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ABSTRACT. Let D be a domain with quotient field K. Let E C K be a subset; the
ring of D-integer-valued polynomials over E is Int(E, D) := {f € K[X]; f(E) C D}.
The polynomial closurein D of a subset E C K is the largest subset F C K containing
E such that Int(E, D) = Int(F, D), and it is denoted by ¢lp(E). We study the
polynomial closure of ideals in several classes of domains, including essential domains
and domains of strong Krull-type, and we relate it with the t-closure. For domains
of Krull-type we also compute the Krull dimension of Int(D).

INTRODUCTION

Let D be any integral domain with quotient field K. For each subset E C K,
Int(E, D) := {f € K[X]; f(E) C D} is called the ring of D-integer-valued polyno-
mials over E. As usual, when E = D, we set Int(D) := Int(D,D). When E is
“large enough”, it may happen that Int(E, D) = D (for instance, Int(S™'Z,Z) = Z
for each nontrivial multiplicative subset S of Z, [CC2, Corollary 1.1.10]). This
does not happen if E is a D-fractional subset of I, i.e. if there exists d € D\(0)
such that dF C D. Indeed, in this case, dX € Int(E, D). It is well known that
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Int(D) € Int(E, D) if and only if E C D [CC2, Corollary 1.1.7). Two subsets E
and F' of K may be distinct while Int(E, D) = Int(F, D). When this happens, we
say that E and F are polynomially D-equivalent. For instance, N and Z are poly-
nomially Z-equivalent [CC2, Corollary [.1.2]. In particular, if Int(E, D) = Int(D)
we say that E is a polynomially dense subset of D (so, N is a polynomially dense
subset of Z). In [G1] Gilmer characterized the polynomially dense subsets of Z and,
in [C2] and [C4], Cahen studied the polynomial density, with special emphasis to
the Noetherian domains case. McQuillan, pursuing Gilmer’s work, investigated the
polynomially D-equivalent subsets of a Dedekind domain D [Mc]. Among other
results, he proved that two fractional ideals I and J of a Dedekind domain D are
polynomially equivalent if and only if I = J. After noticing that, Cahen introduced
the notion of polynomial closure (in D) of a subset E of K as follows:

clp(E):={z € K; f(z) € D, for eachf € Int(E, D)},

that is, cIp(E) is the largest subset F C K such that Int(E,D) = Int(F,D).
Obviously, E is said to be polynomially dense in D if clp(E) = D and polynomially
D-closed if clp(E) = E.

In the first section of this paper, we consider essential domains, that is, domains
D such that

(1) D =nNpepDp,

where P is a subset of Spec(D) and Dp is a valuation domain. In particular, among
these domains, we will focus our attention on the strong Krull-type domains, that
is the essential domains D such that the intersection (1) is locally finite (i.e., each
nonzero of D belongs to finitely many prime ideals P € P) and the valuation rings
Dp are pairwise independent. Examples of strong Krull-type domains are Krull
domains and generalized Krull domains [G1, p. 524]. We prove that if E is a
fractional subset of a strong Krull-type domain D, then clp(E) = Npepclp, (Ep),
where clp,(Ep) denotes the polynomial Dp-closure of Ep := {e/s;e € E, s €
D\P}. This yields a generalization of a result proved by Cahen for Krull domains,
[C3] or [C4]. Moreover, we study the polynomial closure as a star-operation and
we relate it to the t-operation. We find that if D is an essential domain, then
I; C clp(I), for each fractional ideal I of D and, for some distinguished classes of
domains, as Krull domains, Priifer domains in which each nonzero ideal is divisorial,
Il — CID(I)

In the second section we compute the Krull dimension of the ring of Int(D), when
D is a domain with a locally finite representation. By using this result we show that
if D is a domain of Krull-type then dim(Int(D)) = dim(D[X]), obtaining further
evidence for the validity of the conjecture about the Krull dimension of Int(D)
stating that dim(Int(D)) < dim(D([X]) for each integral domain D (cf. [Ch], [C1],
and [FIKT)).

In Section 3, we study the quotient of the polynomial closure of a subset modulo
a divided prime ideal, and we apply this result to some classes of domains defined
by making use of pullback constructions.
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1. POLYNOMIAL CLOSURE IN STRONG KRULL-TYPE AND
NOETHERIAN DOMAINS

We start this section by studying the polynomial closure of the ideals in a strong
Krull-type domain, that is a domain D having the following representation:

(1.0.1) D =nNpepDp,

where P C Spec(D), the intersection (1.0.I) is locally finite and the rings Dp are
pairwise independent valuation domains.

We prove for this class of domains some results already proved by Cahen in case
of Noetherian and Krull domains [C3, Proposition 1.3}, [C4, Proposition 3.2, 3.5,
3.6, Corollaries 3.7 and 3.8].

THEOREM 1.1. With the notation above, let D be a strong Krull-type domain
with quotient field IC and let E be any D-fractional subset of K. Then:

(1) Int(E, D)p = Int(E, Dp), for each P € P;

(2) clp(E) =Npepclpp(Ep);

(3) if E C D, then E is polynomially dense in D if and only if E is polynomially
dense in Dp for each P € P.

Proof. (1) The argument of the proof runs parallel with the one used in [C4,
Proposition 3.2] (cf. also [CC2, Proposition 1.2.8 and IV.2.9]). We wish to prove
that Int(E, Dp) C Int(E, D)p, for each fixed ideal P € P (the opposite inclusion
holds in general, [CC2, Lemma 1.2.4]).

Since E is a fractional D-subset of K, with a standard argument we can easily
assume, without loss of generality, that E C D. Let f € Int(E,Dp), f #0. It is
obvious that there exists d € D, d # 0, such that df € D{X]. Set

P(d) := {Q € P;d € QandQ ¢ P}.

Since the given representation of D is locally finite, then P(d) is a finite set.

We claim that there exists a € D such that a € dDg \ P, for each Q € P(d), that
is, vg(a) > vg(d), for each Q € P(d), and vp(a) = 0, where vp is the valuation
associated to the ring Dp for each P € P.

The Approximation Theorem for valuations [B, Ch. VI § 7 n. 2, Corollaire
1, p. 135] states that there exists an element b € K such that v(b) = 0 and
vo(b) > vo(d), for each Q € P(d). Now, there exist a,c € D, a ¢ P, such that
b = a/c. For each P € P, we have that vp(a) = vp(b) + vp(c). Thus, if Q € P(d),
then vg(c) > 0 (since ¢ € D C Dgq) and vg(a) > vg(b) = vq(d). Moreover, since
vs(b) = vp(c) =0, then also v(a) = 0.

Therefore af € Dp[X] for each P € P(d) and P € P such that d ¢ P. As a
matter of fact, for each P € P\ P(d), with d ¢ P, we have that d is a unit in Dp.
Thus, since df € D[X], we deduce that f € Dp[X] and af € Dp[X]. If Q € P(d),
then ad™! € Dg and af = (ad™')(df) € Dg[X]. In these cases, since E C D and
af € Dp[X], then af(E) C Dp, that is, af € Int(E, Dp). On the other hand,
f € Int(E, Dp) and a € D, whence af(E) C Dp. Ifd € P and P C P, then
Dp 2 Dp. Thus f(E) C D C Dp and f € Int(E,Dp).

We conclude that af(E) € NpepDp = D, that is af € Int(E,D). Hence
f € Int(E, D)3, because a € D\P.
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(2) follows from (1) and from (C4, Proposition 3.5).

(3) is a straightforward consequence of (2). O

In order to deepen the study of the polynomial closure of fractional ideals, we
recall some properties about star-operations.
Let D be an integral domain with quotient field K, let F(D) denote the set of
nonzero fractional ideals of D and let Srg(D) denote the subset of §(D) of nonzero
finitely generated fractional ideals of D. A mapping I = I* of §(D) into F(D) is

called a star-operation on D if the following conditions hold for all a € K\{0} and
I,J € 3(D):

(*1) (aD)* = aD;

(*2) (al)* = al*;

(#3) I C I*;

(+4) ICJT=I* C J*

(%5) I** = I*.
A fractional ideal I € §(D) is called a star-ideal if [ = J*. A star-operation x on D
is said to be of finite character if, for each I € 3(D),

I"=u{JJCTIand Je Sg(D)}.
Given a star-operation *, then the function *s defined as follows:

I's I"* = U{J*;J C I and J € 34(D)}

is a star-operation of finite character. The star-operation x; is called the star-
operation of finite character associated to *. It is obvious that:

J* = J*, for each J € §¢,(D),

I** C I', for each I € §(D).
The v-operation
I'— I, := (D:(D:I))

is a star-operation. The t-operation

I I :=U{Jy;JCITand Je Stg(D)}

is the star-operation of finite character associated to the v-operation (cf. [G2,

Sections 32 and 34]).
The following result is implicitly proved by Cahen [C4, Lemma 1.2).

LEMMA 1.2. Let D be an integral domain, then the polynomial closure

clp : §(D) = (D), I~ clp(l),

is a star-operation. O
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COROLLARY 1.3. Let D be an integral domain. Then, for all I,J in (D) and
for each subset {I,; € A} of §(D), we have:
1) elp(32, 1a) = clp(F, clp(la)), if 14 1o € §(D);
2) Naclp(la) = clp(Naclp(la)), if Nala # (0);
3) clp(IJ) =clp(Iclp(J)) = clp(clp(I)J) = elp(clp(I)clp(J));
4) elp(I) € I;
(5) elp(l) = L.
Proof. It is a straightforward consequence of Lemma 1.2 and of [G2, Proposition
32.2 and Theorem 34.1(4)]. O

Note that, from Corollary 1.3(1) and (3), we recover for the fractional ideals
some results proved by Cahen for subsets [C4, Lemma 2.4], in particular we obtain
that elp(I) +clp(J) Celp(I + J), clp(I)elp(J) C clp(1J).

We will need the following result, that is a consequence of [C4, Proposition
3.5(2)], in order to deepen the relation between the polynomial closure and the
star-operations.

LEMMA 1.4. Let D be an integral domain and let P be a subset of Spec(D) such
that D = NpepDp. For each I € §(D), we have:

—

Npepclp,(IDp) Celp(I). O

It is well known from the theory of star-operations that, if {Dy;a € A} is a
collection of overrings of an integral domain D such that D = NgeqDq, and if *,
is a star-operation on D,, for each a € A, then the mapping

I+ I** = N{(IDa)**;a € A}

is a star-operation on D and ([*4D,)** = (ID,)*e, for each a € A [A, Theorem 2].
If D = NpepDp, for some subset P C Spec(D), we call the P-polynomial closure
of I € (D), the following fractional ideal of D:

'P-CID(I) = ﬂpepC!DP(po).

PROPOSITION 1.5. Let D be an integral domain such that D = NpepDp, for
some subset P of Spec(D).

(1) The mapping:
I~ Pclp(I)

defines a star-operation on D, with P-clp(I) C clp(I) for each I € §(D).
(2) Let I € (D). If IDp # Dp for finitely many P € P, then

'P-CfDU)Dp = CIDP(IDP).

(3) If clp, (FNG) = clp, (F)Nelp,(G), for each P € P and for all F,G €
§(Dp), then

P-clp(INJ) =P-clp(I)NP-clp(J), for all I,J € F(D).
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(4) If clp, (Fip, G)) = (clp,(F):p, clp,(G)), for each P € P, F € 3(Dp)
and G € 3gg(Dp), then

P-clp((I:p J)) = (P-clp(I):p P-clp(J)),

for each I € F(D) and J € Sg(D).

(5) If D = NpepDp is locally finite and if, for each P € P, clp, is a star-
operation on Dp with finite character, then P-clp is a star-operation on D with
finite character.

Proof. These results are a straightforward consequence of Lemma 1.4, of the
definition of the P-polynomial closure and of [A, Theorem 2]. O

COROLLARY 1.6. If D = NpepDp is a strong Krull-type or a Noetherian
domain, then, for each I € F(D), we have that

P-clp(I) = clp(1).

Proof. If D is strong Krull-type, the thesis is a consequence of Theorem 1.1(2)
and the definition of P-polynomial closure. More precisely, if Int(IDp,Dp) =
Int(I, D)p, then clp(I) C clp,(IDp) [C4, Proposition 3.5(1)] and hence cp(I) C
P-clp(I). Therefore clp(I) = P-clp(I) by Lemma 1.4.

If D is Noetherian, then S~'Int(I, D) = Int(S~'1,S~!D), for each multiplicative
set S of D [CC2, Proposition 1.2.7]. As shown above for strong Krull-type domains,
also in the Noetherian domain case, for P = Max(D), we have that:

clp(I) = Npepelp, (IDp),

for each I € §(D), that is, clp(I) = P-clp(I), by definition of P-polynomial
closure. O
COROLLARY 1.7. Let D be a Noetherian domain.

(1) For each M € Max(D) and for each I € 5(D), we have:

clp(I)Dpy = clp,, (IDyy).
(2) If S is a multiplicative subset of D, for each I € 5(D) we have:
S~lelp(I) = clg-1p(S711).

In particular, if I is polynomially closed in D then S—'I is polynomially closed
in S71D.
(3) For each M € Max(D),

clp(M) = (MDp)y N D = M,.

In particular, M is polynomially closed (respectively, polynomially dense) in D if
and only if M = M, (respectively, M, = D) or, equivalently, if and only if M Dy
1s polynomially closed (respectively, polynomially dense) in Dyy.

(4) For each nonzero ideal I of D there exists a prime ideal P of D such that
I CP=clp(P).
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(5) If dim(D) = 1, then every nonzero prime ideal of D is polynomially closed.

Proof. (1) is an easy consequence of Proposition 1.5(2) and Corollary 1.6, since D
is Noetherian and D = NyreMax(p) D -

(2) Note that S7'D = N{Dp;; M € Max(D) and M NS = P} is locally finite.
Hence the conclusion follows from (1) and from Corollary 1.6, since

S™Yelp(I) = N{clp(I)Dpr; M € Max(D) and M N S = 0} =
= N{elp, (IDy); M € Max(D) and M NS = 0} =
=clg-1p(S7I).
(3) By Corollary 1.6 we have
clp(M) = NneMax(p)CclDy (MDN) =

=clpy (MDy) N (N{Dn; N € Max(D), N # M}) = clp,,(MDp) N D.

Moreover, by the proof of [C4, Proposition 2.3], we know that if (R, m) is a local
Noetherian domain then clg(m) = m,. Finally, since D is Noetherian, by [G2,
Theorem 4.4(4)], we have that (M Dps), = M,Dp and by [G2, Theorem 4.10(3)]
we have

M, = (MDy), N D.

The conclusion is straightforward.

(4) Since D is Noetherian, clp is a star-operation on D with finite character
(Corollary 1.6). It is well known, in this situation, that each proper star-ideal of
D is contained in a maximal proper star-ideal of D and that a maximal proper
star-ideal of D is a prime ideal (cf. for example [J]).

(5) follows immediately from (4). O

Note that Corollary 1.7(2) gives a positive answer to Question 3.10 in [C4] and
Corollary 1.7(3) generalizes to the nonlocal case [C4, Proposition 2.3]. Note also
that Cahen [C4, Example 3.9] has given an example of an ideal I of an integrally
closed (non Noetherian) domain D such that I = clp(I) and S™!1 # cls-1p(S™1I),
for some multiplicative set S of D.

The equality in Corollary 1.7(3) does not hold for the nonmaximal ideals, i.e. the
inclusion elp(I) C I, may be a proper inclusion even in the Noetherian local case.
In fact, it is enough to consider a local, Noetherian, one-dimensional, analitically
irreducible domain D with finite residue field and a nonzero nonmaximal ideal I
of D (cf. [C4, Corollary 4.8] or [CC2, Theorem IV.1.15]). For instance, let k be a
finite field, D := k[[X3, X* X5)] and I := (X*, X*)D. In this case (D:I) = k[[X]],
hence I, = (X?, X4, X5)D; but I = clp(I) [C4, Corollary 4.8].

We recall some definitions. An essential domain is an integral domain D such
that D = NpepDp, where Dp is a valuation domain for P belonging to a subset
P of Spec(D). If D is an essential domain with the valuation rings Dp pairwise
independent and D = NpepDp is locally finite (i.e. each nonzero element of D
belongs to finitely many prime ideals P of P) then D is a domain of strong Krull-
type. Obviously, each Priifer domain is an essential domain and each Krull domain
is a domain of strong Krull-type.
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A relevant case is when P is the set t,,(D) of all t-mazimal ideals of D (i.e. the
maximal elements among the integral t-ideals of D). It is well known that each
maximal ¢-ideal is a prime ideal and, for each ideal I of D, I= Npet,.(pyIDp; in
particular D = Npg, (p)Dp [Gr, Proposition 4]. A Priifer v-multiplication domain
D is an integral domain such that Dp is a valuation domain for each P € tm(D).
This class of domains was introduced by Griffin [Gr].

In order to study the polynomial closure of fractional ideals in an essential do-
main, we start by considering the local case, i.e. when D = V is a valuation
domain.

PROPOSITION 1.8. Let V be a valuation domain with mazimal ideal M.
(1) If M is principal, then, for each nonzero fractional ideal I of V., I = cly(I) = I,.
(2) If M is not principal, then:
a)cly(M)=M, =V;
b) for each nonzero ideal I of V, cly(I) = I,,; moreover, if I # I, then cly(I) =
I, is a principal ideal of V.

Proof. We recall that, in general, for each integral domain D and for each I € (D)
we have the following inclusions: I C clp(I) C I, (Corollary 1.3).

(1) If M is principal, then each nonzero fractional ideal of V is divisorial G2,
Exercise 12, p. 431]. The conclusion follows immediately from the previous tower
of inclusions.

(2) If M is not principal, then {aM;a € V,a # 0} is the set of all nonzero
nondivisorial (integral) ideals of V [G2, Exercise 12, p. 431]). Therefore, in this
case, M # M,, hence M, = V.

(a) In order to prove that cly (M) = V, we will show that Int(V) = Int(V,V) =
Int(M, V).

Since M is not principal, V[X] = Int(V) [CC2, Proposition 1.3.16).
Let f:=co+c1 X+ -+, X" € Int(M,V) be a polynomial of degree n. By [CC2,
Corollary 1.3.3], if ag, a1, -+ ,a, are n+1 elements of M and if d := l'[c,qq(n(a,- -
aj), then df € V[X]. Let v be the valuation associated to V. By using the
assumption that M is not finitely generated, we can choose the elements a;’s such
that 0 < v(d) < |v(c;)|, for each ¢; such that v(ci) # 0. On the other hand,
df € V[X] hence v(dc;) = v(d) + v(c;) > 0, for each 0 <i<n. If f ¢ V[X], then
v(c;i) < 0 for some ¢ with 0 < i < n, hence we have a contradiction. Therefore, we
can conclude that V[X] = Int(M,V) and thus a) holds.

b) It is obvious that, if I = I,, then cy(I) =cly(I,) = I, (Corollary 1.3(5)). If
I'#1I,and I CV, then I = aM for some nonzero element a € V, hence ely (1) =
cly(aM) = acly (M) (Lemma 1.2). By point a), we deduce that cy(I)=aV is a
principal (hence, divisorial) ideal and ely(I) = I,. If I # I, and I is a fractional
ideal of V, then b C V and bI # bl,, for some nonzero element b € V. The
conclusion follows easily from the previous argument. 0O

THEOREM 1.9, Let D = NpepDp be an essential domain.
(1) For each J € Sig(D), we have:

P-clp(J) = clp(J) = J,.
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(2) For each I € §(D), we have:
Iy € P-clp(I) Celp(I) C 1.
Proof. (1) If J is finitely generated, then
JuDp C (JDp),, for each prime ideal P of D,
[B, Ch. I§2n. 11 (11), p. 41). On the other hand, by Proposition 1.8,
Jy € NpepdyDp C Npep(JDp), =
= Npepclp(JDp) = P-clp(J).
The conclusion follows by recalling that, in general for each I € F(D), we have:
P-clp(I) Celp(I) C I,.
(2) Since It := U{Jy; J C I and J € Feg(D)} then, by Proposition 1.5(1) and by
(1), we have:
Iy := U{P-clp(J); J C I and J € Fg(D)} C P-clp(I). O
COROLLARY 1.10. Let D = NpepDp be an essential domain.
(1) For all J',J" € Fgg(D):
cp(J'NJ")y =clp(J')Nelp(J").
(2) For all I' I" € F(D), then:
P-clp(I' N I") = P-clp(I'") N P-clp(I").

Proof. (1) follows from (2) and from Theorem 1.9(1).

(2) Since Dp is a valuation domain, for each P € P, then either I'Dp C I"Dp
or ["Dp C I'Dp, hence clp,(I'Dp NI"Dp) = clp,(I'Dp) Nclp,(I"Dp). The
conclusion follows from Proposition 1.5(3). O

Let D = Npg;,,(pyDp and let I € F(D). In this case we set P = t,,(D) and
t—CID(I) = npetm(D)ClDP (IDP)

COROLLARY 1.11. Let D =Npgy,, (p)Dp be a Priifer v-multiplication domain.
Assume that, for each mazimal t-ideal P of D, PDp is a principal ideal. Then, for
each I € F(D), we have:
I = t-clp(I).
If, moreover, D = Npg,, (p)Dp is locally finite and the valuation rings Dp are
pairwise independent (i.e. D is an integral domain of strong Krull-type) then, for
each I € §(D), we have
Iy = t-clp(I) = clp(I).

Proof. In a Priifer v-multiplication domain D, for each I € (D), I, =
Npet,,(p)IDp (cf. for instance [A, Theorem 6]).
On the other hand, by Proposition 1.8(1),

Npet,.(pyIDp C t-clp(l) = Nper,,(p)clpe(IDp) = Npey, . (pyIDp,

hence [} = t-clp(I). The last statement is a consequence of Corollary 1.6. O
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COROLLARY 1.12. Let D = Npet,.(p)yDp be an integral domain of strong
Krull-type. Assume that, for each P € tm(D), there exists a finitely generated
ideal J of D such that J C P and J=!' = P~! and that each prime t-ideal of D is
contained in a unique mazimal t-ideal. Then, for each I € (D), we have:

I, = t-ClD(I) = CID(I) =1,.

Proof. These assumptions characterize the Priifer v-multiplication domains such
that each t-ideal is divisorial [HZ, Theorem 3. 1]. The conclusion is a straightforward
consequence of Theorem 1.9(2). O

Examples of integral domains satisfying the assumptions of Corollary 1.12 are
Krull domains and the Priifer domains in which each nonzero ideal is divisorial (cf.
[H, Theorem 5.1] and [K, 127)).

REMARK 1.13. For each nonzero fractional ideal I of an integral domain D,
since I~ is divisorial, I C elp(I) C I, and I~} = I7!, we have:

(1.13.1) clp(I™") =clp(I)~' =171,

Since I, = (I=*)~!, then the previous identity generalizes the fact that clp(I,) =
I, (Corollary 1.3(5)). From (1.13.I), we deduce that if D # I~1 then I is not
polynomially dense in D. In particular, for a maximal ideal M of D, we obtain
that D # M~ implies that M = clp(M). This statement could be obtained also
as a consequence of Corollary 1.3(5), since M = M, if and only if D # M1,

2. KRULL DIMENSION OF INT(D) WHEN D IS OF KRULL-TYPE

This section is devoted to the study of the Krull dimension of the ring Int(D)
for the integral domains D having a locally finite representation. If a domain D
has a representation

D =NpepDp

where P C Spec(D), the ring Dp are valuation domains for each P € P and the
intersection is locally finite, then D is called a Krull-type domain. Strong Krull-type
domains studied in Section 1, are a particular case of Krull-type domains.

As a consequence of our main result we prove that, for each domain of Krull-type
D, dim(Int(D)) = dim(D[X]). This improves the knowledge of the Krull dimension
of the ring of integer-valued polynomials giving further evidence for the conjecture
stating that dim(Int(D)) < dim(D[.X]), for each integral domain D.

THEOREM 2.1. Let D be an integral domain and P a subset of Spec(D). As-
sume that D = NpepDp is a locally finite representation of D. Set Py := {P €
P NMax(D); Card(D/P) < oo} and M := Max(D) \ Py. Then

dim(Int(D)) = Max({dim(Dn(X]); M € M}, {dim(Int(Dp)); P € Po}).

Proof. We note that, for each maximal ideal M of D,

(21.1)  Dar = Npep(Dp)p\ar) = (Npep, PcarDp) N (Npep. pegm(Dp)(p\an))
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is a locally finite representation of D [G2, Proposition 43.5]. Since D =
Naremax(p)Du, then, by [CC1, Corollaire 3, p. 303],

Il’lt.(D) = nMEMax{D)Int'(DM)'
Since Int(D) C Int(D)a C Int(Dyy), for each M € Max(D), it follows that
(2.1.1T) Int(D) = ﬂMEMax(D)Int(D)M-

Now, we will show that for each M € M, Int(Dy) = Int(D)y = Dp[X].
As a matter of fact, if M € Max(D) \ P, for each P € P, P C M, D/P is
infinite and then Int(Dp) = Dp[X]. If P € P with P € M, then clearly the
maximal ideals of (D p)p\ar) contract to nonmaximal prime ideals of D. Therefore,
(DP)(D\M) has infinite residue fields and whence Iﬂt((Dp)(D\M)) = (DP)(D\M) [X]
[CC2, Corollary 1.3.7]. From (2.1.I) and [CC1, Corollaire 3, p. 303], we deduce
that, if M € Max(D) \ P,

Int(Dp) = NpepInt((Dp)(p\nm)) =
= (Npep, prcmInt(Dp)) N (Npep, pgmInt((Dp)(p\ary)) =
= (Npep, PcuDp[X]) N (Npep, Pgrm(Dp)(p\m)[X]) = Dm[X].
It is obvious that if M € (Max(D)N7P)\ Py then Int(Dpr) = Dp[X], since D/M is
infinite. Since Dp[X] C Int(D)ar C Int(Dys), we have that Dy [X] = Int(D)py =

Int(Dpy).
From the previous claim and from (2.1.II), we deduce that:

(2.1.1I0) Int(D) = (NMemDm([X]) N (Npep, Int(D) nr).

We know that there exists NV € Max(Int(D)) such that ht(N) = dim(Int(D))
and NND maximal. (In fact, if NN D = P is a nonmaximal prime ideal of D, then
Int(D)p = Int(Dp) = Dp[X] and hence ht(N) = dim(Dp[X]) < dim(D[X]) — 1 <
dim(Int(D)) [CC2, Proposition V.1.6]. Therefore dim(Int(D)) = dim(D[X]) — 1.
Arguing as in the proof of [CC2, Proposition V.1.6], we can find a chain C of prime
ideals of Dp[X] of length n = dim(Dp[X]) = dim(Int(D)),

C: 0)c@QiC--CQn-1CQn,

such that (Q; N Dp)[X] € C, for each 7 = 1,--- ,n. Therefore, @,—1 = PDp[X].
When we contract C to Int(D) we get a chain

¢ 0cic-cQ,,CcQy,

where Q;,_, = PDp[X]NInt(D). If M is a maximal ideal of D containing P
and a € D, then it is easy to see that Q),_, C P, € M,, where Q, := {f €
Int(D); f(a) € Q} for Q € {P,M} and M, is a maximal ideal of Int(D) above M
[CC2, Lemma V.1.3]. Therefore we reach a contradiction: dim(Int(D)) > n + 1.

Let M := (NN D) € Max(D). Since NN (D\ M) = 0, then NInt(D)ys is a
maximal ideal of Int(D)as. The conclusion follows immediately by examining the
two possible cases:

Case 1. M € M. In this case, Int(D)p = Int(Dpr) = Dpr[X], hence ht(N) =
dim (D [X]).

Case 2. M € Pp. In this case, Int(D)y = Int(Dyps) and ht(N) =
dim(Int(Dys)). O .
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COROLLARY 2.2, With the same notation and hypotheses of Theorem 2.1, if
dim(Int(Dp)) < dim(Dp[X]) for each P € Py, then dim(Int(D)) < dim(D[X]). In
particular, the previous inequality holds in the following cases:

(a) Dp[X] is a Jaffard domain, for each P € P, (e.9. when D is a locally Jaffard
domain [ABDFK]);

(b) Dp is a P*VD, withn > 0, for each P € Po (e.9. when D is a locally PVD
domain, [F] or [DF]).
Proof. The first inequality is a straightforward consequence of Theorem 2.1. As
concerns the particular cases, we proceed as follows.

(a) We note that, for each P € Py, we have:

dim(Int(Dp)) < dim, (Int(Dp)) < dim,(Dp[X]) = dim(Dp[X]).

(b) follows from [FIKT, Lemma 3.1]. O

COROLLARY 2.3. If D is a domain of Krull-type (e.g. a generalized Krull
domain [G2, p.524]), then dim(Int(D)) = dim(D[X]).

Proof. In this case, P = t,,(D), Py = {P € Pn Max(D); Card(D/P) < oo}
and Dp is a valuation domain, for each P € P. In particular dim(Int(Dp)) =

dim(Dp)+1 = dim(Dp[X]) for each P € P,. The conclusion follows from Theorem
2.1, O

3. POLYNOMIAL CLOSURE IN PULLBACK DOMAINS

Let D be any domain and let P be a prime ideal of D with Card(D/P) = oo.
Let I be an ideal of D such that P C I, thus Ip = IDp = Dp. From [C4, Lemma
3.4] we have

Int(I,Dp) = Int(Ip,Dp) = Int(Dp) = Dp[X],

hence Int(I, D) C Dp[X]. Therefore, we can consider the canonical map
¢ :Int(I,D) = Int(I/P,D/P), fwr f:=f+ PDplX],

where it is easily seen that f € Int(I/P, D/P).

We start this section with an observation about Int(I,D) and Int(I/P,D/P)
when P is a divided prime ideal, i.e. P = PDp.
LEMMA 3.1. Let D be an integral domain, P a divided prime ideal of D with
Card(D/P) = oo and I an ideal of D with P C I. Then,

(1) the canonical map ¢ : Int(I, D) — Int(I/P,D/P) is a surjective homomor-
phism;

(2) ker(y) = P[X];
(3) Int(I, D)/P[X) = Int(I/P,D/P).
Proof. (1) Let g € (Dp/PDp)[X] such that g(I/P) C D/P. Then it is easy to

see that g = G + PDp[X] = G + P[X], where G € Dp[X] and G(i) + P € D/P,
for each i € I. Therefore G € Int(I, D).

(2) It is obvious that ker(yp) = PDp(X]N1Int(I, D) = P[X].
(3) is a straightforward consequence of (1) and (2). O
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PROPOSITION 3.2, Let D, P and I as in Lemma 3.1. Then, the canonical
homomorphism ¢ defines the following isomorphism:

elp(I)/P = clp,p(I/P).

Proof. Let = € clp(I), then f(z) € D for each f € Int(I, D). Hence, f(T) =
f(z) € D/P for each f € Int(I, D). Since the map ¢ : f — f is surjective (Lemma
3.1(1)), then g(T) € D/P for each g € Int(I/P,D/P), i.e. T € clp,p(I/P).
Therefore ¢lp(I)/P C clp,p(I/P). Conversely, if y = x + P € clp,p(I/P) then
for each g € Int(I/P,D/P), g(y) € D/P. Since g is surjective, g = f = f + P[X]
for some f € Int(/, D). By the fact that g(y) € D/P, for each g € Int(I/P,D/P),
we deduce that f(z) € D, for each f € Int(I,D), i.e. z € clp(I). O

COROLLARY 3.3. Let D be a domain with a divided prime ideal P. Suppose
that D/P is a valuation domain V with nonzero principal mazimal ideal. Then,
each ideal of D containing P is polynomially closed.

Proof. If I is an ideal of D and P C I, then from Propositon 3.2 ¢lp(I)/P =
clp;p(I/P). But D/P =V is a valuation domain with principal maximal ideal
and, by Proposition 1.8, clp,p(I/P) = I/P. Therefore clp(I)/P = I/P and
clp(I) = I, since they both contain P. O

Relevant examples of divided domains are the pseudo-valuation domains (PVD)
or, more generally, the pseudo-valuation domains of type n (P"VD). We recall that
a PVD, D, is defined by a pullback of the following type:

D:=a'k) — &k

(3.1) l 1

1% —2 5 V/M

where (V, M) is a valuation domain (called the valuation overring associated to
D), a : V — V/M is the canonical projection and k is a subfield of the residue
field of V. From [HH, Theorem 2.13], every prime ideal of D is divisorial, hence
it is polynomially closed. Moreover, if I is any nonprincipal integral ideal of D,
then I, = IV [HH, Corollary 2.14]. It follows immediately that clp(I) C IV.
Moreover, for a nonvaluation PVD, the t-operation and the v-operation coincide
[HZ, Proposition 4.3] so that clp(I) C I;. If D = V is a valuation domain, then it is
known that the t-operation and the v-operation coincide if and only if the maximal
ideal M of V' is principal [HZ, Remark 1.5]; in fact, in this situation, every nonzero
ideal of V' is divisorial.

In [C4, § 4] the author establishes some relations between the polynomial closure
of a fractional subset and its 2A-adic closure, where 2 is an ideal of a Zariski domain
D (i.e. a Noetherian domain, equipped with the 2-adic topology, in which every
ideal is A-adic closed). Next goal is to obtain a link between the polynomial closure
and the adic closure for a special class of PVD’s.

PROPOSITION 3.4. Let D be a PVD. Assume that D possesses a height-one
prime ideal P such that P # P?. Then, the polynomial closure of each D-fractional
subset E of K contains the P-adic closure of E.

Proof. We start by proving that all ideals of D are closed in the P-adic topology.
If I is any ideal of D, then its P-adic closure is given by I := N, >o(I + P"). If
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I'2 P, it is obvious that T = I. If I C P, then P? G VI = P and I contains
a power of P by [HH, Corollary 2.5]. Therefore, T = I. Since each ideal of D is
closed in the P-adic topology, we can use the same argument of [C4, Theorem 4.1]
in order to conclude. O

Recall that a P"VD, D, is defined by induction on n in the following way. A
P°VD is a PVD and a P"VD is obtained by a pullback diagram of the following
type:

D = a_l(fln_l) E— An—l

l |

Wh_1 —2 5 F=W,_1/M

where W, _; is a P*~1VD with maximal ideal M, F is its residue field, a : Whot =
F' is the canonical projection and An-1 is a PVD with quotient field F. For details
about P"VD the reader is referred to [F].

In the next proposition, we will show that also in a P™VD all prime ideals are
polynomially closed.

PROPOSITION 3.5. Let D be a P° VD, then all nonzero prime ideals of D are
polynomially closed.

Proof. Since in a P"VD every prime ideal is divided [F, Theorem 1.9], then if
@ is a prime ideal of D, then Dq is a P™VD, with m < n, and Q = (D:Dg),
since QDg = Q. Then, if Q # 0, Q is a divisorial ideal, whence it is polynomially
closed. O
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