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ABSTRACT

In 1994, Matsuda and Okabe introduced the notion of semistar
operation. This concept extends the classical concept of star opera-
tion (cf. for instance, Gilmer’s book (Gilmer, R. (1972).Multiplicative
Ideal Theory. New York: Marcel Dekker) and, hence, the related
classical theory of ideal systems based on the works by W. Krull,
E. Noether, H. Prüfer and P. Lorenzen from 1930’s. Fontana and
Loper investigated properties of the Kronecker function rings which
arise from arbitrary semistar operations on an integral domain D
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(Fontana M., Loper K. A. (2001a). Kronecker function rings: a
general approach. In Anderson, D. D., Papick, I. J., eds. Ideal
Theoretic Methods in Commutative Algebra. Lecture Notes Pure
Appl. Math. 220, Marcel Dekker, pp. 189–205 and Fontana, M.,
Loper, K. A. (2001b). A Krull-type theorem for the semistar inte-
gral closure of an integral domain. ASJE Theme Issue ‘‘Commuta-
tive Algebra’’ 26:89–95). In this paper we extend that study and
also generalize Kang’s notion of a star Nagata ring to the semistar
setting (Kang, B. G. (1987). H-Operations on Integral Domains.
Ph.D. dissertation, Univ. Iowa and Kang, B. G. (1989). Prüfer
v-multiplication domains and the ring R[X]Nv, J. Algebra 123:
151–171). Our principal focuses are the similarities between the
ideal structure of the Nagata and Kronecker semistar rings and
between the natural semistar operations that these two types of
function rings give rise to on D.

1. INTRODUCTION

A principal use of the classical star operations has been to construct
Kronecker function rings associated to an integral domain, in a more
general context than the original one considered by Kronecker (1882)
(cf. Krull, 1935, 1936; and Edwards, 1990 for a modern presentation of
Kronecker’s theory). In this setting, one begins with an integrally closed
domain D and a star operation H on D with the cancellation property
known as e.a.b. (endlich arithmetisch brauchbar). Then the Kronecker
function ring is constructed as follows:

KrðD;HÞ :¼ ff =g j f ; g 2 D½X �nf0g and cð f ÞH � cðgÞHg [ f0g ;

(where c(h) denotes the content of a polynomial h2D[X]). This domain
turns out to be a Bézout overring of the polynomial ring D[X] such that
Kr(D, H)\K¼D (where K is the quotient field of D), cf. Gilmer (1972,
Sec. 32).

In 1994, Okabe and Matsuda (1992) introduced the more ‘‘flexible’’
notion of semi-star operation H of an integral domain D, as a natural
generalization of the notion of star operation, allowing D 6¼DH (the defi-
nition is given in Sec. 2; cf. also Matsuda and Sato, 1996; Matsuda and
Sugatani, 1995; Okabe and Matsuda, 1994). In several recent papers,
the classical construction introduced by Kronecker has been further gen-
eralized so that we can begin with any integral domain (not necessarily
integrally closed) D and any semistar operation (not necessarily e.a.b.)
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H ofD and, in a natural manner, construct a Kronecker function ring, still
denoted here byKr(D,H), which preserves themain properties of the ‘‘clas-
sical’’ Kronecker function ring (axiomatized by Halter-Koch, preprint; see
also Anderson et al., 1987), cf. the works by Okabe and Matsuda (1997),
by Matsuda (1998), and by Fontana and Loper (2001a,b). One evidence
of the ‘‘naturalness’’ of this construction is that this general Kronecker
function ring gives rise to an e.a.b. semistar operation Ha (which can be
‘‘restricted’’ to an e.a.b. star operation, denoted by _HHa, of the integrally
closed overringDHa ofD) and then Kr(D,H) can be viewed in the classical
star e.a.b. setting by use of Ha (or, more precisely, by use of _HHa).

Another overring of D[X] which has been much studied is the Nagata
ring of D, i.e. D(X) :¼ff=g j f, g2D[X] and c(g)¼Dg, (cf. Krull, 1942/43;
Samuel, 1964, page 27; Nagata, 1972, page 18; Gilmer, 1972 Sec. 33;
Huckaba, 1988, Chapter IV). The interest in D(X) is due to the fact that
this ring has some ‘‘nice’’ properties that D itself need not have, mantain-
ing in any case a strict relation with the ideal structure of D, (for instance,
for each ideal I of D, we have ID(X)\D¼ I and D(X)=ID(X)ffi
(D=ID)(X)). Among the ‘‘new’’ properties acquired by D(X) we mention
(a) the residue field at each maximal ideal of D(X) is infinite; (b) an ideal
contained in a finite union of ideals is contained in one of them (Quartaro
and Butts, 1975); (c) each finitely generated locally principal ideal is prin-
cipal (Anderson, 1977). Furthermore, the canonical map Spec(D(X))!
Spec(D) is a homeomorphism if and only if the integral closure of D is
a Prüfer domain (Anderson et al., 1989). The relation between the Nagata
ring and the Kronecker function ring was investigated by Arnold (1969),
by Gilmer (1970) and Arnold and Brewer 1971. In particular, if b denotes
the star operation of D defined on the fractionary ideals I of D by
I 7! Ib :¼\fIV jV is a valuation overring of Dg, then Arnold (1969,
Theorem7) proved thatD is a Prüfer domain if andonly ifD(X)¼Kr(D, b).

A generalization of the Nagata ring construction was considered by
Kang (1987, 1989): for each star operation H of D he studied the ring
ff=g j f, g2D[X] and c(g)H¼Dg. In particular, Kang proved that, mutatis
mutandis, many properties of the ‘‘classical’’ Nagata ring still hold in this
more general context.

In the present paper we further generalize the previous construction
so that, given any domain D and any semistar operation H on D, we
define the semistar Nagata ring as follows:

NaðD;HÞ :¼ ff =g j f ; g 2 D½X � and cðgÞH ¼ DHg :

We then study the ideal structure of Na(D, H) and compare it to that of
Kr(D, H). We also show how Na(D, H) gives rise to a very natural
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semi-star operation, denoted by ~HH, which plays a role analogous to that
of the semistar operation Ha in the Kronecker setting. In the star opera-
tion case, ~HH, coincides with the operation Hw considered recently by
Anderson and Cook (2000).

In Sec. 2 we give some background information concerning semistar
operations and some preliminary results concerning the class of quasi-H-
ideals (i.e., ideals I such that IH\D¼ I), a more general class than that of
H-ideals (i.e., ideals I such that IH¼ I), which plays an important role
when H is a semistar operation.

In the third section we define and study the semistar Nagata rings.
For instance, we show that there is a natural 1-1 correspondence between
the maximal ideals of Na(D, H) and the maximal elements in the set of all
proper quasi-H-ideals of D; in particular, the t-maximal ideals of an inte-
gral domain D are all obtained as contractions to D of the maximal ideals
of Na(D, v). We prove also that Na(D, H)¼Na(D, ~HH). Furthermore, we
show that there is a strict link between the semistar operation ~HH, the max-
imal elements P in the set of all proper quasi-H-ideals of D and the valua-
tion overrings of DP. More precisely, if we say that a H-valuation
overring of D is a valuation overring of D such that FH�FV for each
finitely generated fractionary ideal F of D, then we show that a valuation
overring V of D is a ~HH-valuation overring of D if and only if V is an
overring of DP, for some Pmaximal in the set of all proper quasi-H-ideals
of D.

In the fourth section we recall from Fontana and Loper (2001) some
results concerning Kr(D, H) and Ha and examine the interplay with
Na(D, H) and ~HH. In particular, we show that each maximal element Q
in the set of all proper quasi-Ha-ideals of D is determined uniquely by
a H-valuation overring of D (dominating DQ) and there is a natural 1-1
correspondence between the maximal ideals of Kr(D, H) and the minimal
H-valuation overrings of D.

In the final section we examine more closely the relationship between
~HH and Ha and we show that it is hopeless to try to attain an equality
by applyinggð�Þð�Þ and (�)a indifferent orders toanarbitrary semistaroperation.

We use Gilmer’s book (1972) as our main reference. Any unexplained
material is as in Gilmer (1972) and Kaplansky (1970). Many preliminary
results on semistar operations and applications appear in conference pro-
ceedings (in particular, Fontana and Loper, 2001a,b), and hence are not
easily available. Because of this possible hindrance, we briefly restate the
principal definitions and statements of the main properties that we will
need so that the present work will be self-contained.

Note that the ‘‘module systems’’ approach, developed very recently
by Halter-Koch (2001), provides a general setting for (re)considering
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semistar operations and, in particular, many of the constructions related
to the semistar operations considered in the present paper. However,
since many background results of our paper are proved in an earlier work
by Fontana and Huckaba (2000), which has inspired and provided the
foundation also of Halter-Koch (2001), we maintain the level of general-
ity of this paper within the more classical ‘‘semistar’’ setting.

2. BACKGROUND AND PRELIMINARY RESULTS

For the duration of this paper D will represent an integral domain
with quotient field K. Let F(D) represent the set of all nonzero D-sub-
modules of K. Let F(D) represent the nonzero fractionary ideals of D
(i.e. E2F(D) such that dE�D for some nonzero element d2D). Finally,
let f(D) represent the finitely generated D-submodules of K.

A mappingH: F(D)!F(D), E 7!EH is called a semistar operation of D
if, for all z2K, z 6¼ 0 and for all E, F2F(D), the following properties hold:

(H1) (zE )H¼ zEH.

(H2) E�F)EH�FH.

(H3) E�EH and EHH :¼ (EH)H¼EH.

Remark 2.1. Let H be a semistar operation of D.

(a) If H is a semistar operation such that DH¼D, then the map
H :F(D)!F(D), E 7!EH, is called a star operation of D. Recall from
(Gilmer, 1972, (32.1)) that a star operation H verifies the properties
(H2), (H3), for all E, F2F(D); moreover, the property (H1) can be restated
as follows: for each z2K, z 6¼ 0 and for each E2F(D),

ðHH1Þ ðzDÞH ¼ zD; ðzEÞH ¼ zEH

If H is a semistar operation of D such that DH¼D, then we will write
often in the sequel that H is a (semi)star operation of D, to emphasize
the fact that the semistar operation H is an extension to F(D) of a
‘‘classical’’ star operation H, i.e. a map H :F(D)!F(D), verifying the
properties (HH1), (H2) and (H3) Gilmer (1972, Sec. 32). Note that not
every semistar operation is an extension of a star operation (Fontana
and Huckaba, 2000, Remark 1.5 (b)).

(b) The trivial semistar operation on D is the semistar operation
constant onto K, i.e., the semistar operation H such that EH¼K, for each
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E2F(D). Note that H is the trivial semistar operation on D if and only if
DH¼K. (As a matter of fact, if DH¼K, then for each E2F(D) and for
each e2E, e 6¼ 0, we have eD�E and thus K¼ eK¼ eDH�EH�K.)

(c) Let D be an integral domain and T an overring of D. Let H be a
semistar operation of D and define _HHT :¼F(T)!F(T)!F(T) by setting:

E _HT

:¼ EH ; for each E 2 FðTÞ ð� FðDÞÞ :

Then, we know Fontana and Loper (2001a, Proposition 2.8):

(c.1) The operation _HHT is a semistar operation of T.

(c.2) When T¼DH, then _HHDH
defines a (semi)star operation of DH.

(d) If H1 and H2 are two semistar operation of D, we say that
H1�H2 if E

H1�EH2, for each E2F(D); in this case, (EH1)H2¼EH2.

We refer to the collection FH(D) :¼fEH jE2F(D)g [respectively,
FH(D) :¼fI2F(D) j I¼HH with H2F(D)g; fH(D) :¼fJ2F(D) j J¼FH

with F2 f(D)g] as the H-D-submodules of K [respectively, the (fraction-
ary) H-ideals of D; the (fractionary) H-ideals of D of finite type].

These labels seem natural, but can be problematic. As a matter of
fact, if I2F(D), then IH is not necessarily a fractionary ideal of D and
so it does not necessarily belong to FH(D) (e.g., if (D :DH)¼ 0, then
DH 62FH(D)). For instance if T is an overring of an integral domain D
such that the conductor (D :T )¼ 0 and if H :¼HfTg is the semistar opera-
tion of D defined by EHfTg :¼ET for each E2F(D), then it is easy to see
that FH(D) is empty. So we need a more general notion than H-ideal,
when H is a semistar operation.

Let I�D be a nonzero ideal of D and let H be a semistar operation
on D. We say that I is a quasi-H-ideal of D if IH\D¼ I. Similarly, we des-
ignate by quasi-H-prime [respectively, H-prime] of D a quasi-H-ideal
[respectively, an integral H-ideal] of D which is also a prime ideal. We
designate by quasi-H-maximal [respectively, H-maximal] of D a maximal
element in the set of all proper quasi-H-ideals [respectively, integral H-
ideals] of D.

Note that if I�D is a H-ideal, it is also a quasi-H-ideal and, when
D¼DH the notions of quasi-H-ideal and integral H-ideal coincide. When
D�DH�K, we can ‘‘restrict’’ the semistar operation H on D to the non-
trivial (semi)star operation on DH, denoted by _HHDH

, or simply by _HH, and
defined in Remark 2.1 (c), and we have a strict relation between the quasi-
H-ideals of D and the _HH-ideals of DH.
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Lemma 2.2. Assume the notation of the preceding paragraph. Then:

I is a quasi-H-ideal of D , I ¼ L \D;where L � DH is a
_HH-ideal of DH :

Proof. The proof follows from IH\D� (IH\D)H\D� IHH\DH\D¼
IH\D. &

Note that this also gives a means of constructing quasi-H-ideals
and, in particular, quasi-H-ideals containing a given ideal. If I�D
is a nonzero ideal of D, then IH\D is a quasi-H-ideal of D which con-
tains I.

We denote by SpecH(D) [respectively, MaxH(D); QSpecH(D);
QMaxH(D)] the set of all H-primes [respectively, H-maximals; quasi-H-
primes; quasi-H-maximals] of D.

As in the classical star-operation setting, we associate to a semistar
operation H of D a new semistar operation Hf as follows. Let H be a
semistar operation of a domain D. If E2F(D) we set EHf :¼
[fFH jF�E, F2 f(D)g.

We call Hf the semistar operation of finite type of D associated to H. If
H¼Hf, we say that H is a semistar operation of finite type of D. Note that
Hf �H and (Hf)f ¼Hf, so Hf is a semistar operation of finite type of D.
For instance, if v is the v-(semi)star operation on D defined by
Ev :¼ (E�1)�1, for each E2F(D) with E�1 :¼ (D :KE ) :¼fz2K j zE�Dg
(Fontana and Huckaba, 2000, Example 1.3 (c) and Proposition 1.6 (5)),
then the semistar operation of finite type vf associated to v is called the
t-(semi)star operation on D (in this case Dv¼Dt¼D).

Both the Kronecker function rings and the Nagata rings considered
in the present paper are defined in a natural way for a general semistar
operation. A principal theme of the paper is that both of these classes
of rings can be recast as Kronceker function rings and Nagata rings of
certain natural semistar operations of finite type. So the entire theory
could be stated in terms of semistar operations of finite type. It seems
worthwhile to us to keep the more general setting so that, for example,
we can talk about the Kronecker function ring and the Nagata ring asso-
ciated to the classical v operation (which is rarely of finite type).

Lemma 2.3. Let H be a semistar operation of an integral domain D.
Assume that H is not trivial and that H¼Hf. Then

(1) Each proper quasi-H-ideal is contained in a quasi-H-maximal.
(2) Each quasi-H-maximal is a quasi-H-prime.
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(3) If Q is a quasi-H-maximal ideal of D then Q¼M\D, for some
_HH-maximal ideal M of DH.

(4) If L�DH is a _HH-prime ideal of DH, then L\D is a quasi-H-prime
ideal of D.

(5) Set PH :¼fP2 Spec(D) jP 6¼ 0 and PH\D 6¼Dg.
Then QSpecH(D)�PH and the set of maximal elements of PH,
denoted by PH

max, is nonempty and coincides with QMaxH(D).

Proof. The proof is straightforward. &

Note that, in general, the restriction to D of a _HH-maximal ideal of DH

is a quasi-H-prime ideal ofD, but not necessarily a quasi-H-maximal ideal
of D, and if L is an ideal of DH and L\D is a quasi-H-prime ideal of D,
then L is not necessarily a _HH-prime ideal of DH, (cf. the Remark 3.6).

For the sake of simplicity, when H¼Hf, we will denote simply by
M(H), the nonempty set PH

max ¼QMaxH(D).
If D is a nonempty set of prime ideals of an integral domain D, then

the semistar operation HD defined on D as follows

EHD :¼ \fEDP j P 2 Dg ; for each E 2 FðDÞ ;
is called the spectral semistar operation associated toD. IfD¼;, then we can
extend the previous defintion by setting EH; :¼K, for each E2F(D), i.e.,H;
is the trivial semistar operation onD (constant ontoK; cf. Remark 2.1 (b)).

Lemma 2.4. Let D be an integral domain and let ; 6¼D� Spec(D). Then:

(1) EHDDP¼EDP, for each E2F(D) and for each P2D.
(2) (E\F)HD¼EHD\FHD, for all E, F2F(D).
(3) PHD\D¼P, for each P2D.
(4) If I is a nonzero integral ideal of D and IHD\D 6¼D then there

exists P2D such that I�P.
(5) Assume that the set of maximal elements Dmax of D is also none-

mpty and that each P2D is contained in some Q2Dmax. Then:

HD ¼ HDmax
:

Proof. Fontana and Huckaba (2000, Lemma 4.1) and, for (5), Fontana
and Huckaba (2000, Remark 4.5). &

A semistar operation H of an integral domain D is called a spectral
semistar operation if there exists D� Spec(D) such that H¼HD. We
say that H posesses enough primes or that H is a quasi-spectral semistar
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operation of D if, for each nonzero ideal I of D such that IH\D 6¼D, there
exists a quasi-H-prime P of D such that I�P. Finally, we say that H is a
stable semistar operation on D if (E\F)H¼EH\FH, for all E, F2F(D).

Lemma 2.5. Let H be a nontrivial semistar operation of an integral
domain D.

(1) H is spectral if and only if H is quasi-spectral and stable.
(2) Assume that H¼Hf. Then H is quasi-spectral and M(H) 6¼ ;.

Proof. (1) The ‘‘only if ’’ part is a consequence of Lemma 2.4 (2) and (4).
The ‘‘if’’ part is proved in Fontana and Huckaba (2000, Theorem 4.12
(3)). (2) is a restatement of Lemma 2.3. &

If H is a semistar operation of an integral domain D and if PH 6¼ ;,
the nontrivial semistar operation

Hsp :¼ HPH

is called the spectral semistar operation associated to H.

Lemma 2.6. Let H be a nontrivial semistar operation.

(1) H is spectral if and only if H¼Hsp.
(2) Assume that PH 6¼ ;. Then the following statements are equiva-

lent:

(i) Hsp�H.
(ii) H is quasi-spectral.
(iii) EH¼\fEHDP jP2PHg, for each E2F(D).

Proof. (1) Fontana and Huckaba (2000, Corollary 4.10); (2) Fontana
and Huckaba (2000, Proposition 4.8). &

Corollary 2.7. Let H be a nontrivial semistar operation. Set

~HH :¼ ðHf Þsp :

(1) H� ¼HM(Hf)
�Hf (in particular, H~ is not trivial).

(2) For each E2F(D),

(a) EHf¼\fEHfDQ jQ2M(Hf)g.
(b) EH~¼\fEDQ jQ2M(Hf)g.
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Proof. (1) is a consequenceofLemma2.5 (1),Lemma2.4 (5),Lemma2.6 (2)
and Lemma 2.3 (3). (2) The first equality follows from Lemma 2.6 (2)
((ii)) (iii)), Lemma 2.5 (1) andLemma 2.3 (3). The second equality follows
from (1) and from the definition of spectral semistar operation. &

Remark 2.8. (a) Note that, when H is the (semi)star v-operation, then
the (semi)star operation v~ coincides with the (semi)star operation w
defined as follows:

Ew :¼ [fðE : HÞ j H 2 f ðDÞ and Hv ¼ Dg ; for each E 2 FðDÞ :

This (semi)star operation was first considered by Hedstrom and Houston
(1980, Sec. 3) under the name of F1-operation. Later, starting in 1997,
this operation was intensively studied by Fanggui (1997, preprint) and
Fanggui and McCasland (1997,1999) under the name of w-operation.
Note also that the notion of w-ideal coincides with the notion of semi-
divisorial ideal considered by Glaz and Vasconcelos (1977). Finally,
in 2000, for each (semi)star operation H, Anderson and Cook (2000)
considered the Hw-operation which can be defined as follows:

EHw :¼ [fðE : HÞ jH 2 f ðDÞ and HH ¼ Dg ; for each E 2 FðDÞ :

From their theory it follows that Hw¼ ~HH, Anderson and Cook (2000,
Corollary 2.10). The relation between ~HH and the localizing systems of
ideals was established in (Fontana and Huckaba, 2000).

(b) If D is a nonempty quasi-compact subset of Spec(D), then HD¼
(HD)f andM(HD)¼Dmax, Fontana andHuckaba (2000, Proposition 4.3 (B)).

The collection of all quasi-H-ideals of a domain D, associated to a
given semistar operation H, can be an unwieldy object. We now turn
to the use of ultrafilters to gain some control over this collection. A simi-
lar course was followed in Cahen et al. (2000) for the special case of the t-
operation. We generalize the results given there. We begin with some
notation=terminology=definitions.

� Let D be a domain and letJ¼J(L) :¼fJl j l2Lg be a collection
of ideals of D.

� Let U¼U(L) be an ultrafilter on the index set L given above.
� For I�D let B(I) :¼fl2L j I� Jlg.
� Let JU :¼fd2D jB(d)2Ug, more explicitly JU¼[fJl j l2Bg j

B2Ug. We call JU the U-ultrafilter limit of the collection J.
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Proposition 2.9. Assume the notation=terminology=definitions given above.
Assume also that H is a star operation on D and that each Jl2J is a Hf -
ideal [respectively, Hf -prime] of D. If JU is nonzero, then it is also a Hf -
ideal [respectively, Hf -prime] of D.

Proof. The proof is the same as that given in Cohen et al. (2000, Propo-
sition 2.5) with the t-operation replaced by H an arbitrary star operation
of finite type. The ‘‘prime ideal part’’ of the statement follows from
Cohen et al. (2000, Lemma 2.4). &

Corollary 2.10. Generalize the setting of Proposition 2.9 to the case where
H is a semistar operation and each Jl2J is a proper quasi-Hf -ideal
[respectively, quasi-Hf -prime] of D. If JU is nonzero, then it is also a proper
quasi-Hf -ideal [respectively, quasi-Hf -prime] of D.

Proof. For ease of notation we set � :¼Hf. As noted in Lemma 2.2, the
quasi-�-ideals of D are precisely the contractions to D of the _��-ideals of
D� (where _�� is a (semi)star operation on the domain D�

f defined in
Remark 2.1 (c)). The result follows easily by using Proposition 2.9 and
Lemma 2.3. &

3. SEMISTAR NAGATA RINGS

If R is a ring and X an indeterminate over R, then the ring:

RðXÞ :¼ f f =g j f ; g 2 R½X � and cðgÞ ¼ Rg

is called theNagata ring of R, Gilmer (1972, Proposition 33.1). Some results
proved in Kang (1989, Proposition 2.1) are generalized in the following:

Proposition 3.1. Let H be a nontrivial semistar operation of an integral
domain D. Set N(H) :¼ND(H) :¼fh2D[X] j h 6¼ 0 and c(h)H¼DH}.

(1) N(H)¼N(Hf) is a saturated multiplicatively closed subset of
D[X].

(2) N(H)=D[X]n[ {Q[X] jQ2M(Hf)}.
(3) Max(D[X]N(H)) = {Q[X]N(H) jQ2M(Hf)}.
(4) D[X]N(H) =\ {DQ(X) jQ2M(Hf)}.
(5) M(Hf) coincides with the canonical image in Spec(D) of the

maximal spectrum of D[X]N(H); i.e., M(Hf)={M\D jM2
Max(D[X]N(H))g.
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Proof. (1) It is obvious that N(H)¼N(Hf); the remaining part is a stan-
dard consequence of (2) (Kaplansky, 1970, Theorem 2).

(2) We start by proving the following:

Claim. Let h2D[X], h 6¼ 0. Then:

cðhÞH ¼ DH , cðhÞ 6� Q ; for each Q 2 MðHf Þ :

(() If c(h)H 6¼DH, then 0 6¼ c(h)� c(h)H\DwD. Since c(h)Hf\D¼
c(h)H\D is a proper quasi-H-ideal of D, we can find
Q2M(Hf) such that c(h)� c(h)H\D�Q (Lemma 2.3 (1)).
This fact contradicts the assumption.

()) is trivial.

Using the claim, we have:

h 2 NðHÞ , cðhÞH ¼ DH , cðhÞ 6� Q ; for each Q 2 MðHf Þ ,
, h 6� Q½X �; for each Q 2 MðHf Þ :

(3) By using Gilmer (1972, (4.7) and Proposition 4.8), it is suffi-
cient to show that each prime ideal H of D[X] contained inside
[fQ[X] jQ2M(Hf)g is contained in Q[X], for some Q2M(Hf). Let
c(H) be the ideal generated by fc(h) j h2Hg. It is easy to see that c(H)
is an ideal of D and that:

H � [fQ½X � j Q 2 MðHf Þg ) cðHÞHf 6¼ DHf ¼ DH :

As a matter of fact, if c(H)Hf¼DH, then we can find a polynomial
‘2 c(H)[X] such that c(‘)H¼c(‘)Hf¼DH. Now,

‘ 2 cðh1Þ½X � þ cðh2Þ½X � þ � � � þ cðhrÞ½X �
¼ ðcðh1Þ þ cðh2Þ þ � � � þ cðhrÞÞ½X �

with (h1, h2, . . . , hr)�H. Since c(h1)þ c(h2)þ � � � þ c(hr)� c(H) and c(H)
is an ideal of D, then c(h1)þ c(h2)þ � � � þ c(hr)¼ c(h), for some h2H.
Therefore c(‘)� c(h) and thus c(‘)H¼ c(h)H¼DH. This is a contradiction,
since h2H and thus c(h)H¼ c(h)Hf�Q, for some Q2M(Hf). By the fact
that c(H)Hf 6¼DHf we deduce that c(H)�Q, for some Q2M(Hf).
This implies that H�Q[X], for some Q2M(Hf).
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(4) and (5) are easy consequences of (3), since:

ðD½X �NðHÞÞQ½X �NðHÞ
¼ D½X �Q½X � ¼ DQðX Þ ;

(cf. also Gilmer, 1972, Corollary 5.3 and Proposition 33.1). &

We set:

NaðD;HÞ :¼ D½X �NDðHÞ

and we call it the Nagata ring of D with respect to the semistar operation
H. Obviously, Na(D, H)¼Na(D, Hf). If H¼ d is the identity (semi)star
operation of D, then Na(D, d)¼D(X).

Corollary 3.2. Let D be an integral domain, then:

Q is a maximal t-ideal of D , Q ¼ M \D;
for someM 2 Max(NaðD; vÞÞ:

Proof. It is a straightforward consequence of Proposition 3.1 (5). &

Example 3.3. (1) Let P be a nonzero prime ideal of an integral domain
D and let H :¼HfDPg be the semistar operation of D defined as follows:

EHfDPg :¼ EDP ; for each E 2 FðDÞ :

Then, it is easy to verify that:

(a) M(Hf)¼fPg.
(b) Na(D, H)¼DP(X).
(c) H¼Hf¼Hsp¼H~ .

(2) The previous example can be generalized as follows. Let D be an
integral domain, let D be a nonempty subset of Spec(D) and set H :¼HD.
Let Dmax be the set of all the maximal elements of D and let

D# :¼ fH 2 SpecðDÞ jH � P ; for some P 2 Dg :

Assume that each P2D is contained in some Q2Dmax. Then, under the
previous assumptions, H¼HDmax

(Lemma 2.4 (5)) and moreover:

(a) D�QSpecH(D)�D#, thus QMaxH(D)¼Dmax.
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Assume also that Dmax is a quasi-compact subspace of Spec(D). Then:

(b) Na(D, HD)¼\fDQ(X) jQ2Dmaxg¼ \fDP(X) jP2Dg.
(c) gðHDÞðHDÞ¼HD.

Proof. (a) If P2D, then PH¼PHD¼PDP\ (\fDP0 jP0 2D, P0 6�Pg)¼
PDP\DHD, and so P�PH\D�PDP\DHD\D¼PDP\D¼P. This
shows that D�QSpecH(D). Let H2QSpecH(D). Then HH 6¼DH and
so, for some P2D, HDP¼HHDP�PDP 6¼DP, (cf. also Lemma 2.3
(1)). Henceforth, H�HDP\D�PDP\D¼P.

(b) If Dmax is quasi-compact, then H¼HD¼HDmax
¼ (HDmax

)f¼Hf

(Fontana and Huckaba, 2000, Corollary 4.6 (2)) and so, by (a) and
Lemma 2.3 (3), Dmax¼M((HD)f)¼QMaxHf(D)¼QMaxH(D). The con-
clusion follows from Proposition 3.1 (4).

(c) Since HD¼ (HD)f and Dmax¼M((HD)f) (Remark 2.8 (b)), then
we conclude by Corollary 2.7 and Lemma 2.6 (cf. also Lemma 2.4 (1)). &

Proposition 3.4. Let H be a nontrivial semistar operation of an integral
domain D with quotient field K. Let H~ :¼ (Hf)sp be the spectral semistar
operation considered in Corollary 2.7. For each E2F(D), we have:

(1) ENa(D, H)¼ \fEDQ(X) jQ2M(Hf)g.
(2) ENa(D, H)\K¼ \fEDQ jQ2M(Hf)g.
(3) E ~ZZ ¼ENa(D, H)\K, hence if E¼EH, then E¼ENa(D, H)\K.
(4) If H¼Hf, then H~ ¼Hsp, hence DHsp¼ \fDQ jQ2M(H)g, and

Hsp is a semistar operation of finite type.

Proof. (1) By Proposition 3.1 (3) and Bourbaki (1961, Chapitre 2,
Corollaire 3, p. 112) (see also the proof of Proposition 3.1 (4)), we have:

ENaðD;HÞ ¼ \fðED½X �NðHÞÞM jM 2MaxðD½X �NðHÞÞg
¼ \fðED½X �NðHÞÞQ½X �NðHÞ

jQ 2MðHf Þg
¼ \fED½X �Q½X � jQ 2MðHf Þg ¼ \fEDQðXÞ jQ 2MðHf Þg:

(2) By using (1) and Gilmer (1972, Proposition 33.1 (4)), we have:

ED½X �NðHÞ \ K ¼ \fEDQðXÞ j Q 2 MðHf Þg \ K

¼ \fEDQðXÞ \ K j Q 2 MðHf Þg
¼ \fEDQ j Q 2 MðHf Þg:
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(3) From Corollary 2.7 (2) we know that EH~¼\fEDQ jQ2
M(Hf)g, thus the first statement of (3) is a straightforward consequence
of (2). Since H~ �Hf�H (Corollary 2.7 (1)), then obviously if E¼EH,
then E¼EH~ and thus E¼ENa(D, H)\K.

For a direct proof of the second statement of (3), it is enough to show
that, if z2ENa(D, H)\K, then z2E. Let g, h2DfXg with h 6¼ 0, c(h)H¼
DH and zh¼ g. Then c(g)H¼ c(zh)H¼ zc(h)H¼ zDH¼ (zD)H�EH¼E.

(4) follows directely from the definitions, Fontana and Huckaba
(2000, Proposition 3.2) and from (2) and (3). &

Corollary 3.5. Let H be a nontrivial semistar operation of an integral
domain D, let H~ be the semistar operation of D considered in Corollary 2.7,

and let _~HH~HH( :¼ _~HH~HH
D

~HH

) be the (semi)star operation of DH~ associated to H~
(Remark 2.1).

(1) (H~)f ¼H~ ¼ (H~ )sp¼ ~~HH~HH.
(2) M(Hf)¼M(H~ ).
(3) Na(D, H)¼Na(D, H~)¼Na(DH~,

_~HH~HH).

Proof. (1) follows easily from Proposition 3.4 (4) and Lemma 2.6.

(2) Let Q2M(Hf). Then QHf\D¼Q. Since H~ �Hf (Corollary 2.7
(1)), then necessarily QH~ \D¼Q. By (1) we know that H~ is a semistar
operation of finite type. Hence we know that the quasi-H~ -ideal Q of D
is contained in some H2M(H~) (Lemma 2.3(1)).

Conversely, let H2M(H~). Then H¼HH~ \D¼\fHDQ jQ2
M(Hf)g\D (Corollary 2.7 (2)). In particular, we have HDQ 6¼DQ for
some Q2M(Hf), since otherwise H

H~ \D would be equal to D. Therefore,

H¼HH~ \D�HDQ\D�QDQ\D¼Q, for some Q2M(Hf).

By the previous properties, we deduce immediately thatM(Hf)¼M(H~ ).

(3) Since, from (1), we know that H~ is a semistar operation of finite
type, then, by Proposition 3.1 (4), Na(D, H~)¼ \fDH(X) jH2M(H~)g.
Since, by (2), we know that M(H~ )¼M(Hf), then we have Na(D, H~ )¼
Na(D, Hf)¼Na(D, H).

Claim. M( _~HH~HH)¼fQDQ\DH~ jQ2M(Hf)g.
If M2M( _~HH~HH), then M¼M

_~HH~HH ¼MH~¼\fMDQ jQ2M(H~ )¼M(Hf)g,
hence MDQ 6¼DQ, thus M�QDQ\DH~, for some Q2M(Hf). On

the other hand, it is easy to verify that QDQ\DH~ is a
_~HH~HH-ideal of DH~

(Lemma 2.2), hence the claim is proved.
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The last equality in (3) is a straightforward consequence of Proposi-
tion 3.1 (4), of the Claim and of the fact that D

~HH
QDQ\D~HH ¼DQ, for each

Q2M(Hf). &

Remark 3.6. Let H be a nontrivial semistar operation of an integral
domain D, let H~ be the semistar operation considered in Corollary 2.7

and let H_ :¼ _HHDH
[respectively,

~_HH_HH] be the (semi)star operation of DH

associated to H [respectively, H_ ] and defined in Remark 2.1 (c)
[respectively, Corollary 2.7]. Then, in general, the semistar Nagata-
ring Na(D, H)¼Na(D, H~ ) is different from the star Nagata ring

Na(DH, H_ )¼Na(DH,
~_HH_HH).

Let L be a field and X, Y, U, and Z indeterminates over L. Set:

V :¼ LðXÞ½Y �ðY Þ ¼ LðXÞ þM; M :¼ YLðXÞ½Y �ðYÞ; R :¼ LþM:

It is well known that R and V are 1-dimensional local domains with
the same field of quotients F :¼L(X, Y), with the same set of prime ideals
f(0), Mg, and moreover V is a discrete valuation domain, dim(V[U])¼ 2
and dim(R[U])¼ 3. The last property follows from the fact that in R[U]
we have the following inclusions of prime ideals:

ð0Þ 	 Q1 :¼ ðU � X ÞF ½U � \ R½U � ¼ ðYU � YX ÞF ½U � \ R½U �
	 Q2 :¼ M½U � 	 Q3 :¼ ðM;UÞR½U � ;

but, a similar inclusion does not hold in V[U]:

ð0Þ 	 P1 :¼ ðU � XÞF ½U � \ V ½U � ¼ ðU � XÞV ½U � 6� M½U � ;
in fact, more generally, no height 1 prime ideal P of V[U], with
P\V¼ (0), is contained in M[U] (Kaplansky, 1970, Theorem 39,
Theorem 68; Exercise 18, page 42).

Set D :¼R(U), T :¼V(U), and let H :¼HfTg be the semistar operation
of D considered in Remark 2.1 (d). Since all the prime ideals of D [respec-
tively, of T], different from (0) andM[U], are of the type fF [U]\D [respec-
tively, fF [U]\T], where f2F [U] is irreducible (Kaplansky, 1970, Theorem
36), then it follows that the canonical map Spec(T)! Spec(D) is a bijec-
tion. From this fact we deduce immediately that M(H)¼Max(D), and,
hence, that ~HH¼ dD, where dD is the identity (semi)star operation of D.

Note that, in the present situation, DH¼T and it is obvious that _HH
coincides with dT, where dT is the identity (semi)star operation of T,

and hence
_~HH~HH¼ ḋD¼ dT. We deduce that M(~HH)¼M(

_~HH~HH)¼Max(T) and,

obviously, that fdTdT ¼ dT.
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Furthermore, note that P1T is a maximal ideal of T (because
P1 6�M[U]	V[U]), but P1T\D¼Q1D is not maximal in D (because
Q1	M[U]	R[U]). Therefore the statement in Lemma 2.3(3) is not
reversible. Note also that this example shows that (Q1D)H¼Q1TwP1T
(because Q1V[U]¼ (YU�YX)V[U]wP1¼ (U�X)V[U]) and so (Q1D)H

is not a _HH-prime of DH¼T, even though (Q1D)H\D¼Q1D is a quasi-
H-prime of D; so also the statement in Lemma 2.3(4) is not reversible.

Finally note that:

NaðD;HÞ ¼ NaðD; ~HHÞ ¼ NaðD~HH;
_~HH~HHÞ ¼ NaðD; dDÞ ¼ DðZÞ

6� NaðDH; _HHÞ ¼ NaðDH; ~_HH_HHÞ ¼ NaðT ; dTÞ ¼ TðZÞ:

Corollary 3.7. Let H be a semistar operation of an integral domain D.
Assume that PH 6¼ ; and that H is quasi-spectral. Then:

NaðD;HÞ ¼ NaðD;HspÞ ¼ NaðD; ~HHÞ :

Proof. Under the present assumptions, we can define the nontrivial
semistar operation Hsp and we have that ~HH¼ (Hf)sp�Hsp�H, (Lemma
2.6 (2) and Corollary 2.7). Since it is easy to see that H1�H2 implies that
Na(D, H1)�Na(D, H2), then the conclusion follows immediately from
Corollary 3.5 (3). &

The content of Proposition 3.1 (5) is that, when the maximal ideals of
Na(D, H) are contracted to D, the result is exactly the prime ideals of D in
M(Hf). We now prove that this result can be reversed: the maximal ideals
of Na(D, H) can be obtained by extending to Na(D, H) the prime ideals
of D in M(Hf). In particular:

Theorem 3.8. Let H be a semistar operation of an integral domain D.
Then Max(Na(D, H))¼fQDQ(X)\Na(D, H) jQ2M(Hf)g.

Proof. Proposition 3.1 (3) indicates that the maximal ideals of Na(D,H)
are exactly the ideals of the set fQ[X]N(H) jQ2M(Hf)g. The result follows
easily since these ideals are maximal in Na(D, H) and are each contained
in an ideal of the form QDQ(X), where Q2M(Hf). &

Note that the previous result indicates a strong similarity between
the Nagata rings and the Kronecker function rings associated to a given
semistar operation. In particular, the maximal spectrum of each ring
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consists of restrictions of the maximal ideals of local overrings of the
form R(X) where R is a local overring of D (cf. Theorem 3.8 and Fontana
and Loper, 2001a, Theorem 3.5). The difference is that, in the Kronecker
case, the overrings R are valuation overrings of D and, in the Nagata
case, they are localizations of D at certain prime ideals. This is perhaps
an indication that the Nagata and Kronecker constructions are actually
each special cases of a more general construction involving more general
classes of overrings.

We now turn our attention to the question of valuation overrings.
The notion that we recall next is due to P. Jaffard (1960) (cf. also Fontana
and Loper, 2000b; Halter-Koch, 1997, preprint). For a domain D and a
semistar operation H on D, we say that a valuation overring V of D is a
H-valuation overring of D provided FH �FV, for each F2 f(D). Note that,
by definition the H-valuation overrings coincide with the Hf-valuation
overrings; by Fontana and Loper (2001b, Proposition 3.3) the H-valua-
tion overrings also coincide with the Ha-valuation overrings.

Theorem 3.9. Let D be a domain and let H be a semistar operation on D.
A valuation overring V of D is a H~-valuation overring of D if and only if V
is an overring of DP, for some P2M(Hf).

Proof. To avoid the trivial case, we assume that V 6¼K. First suppose
that V is a valuation overring of DP for some P2M(Hf). It is clear from
the definition of H~ that V is a H~-valuation overring of D.

Now assume that V is a H~ -valuation overring of D. Let M be the
maximal ideal of V and let P :¼M\D. We need to show that P is con-
tained in a prime Q2M(Hf). We consider two cases.

Case 1. Suppose that there is a finitely generated ideal J of D contained
in P such that J 6�Q, for each Q2M(Hf). Then JH

~¼\fJDQ jQ2
M(Hf)g¼\fDQ jQ2;M(Hf)g¼DH~. However, JV�PV is a proper ideal
of V and so cannot contain JH

~
. This contradicts our assumption that V

was a H~-valuation overring of D. We conclude that no such ideal J can
exist.

Case 2. Suppose that every finitely generated ideal J which is contained
in P is also contained in some ideal Q2M(Hf). Let M(Hf)¼
fQl j l2Lg. Note that, by assumption, for any finitely generated ideal
J�P, the set B(J ) :¼fl2L j J�Qlg is not empty. Let U be an ultrafilter
on L which contains each set B(J), where J runs through the finitely gen-
erated ideals contained in P. Such an ultrafilter exists because the inter-
section of any finite collection of sets fB(J1), B(J2), . . . , B(Jn)g is simply
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B(J1þ J2þ � � � þ Jn) and so must be nonempty. Then the ultrafilter limit
ideal QU of the collection of prime ideals M(Hf) must be a Hf-prime
(Proposition 2.9) and it also clearly contains P. This completes the
proof. &

4. SEMISTAR KRONECKER FUNCTION RINGS

Let H be a semistar operation on an integral domain D. We say that
H is an e.a.b. (endlich arithmetisch brauchbar) semistar operation of D if,
for all E, F, G2 f(D), (EF)H� (EG)H implies that FH�GH, (Fontana
and Loper, 2001a, Definition 2.3 and Lemma 2.7).

It is possible to associate to any semistar operation H of D an e.a.b.
semistar operation of finite type Ha of D, defined as follows:

FHa :¼ [fððFHÞH : HHÞ j H 2 f ðDÞg ; for each F 2 f ðDÞ ;
EHa :¼ [fFHa j F � E ; F 2 f ðDÞg ; for each E 2 FðDÞ :

The semistar operation Ha is called the e.a.b. semistar operation associated
to H (Fontana and Huckaba, 2000, Definition 4.4). Note the previous
construction is essentially due to Jaffard (1960) (cf. also Halter-Koch
(1998). Note that DHa is integrally closed and contains the integral closure
of D in K (Fontana and Loper, 2001a, Proposition 4.5) (cf. also Halter-
Koch, 1997, preprint; Okabe and Matsuda, 1992; Fontana and Loper,
2001b). When H¼ v then Dva, coincides with the pseudo-integral closure
of D introduced by Anderson et al. (1991).

If H is a semistar operation of an integral domain D, then we call the
Kronecker function ring of D with respect to H the following domain:

KrðD;HÞ :¼ ff =g j f ;g 2 D½X �nf0g and there exists h 2 D½X �nf0g
such that ðcð f ÞcðhÞÞH � ðcðgÞcðhÞÞH g [ f0g ;

(Fontana and Loper 2001a, Theorem 5.1) (cf. also Halter-Koch, preprint;
Matsuda, 1998; Okabe and Matsuda, 1997).

In the following statement we collect some of themain properties related
to the Kronecker function ring of an integral domain with respect to a semi-
star operation (cf. Fontana and Loper, 2001a, Proposition 3.3, Theorem
3.11, Proposition 4.5, Theorem 5.1 and the proof of Corollary 5.2).

Proposition 4.1. Let H be a semistar operation of an integral domain D
with quotient field K, let Ha be the e.a.b. semistar operation of D associated
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to H and let _HHa (¼ _HHDHa

a ) be the (semi)star operation of DHa associated to
Ha and defined in Remark 2.1 (c). Then:

(1) Hf�Ha.
(2) Kr(D, H)¼Kr(D, Hf)¼Kr(D, Ha)¼Kr(DHa, _HHa).
(3) Kr(D, H) is a Bézout domain with quotient field K(X).
(4) Na(D, H)�Kr(D, H).
(5) EHa¼EKr(D, H)\K, for each E2F(D).

Remark 4.2. Note that if H is not the trivial semistar operation, then Ha

is also different from the trivial semistar operation. As a matter of fact,
if DH 6¼K, then DHa¼[f(HH :HH) jH2 f(D)g 6¼K. Otherwise (HH :HH)
would be equal to K, for some H2 f(D) and H�D. This implies easily
that HH¼K and this contradicts the assumption that DH 6¼K.

Theorem 4.3. Let H be a nontrivial semistar operation of an integral
domain D. Assume that H¼Hf . Let Ha be the e.a.b. semistar operation
of finite type canonically associated to H.

(1) Let (W, N) be a nontrivial valuation overring of Kr(D, H). Set
N0 :¼N\D and let N1 :¼N\D[X]. Then:

(a) N1¼N0[X], N\Na(D, H)¼N0Na(D, H)¼N1Na(D, H)
and N\Na(D, Ha)¼N0Na(D, Ha)¼N1Na(D, Ha).

(b) N0 is a quasi-Ha-prime ideal (in particular, a quasi-H-prime
ideal) of D.

(2) If P is a quasi-Ha-prime ideal of D, then there exists a quasi-Ha-
maximal ideal Q of D and a valuation overring (W, N) of
Kr(D, H) such that P�Q¼N\D.

(3) M(Ha) is contained in the canonical image inD ofMax(Kr(D,H)).
(4) For each Q2M(Ha), there exists a H-valuation overring (V, M)

of D dominating DQ.

Proof. As usual, we denote by K the field of fractions of D. It is obvious
that:

(1, a) N0[X]�N1¼N\D[X], and if f :¼ f0þ f1Xþ � � � þ frX
r2N\

D[X], then c( f )Kr(D, H)¼Kr(D, H)�N (Fontana and Loper, 2001a,
Theorem 3.11 (2) and Theorem 5.1 (2)). Therefore, fi2N\D¼N0, for
each i with 0� i� r. This fact implies that f2N0[X].

Since Na(D, H) (and Na(D, Ha)) is a ring of fractions of D[X] and
N0[X]¼N1¼N\D[X], we have immediately that N0Na(D, H)¼
N1Na(D, H)¼N\Na(D, H) and N0Na(D, Ha)¼N1Na(D, Ha)¼N\
Na(D, Ha).
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(1, b) Recall that Na(D, Ha)�Kr(D, Ha)¼ Kr(D, H) and
NHa

0 ¼N0Kr(D, H)\K, (Proposition 4.1 (2), (4) and (5)). Since
N0Kr(D, H)�N\Kr(D, H), then NHa

0 �N\Kr(D, H)\K¼N\DHa,
(Proposition 4.1 (5)). Thus NHa

0 \D�N\DHa\D¼N\D¼N0, i.e., N0

is a quasi-Ha-prime ideal of D. Since H¼Hf�Ha (Proposition 4.1 (1))
then, in particular, N0 is also a quasi-H-prime ideal of D.

(2) Each quasi-Ha-ideal of D, like P, is contained in a quasi-Ha-
maximal ideal Q of D (Lemma 2.3 (1)). In particular, we have P�Q¼
QHa\D¼QKr(D, H)\K\D¼QKr(D, H)\D. Since QHa\D 6¼D, then
necessarily QKr(D, H) 6¼Kr(D, H). Therefore there exists a maximal ideal
of Kr(D, H) containing QKr(D, H) or, equivalently, a valuation overring
(W, N) of Kr(D, H) with center in Kr(D, H) containing QKr(D, H).
By (1, b), N\D is a quasi-Ha-prime ideal of D. Since it contains Q, by
the maximality of Q, we deduce that Q¼N\D.

(3) Since Kr(D, H) is a Bézout domain (Proposition 4.1 (3)) then
the maximal spectrum of Kr(D, H) is described by the centers in
Kr(D, H) of the minimal valuation overrings of Kr(D, H). The conclusion
follows immediately from (2).

(4) Recall that if V is a H-valuation overring of D, the map
V 7!V(X) (where V(X) is the trivial extension of V into K(X) (Gilmer,
1972, page 218) defines an order preserving bijection between the set of
all the H-valuation overrings of D and the set of all the valuation overr-
ings of Kr(D, H) (Fontana and Loper, 2001b, Theorem 3.5). Therefore,
by (3), if Q2M(Ha), we can find a (minimal) valuation overring (W, N)
of Kr(D, H) such that N\D¼Q. Then, we can consider V :¼W\K
and M :¼N\K¼N\V. By the previous remark, V is a H-valuation
overring of D and its maximal ideal M is such that M\D¼Q. Hence,
(V, M) dominates DQ. &

Corollary 4.4. Let H be a nontrivial semistar operation of an integral
domain D. Assume that H is an e.a.b. semistar operation of finite type with
D¼DH. Then each H-maximal ideal of D is the center in D of a minimal
H-valuation overring of D.

Proof. In the present situation, we have M(Ha)¼MaxH(D). The conclu-
sion follows easily from Theorem 4.3(3) and (4). &

Corollary 4.5. Let H be a nontrivial semistar operation of an integral
domain D. Assume that H¼Hf. Then:

(1) H~� gðHaÞðHaÞ¼ (Ha)sp�Ha and ~HH� (~HH)a�Ha.
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(2) Na(D,H)¼Na(D, ~HH)�Na(D, gðHaÞðHaÞ)¼Na(D,Ha)�Kr(D,Ha)¼
Kr(D, H).

(3) Na(D,H)¼Na(D, ~HH)�Na(D, (~HH)a)�Kr(D, (~HH)a)¼Kr(D, ~HH)�
Kr(D, H).

(4) For each E2F(D),

(a) E
fðHaðHaÞ ¼ENa(D, Ha)\K (
ENa(D, H)\K¼E

~HH);
(b) Eð~HHÞa ¼EKr(D, ~HH)\K (�EKr(D, H)\K¼EHa).

Proof. (1) follows trivially from the fact that if H1 and H2 are two
semistar operations of finite type, then H1�H2 implies that (H1)sp¼fH1H1 � fH2H2 ¼ (H2)sp, and from Corollary 2.7 (1) and Proposition 4.1 (1).

(2) and (3) are consequences of Corollary 3.5 (3) and of Proposition
4.1 (2).

(4) follows from Proposition 3.4 (3) and Proposition 4.1 (5). &

5. THE SEMISTAR OPERATIONS ~HH AND Ha

In this section we consider more closely the two operations which are
naturally associated with the semistar Nagata rings and the semistar Kro-
necker function rings:

~HH associated withNaðD;HÞ and Ha associated with KrðD;HÞ :

An elementary first question to ask is whether the two semistar opera-
tions are actually the same – or usually the same – or rarely the same.
Theorem 3.9 indicates that for a semistar operation H on a domain D,
the ~HH-valuation overrings of D are all the valuation overrings of the
localizations of D at the primes in M(Hf). On the other hand, (Fontana
and Loper, 2001b, Proposition 3.3 and Theorem 3.5) indicates that the
Ha-valuation overrings (or, equivalently, the H-valuation overrings) of
D correspond exactly to the valuation overrings of the Kronecker func-
tion ring Kr(D, H). It is easy to imagine that these two collections of
valuation domains can frequently be different. We consider several differ-
ent examples.

Example 5.1. A (semi)star operation H of an integral domain D such that
~HH 6¼Ha, but the ~HH-valuation overrings coincide with the Ha-valuation
overrings (and soKr(D, ~HH)¼ Kr(D,Ha)¼ Kr(D,H), (Fontana and Loper
(2001a, Corollary 3.8; Fontana and Loper, 2001b, Theorem 3.5).
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Let L be a field and letD be the localization L[X,Y]M of the polynomial
ring L[X, Y] at the maximal ideal M :¼ (X, Y). Let H :¼ d be the identity
(semi)star operation on D (defined by Ed :¼E, for all E2F(D)). Clearly,
Hf¼ d¼H and every prime ideal of D is a Hf -prime. It follows that
~HH¼H¼ d (Corollary 2.7 (2, b)). On the other hand, note that in general:

Claim. For each integral domain D, the e.a.b. semistar operation da
associated to the identity (semi)star operation d of D coincides with the
(semi)star operation b defined, for each E2F(D), by E b :¼\fEVjV is a
valuation overring of Dg.

The claim follows from Proposition 4.1 (5) and Fontana and Loper
(2001b, Theorem 3.5), since:

Eda ¼EKrðD;dÞ\K¼\fEVðX ÞjV is avaluationoverringofDg\K

¼\fEV jV is avaluationoverringofDg¼Eb :

Note that d 6¼ b¼ da in D (otherwise D would be a Prüfer domain by
Gilmer (1972, Theorem 24.7), hence H¼ d is not e.a.b. (Fontana and
Loper, 2001a, Proposition 4.5 (5)) and so ~HH(¼H¼ d) 6¼Ha(¼ da¼ b).
Moreover, every valuation overring of D is (obviously) a H~-valuation
overring and also (by the claim) every valuation overring of D is a Ha-
valuation overring of D. Therefore, ~HH and Ha are different, but have
the same collection of ‘‘associated’’ valuation overrings. Finally, observe
that, for the particular H we are considering here, we have (using a ‘‘new’’
indeterminate Z):

NaðD;HÞ ¼ NaðD; ~HHÞ ¼ NaðD; dÞ ¼ DðZÞ
wKrðD;HÞ ¼ KrðD; ~HHÞ ¼ KrðD;HaÞ ¼ KrðD; dÞ
¼ \fVðZÞ j V is an overring of Dg : &

We noted in the preceding example that although ~HH and Ha were dif-
ferent, nevertheless, the collection of the H~-valuation overrings of D coin-
cides with the collection of the Ha-valuation overrings of D. The next
example displays wider differences between the two operations.

Example 5.2. A (semi)star operation H of an integral domain D such that
~HH 6¼Ha, the Ha-valuation overrings form a proper subset of the set of ~HH-

valuation overrings, but ~HH¼ gðHaÞðHaÞ.

Let L and D be as in Example 5.1. Let N :¼MD denote the maximal
ideal ofD. For each irreducible polynomial f2M, letWf :¼L[X, Y]( f )¼D( f ).
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Then Wf is a DVR overring of D. Let VX be the two dimensional valua-
tion overring of D with maximal ideal generated by Y and with
WX¼L[X, Y](X) as a one dimensional (valuation) overring, i.e.,

VX :¼ L½Y �ðYÞ þ XL½X ;Y �ðXÞ ðwWX Þ :

We consider the following family of valuation overrings of D:

W :¼ fWf j f 2 M ; f 6¼ X ; f irreducible in L½X ;Y �g [ fVXg
and we define a semistar operation H :¼HW of D by setting EH :¼
\EW jW2Wg for all E2F(D). It is well known that HW is an e.a.b.
(in fact, a.b.) semistar operation of D and the Kronecker function ring
associated with H (in the ‘‘new’’ variable Z) is then Kr(D, H)¼\fW(Z) j
W2Wg (Fontana and Loper, 2001b, Corollary 3.8). We claim that:

Claim. The maximal ideals of Kr(D, H) are exactly the centers of the
maximal ideals of the valuation domains W(Z), when W2W.

To prove the claim note that, from the fact that Kr(D, H) is a Prüfer
(in fact, Bézout) domain (Proposition 4.1 (3)) and from Fontana and
(2001a, Theorem 3.5), there exists a canonical bijection between the
maximal ideals of Kr(D, H) and the valuation overrings of Kr(D, H) of
the type V(Z), where V is a minimal H-valuation overring of D (cf. also
Dobbs and Fontana, 1986). Moreover observe that, by definition, each
W2W is a H-valuation overring and that the intersection
\fW(Z) jW2Wg is irredundant, i.e., if any one of the valuation
domains W was omitted, the intersection would be different (in fact, it
is easy to see that the first intersection in the following formula

D ¼ \fWf j f 2 M; f irreducible in L½X ;Y �gÞ
¼ \fWf j f 2 M; f 6¼ X ; f irreducible in L½X ;Y �g \ fVXg
¼: \fW j W 2 Wg

is irredundant, because D is a Krull domain, so it is the same for the
last intersection; this property implies easily the irredudancy of the
\fW(Z) jW2Wg).

Note that the family of valuation overringsW(Z) :¼fW(Z) j W2Wg
of the Prüfer domain Kr(D, H) has finite character (in the sense that
each nonzero element of Kr(D, H) is a nonunit in at most finitely many
valuation overrings of W(Z)).

As a matter of fact, in this case H¼Ha hence (a0, a1, . . . , an)
H¼

fKr(D, H)\K, for each 0 6¼ f :¼Pn
k¼0 akZ

k2D[Z], (cf. Fontana and
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Loper, 2001b, Theorem 3.11 (1), (2) and Theorem 5.1 (2)) and
(a0, a1, . . . , an)

H2 f(D), because D is a Noetherian ring; moreover, each
nonzero finitely generated ideal of D is contained in at most finitely many
height 1 prime ideals of D, because D is a Krull domain.

The claim then follows immediately from Gilmer and Heinzer (1968,
Corollary 1.11). In other words, each maximal ideal H of Kr(D, H) con-
tracts onto a prime ideal of D and thus contains a polynomial f2M, f
irreducible in the polynomial ring L[X, Y]; henceforth, if f 6¼X, then
H¼ fWf (Z)\Kr(D, H), if f¼X, then H¼YVX(Z)\Kr(D, H).

The import of this claim is that the collection fWf j f2M, f 6¼X,
f irreducible in L[X, Y]g[ fVX, WXg¼W[fWXg, constitutes the
collection of all nontrivial Ha-valuation (or, equivalently, H-valuation)
overrings of D.

On the other hand, note that D is local and the maximal ideal of the
valuation overring VX2W is centered on the maximal ideal N of D.
Moreover, D is Noetherian, so H is a semistar operation of finite type
on D. It follows that the maximal ideal N of D belongs to M(Hf). Since
(obviously) DN¼D this leads to the conclusion that M(Hf)¼fNg¼
Max(D), and so ~HH¼ d (the identity (semi)star operation) of D. As noted
in the previous example, this implies that every valuation overring of D is
a ~HH-valuation overring of D. Therefore, Ha and ~HH(¼ d) are not only dif-
ferent as semistar operations, but they are also associated with different
sets of valuation overrings (e.g., for each f2M, f 6¼X, f irreducible in
L[X, Y], the two dimensional valuation overring Vf of D, having
Wf¼L[X, Y]( f ) as a one dimensional (valuation) overring and dominating
D, is a valuation overring of D, but is not a Ha-valuation overring of D).

In the present situation, observe that we have that d¼ ~HH¼ gðHaÞðHaÞ. As a
matter of fact, from Theorem 4.3 (3) and from the fact that Kr(D, H)
is a Prüfer domain, we have that each member of M(Ha) is the center
in D of a minimal H-valuation overring of D, thus M(Ha)¼fNg, hence
M(Ha)¼M(Hf). Finally, we have:

NaðD;HÞ ¼ NaðD; ~HHÞ ¼ NaðD; gðHaÞðHaÞÞ ¼ NaðD;HaÞ
¼ NaðD; dÞ ¼ DðZÞ
wKrðD; dÞ ¼ KrðD; bÞ ¼ \fVðZÞ j V is an overring of Dg
wKrðD;HÞ ¼ KrðD;HaÞ ¼ \fWðZÞ j W 2 Wg :

In Example 5.2 Ha 6¼ ~HH, however gðHaÞðHaÞ¼ ~HH. It seems plausible that
something of this type holds in general. The next example demonstrates
that it does not and illustrates why.
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Example 5.3. A (semi)star operation H of an integral domain D such that
~HH 6¼Ha, the Ha-valuation overrings form a proper subset of the set of
~HH-valuation overrings and ~HH 6¼ gðHaÞðHaÞ.

Let D and N be as in the two previous examples. We construct a
(semi)star operation H on D as follows:

1. If dD is any nonzero principal ideal of D, then (dD)H :¼ dD.
2. If J�D is a nonzero ideal of D which is not contained in any

proper principal ideal of D, then JH :¼N.
3. If J�D is a nonzero ideal of D which is not principal, but is con-

tained in a principal ideal, then we factor J as J¼fI, where f is a
GCD of a set of generators of J and I :¼ (J :D fD) is not contained
in any proper principal ideal ofD by the choice of f. Then JH :¼ fN.

4. If J is a nonzero fractionary ideal of D which is not contained in
D, choose a nonzero element d2D such that dJ�D. Then define
JH :¼ (1=d)(dJ)H.

5. If J2F(D) nF(D) we define JH :¼L(X, Y).

Since D is Noetherian, then H is of finite type. Henceforth, it is clear
that M(Hf)¼fNg. Thus, as in the previous example, ~HH¼ d.

However, since D is integrally closed and Noetherian, it is easy to see
from the definition of Ha that D

Ha¼D, NHa¼D and ( fD)Ha¼ fD, for each
f2M and f irreducible in L[X, Y]. Hence, M(Ha)¼ffD j f2M and f irre-
ducible in L[X, Y]g coincides with the set of all the height 1 primes of D.
Moreover, da is the classical b operation (Claim in Example 5.2.) and thus
(~HH)a¼ da¼ b.

On the other hand, Ha coincides with the t (semi)star operation of D.
As a matter of fact, we observed already that M(Ha) coincides with the
set of all the height 1 primes of D, and this implies that gðHaÞðHaÞ¼ t because
D is a Krull domain (Gilmer, 1972, Proposition 44.13 or Theorem 44.2).
Since for (semi)star operations of finite type we have always the inequal-
ities gðHaÞðHaÞ�Ha� t (Corollary 4.5 (1) and (Gilmer, 1972, Theorem 34.1
(4)), we deduce immediately that gðHaÞðHaÞ¼Ha¼ t.

Observe that M(b)¼Max(D), since every valuation overring is a b-
valuation overring and every prime ideal of D is a b-prime of D. We
conclude, for the particular H we are considering here, that:

b ¼ ð~HHÞa 6¼ gðHaÞðHaÞ ¼ t ; and d ¼ ~bb ¼ gð~HHÞað~HHÞa 6¼
ggðHaÞðHaÞgðHaÞðHaÞ ¼ gðHaÞðHaÞ ¼ t :

So it is hopeless to try to attain an equality by applying gð�Þð�Þ and (�)a in
different orders.
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Finally, observe that, for the particular H we are considering here, we
have (using a ‘‘new’’ indeterminate Z):

NaðD;HÞ ¼ NaðD; ~HHÞ ¼ NaðD; dÞ ¼ DðZÞ
wNaðD; gðHaÞðHaÞÞ ¼ NaðD;HaÞ ¼ NaðD; tÞ ¼ NaðD; vÞ
¼ \fWf ðZÞ j f 2 M; f irreducible inL½X ;Y � g
¼ KrðD;HÞ ¼ KrðD; gðHaÞðHaÞÞ ¼ KrðD;HaÞ
¼ KrðD; tÞ ¼ KrðD; vÞ ¼ \fWðZÞ j W 2 Wg :

NaðD;HÞ ¼ NaðD; ~HHÞ ¼ NaðD; dÞ ¼ DðZÞ
wKrðD; dÞ ¼ KrðD; ~bbÞ ¼ KrðD; bÞ
¼ \fVðZÞ j V is an overring of Dg
wKrðD;HÞ ¼ KrðD;HaÞ ¼ \fWðZÞ j W 2 Wg :

&

It is possible to make a positive statement about the relationship

between gð�Þð�Þ and (�)a under conditions made clear in the preceding
example.

Proposition 5.4. Let H be a semistar operation of an integral domain D.
then, the following conditions are equivalent

(i) ~HH¼ gðHaÞðHaÞ;
(ii) M(Hf)¼M(Ha);
(iii) Na(D, H)¼ Na(D, Ha).

Proof. (ii)) (i). If M(Hf)¼M(Ha), then ~HH¼ gðHaÞðHaÞ follows immedi-

ately from the definition of the gð�Þð�Þ operator and the fact that Ha is
always (by definition) of finite type.

(i)) (ii). If M(Hf) 6¼M(Ha), then ~HH 6¼ gðHaÞðHaÞ by Proposition 3.4 (2)
and (3), again taking into account the fact that (Ha)f¼Ha.

(iii)) (i) and (i)) (iii) follow fromProposition 3.1 (5) andCorollary 3.5.
&

Remark 5.5. Let H be a semistar operation of an integral domain D.
For semistar Kronecker function rings, we can easily state a result
‘‘analogous’’ to Proposition 5.4 and concerning H and ~HH. More precisely,
from Proposition 4.1 (5), Fontana and Loper (2001a, Theorem 3.1) and
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(Fontana and Loper (2001b, Corollary 3.8, Theorem 5.1 (3)), we have
that the following conditions are equivalent:

(i) Ha¼ (~HH)a.
(ii) the set of ~HH-valuation overrings D coincides with the set of H-

valuation overrings of D.
(iii) Kr(D, ~HH)¼Kr(D, H).

Moreover, each of the previous conditions implies

(iv) M(Ha)¼M((~HH)a).

On the other hand, observe that, from Example 5.2. (for H¼HW), we
have that (iv) 6) (iii), since M(Ha)¼M(Hf)¼fNg¼M(b)¼M(da)¼
M((~HH)a) and Kr(D, H~ )¼Kr(D, b)wKr(D, H).

This line of thinking motivates our final result, tying our investiga-
tion of differently constructed semistar operations back to the topic of
Nagata rings.

Proposition 5.6. Suppose H1 and H2 are semistar operations on a domain
D. Then, Na(D, H1)¼Na(D, H2) if and only if M((H1)f)¼M((H2)f).

Proof. First, suppose Na(D,H1)¼Na(D, H2). thenM((H1)f)¼M((H2)f)
follows from Proposition 3.1 (5).

Now suppose thatM((H1)f)¼M((H2)f). Then Na(D,H1)¼Na(D,H2)
follows from Proposition 3.1 (4). &
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Kang, B. G. (1987). H-Operations on IntegralDomains, Ph.D.disserta-

tion, Univ. Iowa.
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