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of commutative cancellative monoids or commutative rings with nonzero
zerodivisors.

C.5 Dedekind and Prufer domains

by Marco Fontana in Rome, Italy and Ira J. Papick in
Columbia, Mo, USA

All rings in this Section are assumed to be commutative.

Dedekind Domains

C.5.1 Definition An integral domain R is called a Dedekind domain
if each nonzero proper ideal of R can be represented uniquely (apart from
order) as a finite product of prime ideals of R (cf. Section C.1 and Section
CA4).

Any principal ideal domain (e.g., Z or K[X], where K is a field) is a
Dedekind domain, and since the integral closure of a Dedekind domain
in a finite field extension of its quotient field is also a Dedekind domain,
it follows that the ring of algebraic integers in an algebraic number field
and the ring of integral functions in a field of algebraic functions of one
variable are also Dedekind domains (Zariski and Samuel 1958, Vol. 1,
Section 6, pp. 270 271).

The theory of Dedekind domains was established by Emmy Noether,
in the mid twenties, as a generalization of results concerning factor-
ization properties of algebraic integers obtained primarily by Richard
Dedekind in 1871. E. Noether provided a fundamental characterization
for Dedekind domains which prominently exhibited the role of chain
conditions for ideals. Namely,

C.5.2 Theorem An integral domain R is a Dedekind domain if and
only if R satisfies the following properties (called Noether Axioms):

(1) R is Noetherian (ascending chain condition for ideals);

(2) R is integrally closed (R coincides with the set of the roots of its
monic polynomials);

(8) R/I is Artinian (descending chain condition for ideals), for each
nonzero ideal I of R.

Note that condition (3) can be replaced by
(3’) each nonzero prime ideal of R is maximal.
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As a consequence, it follows that Dedekind domains are Noetherian in-
tegral domains such that each localization at maximal ideals is a discrete
valuation domain. In particular, as we have mentioned already, each
principal ideal domain is a Dedekind domain, but not conversely (e.g.,

The structural diversity of Dedekind domains can be observed by the
following sampling of some classical characterizations:

C.5.3 Theorem An integral domain R is a Dedekind domain if and
only if one of the following statement holds:

(a) (W. Krull, 1935) the nonzero fractional ideals of R form a group
under multiplication;

(b) (I. Kaplansky, 1952 (the necessity) and S. U. Chase, 1960 (the suf-
ficiency) each extension of a torsion module of bounded rank by a
torsion-free module splits;

(c) (C. U. Jensen, 1963) R/I is a principal ideal Ting, for each nonzero
ideal I of R.

The proofs or appropriate references for Theorem C.5.2 and Theo-
rem C.5.3 can be found in (Kaplansky 1970, Gilmer 1972a, Narkiewicz
1990).

Dedekind domains have played a crucial role in the development of
Algebraic Number Theory and Algebraic Geometry. In fact, it was ob-
served by R. Dedekind and H. Weber in 1882 that several properties
concerning rings of algebraic integers also apply to rings of integral ele-
ments in function fields. This realization contained the germ of the fact
that the coordinate ring of a nonsingular irreducible curve is a Dedekind
domain.

Priifer Domains

In view of Krull’s characterization of Dedekind domains (see Theo-
rem C.5.3 (a)), it is natural to consider the following:

C.5.4 Definition An integral domain R having its set of nonzero
finitely generated fractional ideals form a group under multiplication
is called Priifer domain.

Dedekind domains are Priifer domains, but not conversely (see below).
Papers of H. Priifer in 1932 and of W. Krull in 1936 introduced the
study of Priifer domains, although the first place the name Priifer ring
appears in the literature seems to be in the classic book by Cartan
and Eilenberg (1956). Priifer and Krull were interested in the ideal
and overring theory of Priifer domains, whereas Cartan and Eilenberg
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examined the homological nature of these domains. Many researchers
during the second half of the 20th century investigated the structure
of Priifer domains and a reasonable sampling of this work has been
chronicled in (Kaplansky 1970, Gilmer 1972a, Fontana, Huckaba, and
Papick 1997).

A brief overview of some fundamental results concerning Priifer do-
mains will help to illustrate important research topics from the late 30’s
to the early 70’s. The previously mentioned sources contain precise ac-
knowledgement of the listed results.

C.5.5 Theorem Let R be an integral domain. The following state-
ments are equivalent to R being a Prifer domain:

(i) Each valuation overring of R is a ring of fractions.
(i) Each finitely generated torsion-free R-module is projective.
(iii) Each overring of R is integrally closed.
(iv) Each overring S of R is R-flat (i.e., for each monomorphism of R-
modules N — M, N ®r S — M ®r S is also a monomorphism,).
(v) R is integrally closed and there exists a positive integer n > 2 such
that (a,b)" = (a™,b"), for each a,b in R.
(vi) For all ideals I,J,L of R, I+ (JNL) = ({I+J)n({I+ L) (or,
equivalently, the Chinese Remainder Theorem for ideals holds in R).

From Theorem C.5.5 and Theorem C.5.3, it follows that: (a) the
integral closure of a valuation domain (and, more generally, of a Priifer
domain) in any algebraic extension field of its field of quotients is a
Priifer domain; (b) Prifer domains coincide with the integral domains
such that each localization at mazimal ideals is a valuation domain; (c)
Noetherian Prifer domains coincide with Dedekind domains.

Note that the ring of all algebraic integers (i.e., the integral closure
of Z in the field of complex numbers) is a Priifer non Dedekind do-
main, since it is not Noetherian. Further interesting examples of Priifer
domains include: (1) Bezout domains (i.e., integral domains in which
every finitely generated ideal is principal) Bezout domain and hence,
in particular, Kronecker function rings (W. Krull, 1936); (2) the ring
of entire functions (O. Helmer, 1940); (3) the intersection of any finite
family of valuation domains on a given field (M. Nagata, 1953); (4) the
ring Int(R) of all integer valued polynomials, where R is a Dedekind do-
main with finite residue fields (D. Brizolis, 1979; D. L. McQuillan, 1985;
J.-L. Chabert, 1987) hence, in particular, the classical ring of all integer-
valued rational polynomials Int(Z) := {f(X) € Q[X] | f(Z) C Z} is a
Priifer (but not a Dedekind) domain.
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Extensions and ramifications of these ideas have been pursued in great
detail since the 70’s, and more recent work focuses on specific properties
of ideals and modules over Priifer domains. For example, an ideal in
a Dedekind domain requires no more than two generators and early
evidence suggested that finitely generated ideals in a Priifer domain also
might require only two generators. In fact, H. Priifer in his 1932 paper
showed that if each two-generated ideal of a domain R is invertible,
then R is a Priifer domain. However, in 1979 H. Schiilting gave an
example of a Priifer domain with a finitely generated ideal requiring
three generators, which in turn, led to several new studies investigating
the number of generators needed for finitely generated ideals in Priifer
domains.

Another notable example of recent directions in the theory of Priifer
domains is the Y. Lequain and A. Simis extension of the D. Quillen and
A. Suslin solutions to the Serre Conjecture. They proved in 1980 that
if R is a Priifer domain then, for all positive integers n, all finitely gen-
erated projective modules over R[X1, Xo,...,X,] are extended from R
(recall that, if S is an R-algebra, an S-module N is extended from R
if there exists an R-module M such that N is isomorphic to M ®pg S).

Research activity involving Priifer domains has remained strong since
the initial work of H. Priifer and W. Krull, and will continue to flour-
ish for many years to come (Chapman and Glaz 2000). The rich and
interesting structure of these rings, as well as their natural presence,
make them important and useful objects in the context of commutative
algebra.

C.6 Local Rings
by T. Y. Lam in Berkeley, Ca, USA

Examples, History, and Conventions

Consider the ring A = {a/b|a,b€Z,bodd}. In A, all odd primes are
units, and 2A4 is the only maximal ideal. The ring B = k[[z, y]] of formal
power series in x, y with coefficients in a field k has a similar feature: any
power series outside of xB + yB can be formally inverted, so B + yB
is the only maximal ideal of B. Yet another “similar” ring is C' = Z»,
for any prime p, except that C' is no longer a domain when n > 1.

A commutative ring R is called a local ring if it has exactly one
maximal ideal, or equivalently, R # 0 and the nonunits of R form an



