical of R and set

R:=K+JR).
Then, R is a 2-dimensional local subring of R such that & is the integral closure of
R, R is finitely generated over R (hence R is Noetherian) and (R : R) = J(R) [N6,

E2.1].
It is easy to see that

Tr(J(R) =Qr(J(R) 2 (J(R): J(R) 2 R,
and thus (Lemma 3.1 (e)):
Qr(J(R)) = Qp(J(R)) = Qx(rN) =R[1/n] =R, = W .
Therefore, R C R C Qg(J(R)) = R[1/x] is finitely generated, but J(B)Qr(J(R)) =

J(R)W = N # Qp(J(R)) = W, whence Qp(J(R)) is not R-flat (¢f. also Theorem
4.4).
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