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Abstract

In this paper we study the star operations on a pullback of integral

domains. In particular, we characterize the star operations of a domain
arising from a pullback of �a general type� by introducing new techniques

for �projecting� and �lifting� star operations under surjective homomor-

phisms of integral domains. We study the transfer in a pullback (or with
respect to a surjective homomorphism) of some relevant classes or distin-

guished properties of star operations such as v�; t�; w�; b�; d�; �nite

type, e.a.b., stable, and spectral operations. We apply part of the theory
developed here to give a complete positive answer to a problem posed by

D. F. Anderson in 1992 concerning the star operations on the �D +M �

constructions.

1 Introduction and preliminary results

The theory of ideal systems and star operations was developed by W. Krull, H.

Prüfer, and E. Noether around 1930, and is a powerful tool for characterizing se-

veral relevant classes of integral domains, for studying their mutual relations and

for introducing the Kronecker function rings in a very general ring-theoretical

setting. A modern treatment of various aspects of this theory can be found in
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the volumes by P. Ja�ard [32], O. Zariski and P. Samuel [47, Appendix 4], R.

Gilmer [26], M.D. Larsen and P.J. McCarthy [34], and F. Halter-Koch [28].

Pullbacks were considered in [19] for providing an appropriate uni�ed set-

ting for several important �composite�type� constructions introduced in vari-

ous contexts of commutative ring theory in order to construct examples and

counter-examples with di�erent pathologies: for instance, Seidenberg's construc-

tions for (polynomial) dimensional sequences [43], Nagata's composition of va-

luation domains and �K + J(R)� constructions [39, page 35 and Appendix A1,

Example 2], Akiba's AV-domains or Dobbs' divided domains [1, 16], Gilmer's

�D + M � constructions [26], Traverso's glueings for a constructive approach

to the seminormalization [44], Vasconcelos' umbrella rings and Greenberg's F-

domains [45, 27], Boisen-Sheldon's CPI-extensions [13], Hedstrom-Houston's

pseudo-valuation domains [29], �D + XDS [X]� rings and more generally, the

�A+XB[X]� rings considered by many authors (see the recent excellent survey

papers by T. Lucas [35] and M. Zafrullah [46], which contain ample and updated

bibliographies on this subject).

It was natural at this stage of knowledge to investigate the behaviour of

the star operations in a general pullback setting and with respect to surjective

homomorphisms of integral domains, after various di�erent results concerning

distinguished star operations (like the v�, the t� or the w� operation) and par-

ticular �composite�type� constructions were obtained by di�erent authors (cf.

for instance [12], [15], [3], [17], [33], [4], [5], [7], [20], [24], [11], [42], [38], and the

survey papers [10] and [25]).

The present work was stimulated by the papers by D.D. Anderson and D.F.

Anderson on star operations, and more precisely, by the study initiated by D.F.

Anderson concerning the star operations on the �D +M � constructions [9].

In Section 2, after introducing an operation of �glueing� of star operations

in a pullback of integral domains, we will characterize the star operations of a

domain arising from a pullback of �a general type�. For this purpose we will

introduce new techniques for �projecting� and �lifting� star operations under

surjective homomorphisms of integral domains. Section 3 is devoted to the study

of the transfer in a pullback (or with respect to a surjective homomorphism) of

some relevant properties or classes of star operations such as v�, t�, w�, b�, d�,

�nite type, e.a.b., stable, and spectral operations.

We will apply part of the theory developed here to give a complete positive

answer to a problem posed by D. F. Anderson in 1992 [9] concerning the star

operations on the �D +M � constructions.

Let D be an integral domain with quotient �eld L. Let F (D) denote the

set of all nonzero D-submodules of L and let F (D) be the set of all nonzero

fractional ideals of D, i.e., all E 2 F (D) such that there exists a nonzero

d 2 D with dE � D. Let f(D) be the set of all nonzero �nitely generated

D-submodules of L. Then obviously, f (D) � F (D) � F (D) :

For each pair of nonzero fractional ideals E;F of D, we denote as usual by

(E :L F ) the fractional ideal of D given by fy 2 L j yF � Eg; in particular, for

each nonzero fractional ideal I of D, we set I�1 := (D :L I).
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We recall that a mapping ? : F (D) ! F (D) ; E 7! E?, is called a semistar

operation on D if the following properties hold for all 0 6= x 2 L and E;F 2

F (D):

(?1) (xE)? = xE? ;

(?2) E � F ) E?
� F ? ;

(?3) E � E? and E? = (E?)? =: E??

(cf. for instance [40], [41], [37], [36], [21] and [22]).

Example 1.1 (a) If ? is a semistar operation onD such thatD? = D , then the

map (still denoted by) ? : F (D)! F (D) , E 7! E? ; is called a star operation on

D : Recall [26, (32.1)] that a star operation ? satis�es the properties (?2) ; (?3)

for all E;F 2 F (D) ; moreover, for each 0 6= x 2 L and E 2 F (D) ; a star

operation ? satis�es the following:

(??1) (xD)? = xD ; (xE)? = xE? :

A semistar operation on D such that D ( D? is called a proper semistar ope-

ration on D.

(b) The trivial semistar operation eD on D (simply denoted by e) is the

semistar operation constant onto L , i.e., the semistar operation de�ned by

EeD := L for each E 2 F (D) . Note that ? is the trivial semistar operation

on D if and only if D? = L .

(c) Another trivial semistar (in fact, star) operation is the identity star

operation dD on D (simply denoted by d) de�ned by EdD := E for each

E 2 F (D) .

(d) For each E 2 F (D), set E?f := [fF ?
j F � E; F 2 f(D)g : Then

?f is also a semistar operation on D, which is called the semistar operation of

�nite type associated to ? . Obviously, F ? = F ?f for each F 2 f(D) ; moreover,

if ? is a star operation, then ?f is also a star operation. If ? = ?f , then the

semistar [respectively, the star] operation ? is called a semistar [respectively,

star] operation of �nite type [22, Example 2.5 (4)].

Note that, in general, ?f � ? ; i.e., E?f � E? for each E 2 F (D). Thus, in

particular, if E = E?, then E = E?f . Note also that ?f = (?f )f .

There are several examples of nontrivial semistar operations of �nite type;

the best known is probably the t�operation. Indeed, we start from the vD star

operation on an integral domain D (simply denoted by v), which is de�ned by

EvD := (E�1)�1 = (D :L (D :L E))

for any E 2 F (D), and we set tD := (vD)f (or simply, t = vf ).

Other relevant examples of semistar operations of �nite type will be con-

structed later.

A semistar operation ? on D is called an e.a.b. (endlich arithmetisch brauch-

bar) [respectively, a.b. (arithmetisch brauchbar)] semistar operation if

(EF )? � (EG)? ) F ?
� G?

for each E 2 f(D) and all F;G 2 f(D) [respectively, F;G 2 F (D)] [22, De�ni-

tion 2.3 and Lemma 2.7].

If ? is a star operation on D, then the de�nition of e.a.b. [respectively, a.b.]

operation is analogous (for an a.b. star operation, F;G are taken in F (D)).
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Example 1.2 Let � : R ,! T be an embedding of integral domains with the

same �eld of quotients K and let � be a semistar operation on R. De�ne

�� : F (T )! F (T ) by setting

E�� := E� for each E 2 F (T ) (� F (R)) :

Then we know [22, Proposition 2.8]

(a) If � is not the identity map, then �� is a semistar, possibly non�star,

operation on T , even if � is a star operation on R.

Note that when � is a star operation on R and (R :K T ) = (0), a fractional

ideal E of T is not necessarily a fractional ideal of R, hence �� is not de�ned as

a star operation on T .

(b) If � is of �nite type on R, then �� is also of �nite type on T :

(c) When T := R�, then �� de�nes a star operation on T :

(d) If � is e.a.b. [respectively, a.b.] on R and if T := R�, then �� is e.a.b.

[respectively, a.b.] on T .

Conversely, let ? be a semistar operation on the overring T of R. De�ne

?� : F (R)! F (R) by setting

E?� := (ET )? for each E 2 F (R) :

Then we know [22, Proposition 2.9, Corollary 2.10]

(e) ?� is a semistar operation on R.

(f) If ? := dT , then (dT )
�
is a semistar operation of �nite type on R, which is

denoted also by ?fTg (i.e., it is the semistar operation on R de�ned by E?fTg :=

ET for each E 2 F (R)).

In particular, if T = R, then ?fRg = dR, and if T = K, then ?fKg = eR.

Note that if R ( T , then ?fTg is a proper semistar operation on R.

(g) If ? is e.a.b. [respectively, a.b.] on T , then ?� is e.a.b. [respectively, a.b.]

on R.

(h) For each semistar operation ? on T , we have (?�)� = ?.

(i) For each semistar operation � on R, we have (��)
�
� � (since E(��)

�

=

(ET )�� = (ET )� � E� for each E 2 F (R)).

Other relevant classes of examples are recalled next.

Example 1.3 Let � be a nonempty set of prime ideals of an integral domain

R with quotient �eld K. Set

E?� := \fERP j P 2 �g for each nonzero R�submodule E of K :

If � is the empty set, then we set ?; := eR. The mapping E 7! E?� , for each

E 2 F (R), de�nes a semistar operation on R : Moreover [21, Lemma 4.1],

(a) For each E 2 F (R) and for each P 2 � , ERP = E?�RP .

(b) The semistar operation ?� is stable (with respect to the �nite intersec-

tions), i.e., for all E;F 2 F (R) we have (E \ F )?� = E?� \ F ?� :

(c) For each P 2 �, P ?� \R = P .

(d) For each nonzero integral ideal I of R such that I?� \ R 6= R, there

exists a prime ideal P 2 � such that I � P .

A semistar operation � on R is called spectral if there exists a subset � of

Spec(R) such that � = ?� ; in this case, we say that � is the spectral semistar

operation associated with � :
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We say that � is a quasi�spectral semistar operation (or that � possesses

enough primes ) if, for each nonzero integral ideal I of R such that I� \R 6= R,

there exists a prime ideal P of R such that I � P and P � \ R = P : For

instance, it is easy to see that if � is a semistar operation of �nite type, then �

is quasi�spectral.

From (c) and (d), we deduce that each spectral semistar operation is quasi�

spectral.

Given a semistar operation � on R, assume that the set

�� := fP 2 Spec(R) j P 6= 0 and P � \R 6= Rg

is nonempty. Then the spectral semistar operation of R de�ned by �sp := ?��

is called the spectral semistar operation associated to � : Note that if � is quasi�

spectral such that R� 6= K, then �� is nonempty and �sp � � [21, Proposition

4.8 and Remark 4.9].

It is easy to see that � is spectral if and only if � = �sp :

For each semistar operation � on R, we can consider

~� := (�f )sp :

Then we know [21, Proposition 3.6 (b), Proposition 4.23 (1)]

(e) ~� is a spectral semistar operation of �nite type on R, and if M(�f ) de-

notes the set of all the maximal elements in the set fI nonzero integral ideal of

R j I�f \R 6= Rg ; then

~� = ?M (�f ) :

It is also known [21, page 185] that for each E 2 F (R),

E~� = [f(E :K F ) j F 2 f(R) ; F � = R�g .

(f) If � is a star operation on R, then ~� is a (spectral) star operation (of

�nite type) on R and ~� � �.

If � := vR, using the notation introduced by Wang Fanggui and R.L. Mc-

Casland [18], we will denote by wR (or simply by w) the star operation fvR =

(tR)sp (cf. also [30] and [6]).

The construction of a spectral semistar operation associated to a set of prime

ideal can be generalized as follows.

Example 1.4 Let R := fR� j � 2 �g be a nonempty family of overrings of R

and de�ne ?R : F (R)! F (R) by setting

E?R := \fER� j � 2 �g for each E 2 F (D) :

Then we know [22, Lemma 2.4 (3), Example 2.5 (6), Corollary 3.8]

(a) The operation ?R is a semistar operation on R. Moreover, if R =

fRP j P 2 �g; then ?R = ?� :

(b) E?RR� = ER� for each E 2 F (R) and for each � 2 � :

(c) If R = W is a family of valuation overrings of R, then ?W is an a.b.

semistar operation on D.

We say that two semistar operations on D, ?1 and ?2 are equivalent if (?1)f =

(?2)f : Then we know ([23, Proposition 3.4] and [26, Theorem 32.12])

(d) Each e.a.b. semistar [respectively, star] operation on R is equivalent to

a semistar [respectively, star] operation of the type ?W for some family W of

5



valuation overrings of R [respectively, for some familyW of valuation overrings

of R such that R = \fW jW 2 Wg].

If W is the family of all the valuation overrings of R, then ?W is called the

bR�semistar operation (or simply the b�semistar operation on R). Moreover, if

R is integrally closed, then RbR = R [26, Theorem 19.8], and thus the operation

b de�nes a star operation on R ; which is called the b-star operation [26, p. 398].

Example 1.5 If f�� j � 2 �g is a family of semistar [respectively, star] o-

perations on R, then ^�f�� j � 2 �g (denoted simply by ^�� ), de�ned

by

E^�� := \fE�� j � 2 Ag for each E 2 F (R) [respectively, E 2 F (R)] ,

is a semistar [respectively, star] operation on R. This type of semistar opera-

tion generalizes the semistar [respectively, star] operation of type ?R (where

R := fR� j � 2 �g is a nonempty family of overrings of R; Example 1.4), since

?R = ^ ?fR�g

where ?fR�g
is the semistar operation on R considered in Example 1.2 (f).

Note the following observations:

(a) If at least one of the semistar operations in the family f�� j � 2 �g is a

star operation on R, then ^�� is still a star operation on R.

(b) Let � : R ,! T be an embedding of integral domains with the same �eld

of quotients K and let f�� j � 2 �g be a family of semistar operations on R.

Then
(^��)� = ^(��)� .

(c) Let � : R ,! T be an embedding of integral domains with the same �eld

of quotients K and let f?� j � 2 �g be a family of semistar operations on T ,

then
(^?�)

� = ^(?�)
� .

2 Star operations and pullbacks

For the duration of this paper we will mainly consider the following situations:

(þ) T represents an integral domain,M an ideal of T , k the factor ring T=M ,

D an integral domain subring of k and ' : T ! T=M =: k the canonical

projection. Set R := '�1(D) =: T �k D the pullback of D inside T with

respect to ', hence R is an integral domain (subring of T ). Let K denote

the �eld of quotients of R.

(þ+) Let L be the �eld of quotients of D. In the situation (þ), we assume,

moreover, that L � k, and denote by S := '�1(L) =: T �k L the pullback

of L inside T with respect to '. Then S is an integral domain with �eld

of quotients equal to K. In this situation, M , which is a prime ideal in R,

is a maximal ideal in S. Moreover, if M 6= (0) and D ( k, then M is a

divisorial ideal of R, actually, M = (R : T ).

Let ?D [respectively, ?T ] be a star operation on the integral domain D [re-

spectively, T ]. Our �rst goal is to de�ne in a natural way a star operation on
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R, which we will denote by 3, associated to the given star operations on D and

T . More precisely, if we denote by Star(A) the set of all the star operations

on an integral domain A, then we want to de�ne a map

� : Star(D) � Star(T )! Star(R), (?D; ?T ) 7! 3 .

For each nonzero fractional ideal I of R, set

I3 := \

�
x�1'�1

��
xI +M

M

�?D�
j x 2 I�1 ; x 6= 0

�
\ (IT )?T ;

where if xI+M
M

is the zero ideal of D (i.e., if xI + M � M ), then we set

'�1
��

xI+M
M

�?D�
= M .

Proposition 2.1 Keeping the notation and hypotheses introduced in (þ), then

3 de�nes a star operation on the integral domain R (= T �k D).

Proof. Claim 1. For each nonzero fractional ideal I of R, I � I3 .

We have

I3 � \
�
x�1'�1

�
xI+M
M

�
j x 2 I�1 ; x 6= 0

	
\ IT

= \
�
x�1 (xI +M ) j x 2 I�1 ; x 6= 0

	
\ IT

= \
�
I + x�1M j x 2 I�1 ; x 6= 0

	
\ IT � I :

Claim 2. For each nonzero element z of K, (zR)3 = zR (in particular,

R3 = R).

We have

(zR)3 = \

n
x�1'�1

��
xzR+M

M

�?D�
j x 2 z�1R ; x 6= 0

o
\ (zT )?T

� z
�
'�1

��
R+M
M

�?D��
\ zT

= z
�
'�1

�
R
M

��
\ zT = zR \ zT = zR :

Therefore, by Claim 1, we deduce that (zR)3 = zR.

Claim 3. For each nonzero element z of K and for each nonzero fractional

ideal I of R, (zI)3 = zI3 .

Note that given 0 6= z 2 K, for each nonzero x 2 I�1 there exists a unique

y 2 (zI)�1 such that x = yz. Therefore, we have

I3 = \

n
x�1'�1

��
xI+M
M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (IT )?T

= \

n
(yz)�1'�1

��
yzI+M
M

�?D�
j yz 2 I�1 ; y 6= 0

o
\ (IT )?T

= \

n
z�1y�1'�1

��
yzI+M
M

�?D�
j y 2 (zI)�1 ; y 6= 0

o
\ (IT )?T

= z�1
�
\

n
y�1'�1

��
yzI+M
M

�?D�
j y 2 (zI)�1 ; y 6= 0

o
\ (zIT )?T

�
= z�1(zI)3 :

Thus we immediately conclude that (zI)3 = zI3 .

Claim 4. For each pair of nonzero fractional ideals I � J of R, I3 � J3.
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Since J�1 � I�1, we have

J3 = \

n
x�1'�1

��
xJ+M
M

�?D�
j x 2 J�1 ; x 6= 0

o
\ (JT )?T

� \

n
x�1'�1

��
xI+M
M

�?D�
j x 2 J�1 ; x 6= 0

o
\ (IT )?T

� \

n
x�1'�1

��
xI+M
M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (IT )?T = I3 :

Claim 5. For each nonzero fractional ideal I of R, I � I3 � Iv, and hence

(I3)�1 = I�1.

Since Iv = \fzR j I � zR ; z 2 Kg, by Claim 2, we deduce that

I � zR ) I3 � (zR)3 = zR ;

hence I3 � Iv.

Claim 6. For each nonzero fractional ideal I of R, (I3)3 = I3 .

Since (I3)�1 = I�1 for each nonzero ideal I of R, we have

(I3)3 = \

n
x�1'�1

��
xI3+M

M

�?D�
j x 2 (I3)�1 ; x 6= 0

o
\ (I3T )?T

= \

n
x�1'�1

��
xI3+M

M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (I3T )?T :

Note that for 0 6= x 2 I�1 with xI �M , we have

� xI3 �M (and so x�1'�1
��

xI3+M
M

�?D�
= x�1'�1

��
xI+M
M

�?D�
),

since I3 � x�1'�1
��

xI+M
M

�?D�
= x�1M .

Now for 0 6= x 2 I�1 with xI 6�M , we have

�

�
xI3+M

M

�?D
�
�
xI+M
M

�?D
(and so

�
xI3+M

M

�?D
=
�
xI+M
M

�?D
) ;

since

I3 � x�1'�1
��

xI+M
M

�?D�
) xI3 � '�1

��
xI+M
M

�?D�
)

xI3+M
M

= ' (xI3) � '
�
'�1

��
xI+M
M

�?D��
=
�
xI+M
M

�?D
)

�
xI3+M

M

�?D
�
�
xI+M
M

�?D
:

Lastly,

� (I3T )?T � (IT )?T (and so (I3T )?T = (IT )?T ) ;

since

I3 � (IT )?T ) I3T � (IT )?T ) (I3T )?T � (IT )?T :

Therefore, we can easily conclude

(I3)3 = \

n
x�1'�1

��
xI3+M

M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (I3T )?T

= \

n
x�1'�1

��
xI+M
M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (IT )?T = I3 :

The previous argument shows that 3 is a (well de�ned) star operation on

the integral domain R. 2
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Remark 2.2 (a) Note that in the proof of Proposition 2.1 M is possibly a

nonmaximal ideal of T (and R), even though we assume that M (= M \ R) is

a prime ideal of R.

(b) In the pullback setting (þ), for each nonzero ideal I of R with I � M ,

I� � M , because I� � x�1'�1((xI+M
M

)?D ) for each x 2 I�1 n (0) and 1 2 R �

I�1, thus I� � '�1(( I+M
M

)?D ) = M . In particular, if M 6= (0), then M = M�.

(c) If M is the ideal (0), then T = k and R = D. In this extreme situation,

we have 3 = ?D ^ (?T )
�, where � : R = D ,! T = k is the canonical inclusion.

Note that it can happen that 3 = ?D ^ (?T )
� � ?D. For instance, let R be a

Krull domain of dimension � 2, P a prime ideal of R with ht(P ) � 2, T := RP

and M := (0) (hence, R = D and T = k). Set ?D := vD and ?T := dT . Then

P ?D = P vD = P vR = R, but P � = P vD \ (PT )?T = R \ PRP = P .

(d) Let M 6= (0). If D = L = k (in particular, M must be a nonzero

maximal ideal of T , and necessarily, ?D is the (unique) star operation dD of

D = L = k), then R = T . In this extreme situation, we have that 3 and ?T
are two star operations on T (with 3 � ?T ) that are possibly di�erent. For

instance, if T is an integral domain with a nonzero nondivisorial maximal ideal

M (e.g. T := k[X;Y ], M := (X;Y )) and if ?T := vT , then M� = M by (b),

but M?T = MvT = T .

If D = k, but D ( L, then it is not di�cult to see that 3 = ?T if and only

if, for each nonzero ideal I of R = T with I 6�M , I?T +M
M

�
�
I+M
M

�?D
.

Our next example will explicitly show the behaviour of the star operation 3

in some special cases of the pullback construction (þ).

Example 2.3 With the notation and hypotheses introduced in (þ), assume,

moreover, that T is local with nonzero maximal ideal M and D = L is a proper

sub�eld of k. In this special case of the situation (þ+), ?D = dD = eD is the

unique star operation on D. Let I be a nonzero fractional ideal of R.

(a) If II�1 = R, then I3 = I = IvR .

(b) If II�1 ( R, then I3 = IvR \ (IT )?T . Moreover, if (IT )?T = x�1T for

some nonzero x 2 I�1, then I3 = IvR (( (IT )?T ). If (IT )?T 6= x�1T for

all x 2 I�1, then I3 = (IT )?T .

(c) If [k : L] > 2 and if T ( M�1 = (R :K M ), then dR 6= 3 6= vR for all the

star operations ?T on T .

(d) Let [k : L] = 2. If T is (local but) not a valuation domain, then dR 6= 3

for all the star operations ?T on T . If T = (R :K M ) and if ?T = vT , then

3 = vR.

(a) is obvious, because I is invertible, hence I is divisorial (in fact, I is

principal, since R is also local) and so I = I3 = IvR (� (IT )?T ).

(b) Note that for each nonzero ideal I of R with the property that II�1 ( R,

we have necessarily that II�1 �M . Moreover, for each nonzero x 2 I�1, from

9



xI � M , we deduce that I � x�1M and so we have that IvR = \fx�1M j x 2

I�1 ; x 6= 0g. Therefore,

I3 = \

n
x�1'�1

��
xI+M
M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (IT )?T

= \

n
x�1'�1

��
M
M

�?D�
j x 2 I�1 ; x 6= 0

o
\ (IT )?T

= \
�
x�1M j x 2 I�1 ; x 6= 0

	
\ (IT )?T = IvR \ (IT )?T :

In order to prove the second part of (b), note that in this case, for each

0 6= x 2 I�1, we have

I ( x�1R ) I � x�1M ) IT � x�1MT = x�1M

) (IT )?T � (x�1M )?T = x�1M?T � x�1T :

Therefore, if (IT )?T = x�1T for some nonzero x 2 I�1, then IvR � x�1R �

x�1T = (IT )?T . Thus, in this case, I3 = IvR . Assume that (IT )?T ( x�1T for

all x 2 I�1. Then (IT )?T � x�1M and thus

(IT )?T � \
�
x�1M j x 2 I�1 ; x 6= 0

	
= IvR ;

hence I3 = (IT )?T .

(c) Let 0 6= a 2 M , and let z 2 T n R. Set I := (a; az)R. Then obviously

IT = aT (since z is invertible in T ), thus (IT )?T = aT = IT .

Note that, in this case, (IT )?T = aT ( x�1T for all x 2 I�1. As a matter

of fact, if aT = x�1T for some x 2 I�1, then ax = u is a unit in T and ax 2 R

(because a 2 I and x 2 I�1). Hence, ax is a unit in R. Now we reach a

contradiction, since we deduce that I � x�1R = aR � I, i.e., I = aR.

By (b), we have that I3 = (IT )?T = aT = IT ) I, hence 3 6= dR.

Assume also that T ( M�1. Since I3 = (IT )?T = aT , IvR = (I3)vR =

(aT )vR = a(R :K (R :K T )) = a(R :K M ) ) aT = (IT )?T = I3 . Therefore

3 6= vR.

(d) In the present situation, we can �nd a; b 2 M such that aT 6� bT and

bT 6� aT . Set I := (a; b)R.

It is easy to see that I is not a principal ideal of R. (If I = (a; b)R = cR, then

a = cr1; b = cr2; c = as1+ bs2 and so 1 = r1s1 + r2s2 for some r1; s1; r2; s2 2 R;

hence either r1s1 or r2s2 = 1� r1s1 is a unit in the local ring R. For instance, if

r1s1 is a unit in R, then r1 is also a unit in R and so cR = aR. Thus bR � aR,

contradicting the choice of a and b.)

Note that I is not a divisorial ideal of R. As a matter of fact, if I = IvR ,

then I should be also an ideal of T (i.e., I = IT ) by [24, Corollary 2.10]. On the

other hand, if z 2 T nR, then az 2 IT = I = (a; b)R and so az = ar1+ br2, i.e.,

a(z � r1) = br2 for some r1; r2 2 R. If z � r1 2 M , then z 2 r1+M � R, which

contradicts the choice of z. If z � r1 2 T nM; then a = br2(z � r1)
�1

2 bT ,

which contradicts the choice of a and b. Hence, I 6= IT and so I 6= IvR .

If (IT )?T = x�1T for some nonzero x 2 I�1, then (by (b)) I3 = IvR 6= I,

and so dR 6= 3. Assume that (IT )?T 6= x�1T for all x 2 I�1, then (by (b))

I3 = (IT )?T � IT ) I, and so dR 6= 3.

Finally, suppose that T = (R :K M ) and that ?T = vT . Let J be a nonzero

fractional ideal of R. If J is divisorial, then obviously J� = J = JvR . Assume
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that J is not divisorial, then JJ�1 ( R. If (JT )?T = x�1T for some nonzero

x 2 J�1, then (by (b)) J3 = JvR . If (JT )vT 6= x�1T for all x 2 J�1, then (by

(b)) J3 = (JT )vT . Since T = (R :K M ) = (M :K M ), every divisorial ideal of

T is divisorial as an ideal of R by [24, Corollary 2.9]. Therefore

JvR = (J3)vR = ((JT )vT )vR = (JT )vT = J3 ;

hence we conclude that 3 = vR.

The previous construction of the star operation 3 on the integral domain R

arising from a pullback diagram gives the idea for �lifting a star operation� with

respect to a surjective ring homomorphim between two integral domains.

Corollary 2.4 Let R be an integral domain with �eld of quotients K, M a

prime ideal of R. Let D be the factor ring R=M and let ' : R ! D be the

canonical projection. Assume that ? is a star operation on D. For each nonzero

fractional ideal I of R, set

I?
'

:= \

n
x�1'�1

��
xI+M
M

�?�
j x 2 I�1 ; x 6= 0

o
= \

n
x'�1

��
x�1I+M

M

�?�
j x 2 K ; I � xR

o
;

where, as before, if
zI+M
M

is the zero ideal of D, then we set '�1
��

zI+M
M

�?�
= M . Then ?' is a star operation on R.

Proof. Mutatis mutandis the arguments used in the proof of Proposition 2.1

show that ?' is a star operation on R. 2

Using the notation introduced in Section 1, in particular, in Example 1.2,

we immediately have the following:

Corollary 2.5 With the notation and hypotheses introduced in (þ) and Propo-

sition 2.1, if we use the de�nition given in Corollary 2.4, we have

3 = (?D)
'
^ (?T )

� : 2

We next examine the problem of �projecting a star operation� with respect

to a surjective homomorphism of integral domains.

Proposition 2.6 Let R, K, M , D, ' be as in Corollary 2.4 and let L be the

�eld of quotients of D. Let � be a given star operation on the integral domain

R. For each nonzero fractional ideal F of D, set

F �' := \

n
y'
��
'�1

�
y�1F

��
�

�
j y 2 L ; F � yD

o
:

Then �' is a star operation on D.

Proof. The following claim is a straightforward consequence of the de�nition.

Claim 1. For each nonzero fractional ideal F of D, F � F �' .

Claim 2. For each nonzero z 2 L, (zD)�' = zD (in particular, D�' = D).

11



Note that

(zD)�' = \

n
y'
��
'�1

�
y�1zD

��
�

�
j y 2 L ; zD � yD

o
� z'

��
'�1 (D)

�
�

�
= z' (R�) = z' (R) = zD :

The conclusion follows from Claim 1.

Claim 3. For each nonzero fractional ideal F of D and for each nonzero

z 2 L, (zF )�' = zF �' .

Given 0 6= z 2 L, for each nonzero y 2 L, set w := yz 2 L. Then

F �' = \

n
y'
��
'�1

�
y�1F

��
�

�
j y 2 L ; F � yD

o
= \

n
w
z
'
��
'�1

�
z
w
F
��
�

�
j w 2 L ; F �

w
z
D
o

= \

n
z�1w'

��
'�1

�
w�1zF

��
�

�
j w 2 L ; zF � wD

o
= z�1

�
\

n
w'

��
'�1

�
w�1zF

��
�

�
j w 2 L ; zF � wD

o�
= z�1(zF )�' :

Hence, we conclude that (zF )�' = zF �' .

Claim 4. For each pair of nonzero fractional ideals F1 � F2 of D, (F1)
�' �

(F2)
�' .

Note that if y 2 L and F2 � yD, then obviously F1 � yD, therefore

(F2)
�' = \

n
y'
��
'�1

�
y�1F2

��
�

�
j y 2 L ; F2 � yD

o
� \

n
y'
��
'�1

�
y�1F1

��
�

�
j y 2 L ; F1 � yD

o
= (F1)

�' :

Claim 5. For each nonzero fractional ideal F of D, (F �')�' = F �'.

Note that from Claim 1, 2 and 4, if y is a nonzero element of L, we have

F � yD , F �' � (yD)�' = yD ;

therefore

(F �')�' = \

n
y'
��
'�1

�
y�1F �'

��
�

�
j y 2 L ; F �' � yD

o
= \

n
y'
��
'�1

�
y�1F �'

��
�

�
j y 2 L ; F � yD

o
:

On the other hand,

F � yD ) F �' � y'
��
'�1

�
y�1F

��
�

�
) y�1F �' � '

��
'�1

�
y�1F

��
�

�
.

Therefore,

'�1
�
y�1F �'

�
� '�1

�
'
��
'�1

�
y�1F

��
�

��
=
�
'�1

�
y�1F

��
�

;

since
�
'�1

�
y�1F

��
�

� '�1
�
y�1F

�
� M = Ker(').

Now, we can conclude

(F �')�' = \

n
y'
��
'�1

�
y�1F �'

��
�

�
j y 2 L ; F � yD

o
� \

n
y'
���

'�1
�
y�1F

��
�

�
�
�
j y 2 L ; F � yD

o
= \

n
y'
��
'�1

�
y�1F

��
�

�
j y 2 L ; F � yD

o
= F �' ;

12



and so, by Claim 1, (F �')�' = F �' . 2

In case of a pullback of type (þ+) the de�nition of the star operation �'
given above is simpli�ed as follows:

Proposition 2.7 Let T , K, M , k, D, ', L, S and R be as in (þ+). Let � be

a given star operation on the integral domain R. For each nonzero fractional

ideal F of D, we have

F �' = '
��
'�1(F )

�
�

�
=

�
'�1(F )

�
�

M
:

Proof. For the extreme cases M = (0) or D = k, it trivially holds, so we may

assume that M 6= (0) and D ( k. We start by proving the following:

Claim. Let I be a fractional ideal of R such that M ( I � S = '�1(L)

and let s 2 S nM . Then (sI +M )� = sI� +M .

Choose t 2 S such that st � 1 2 M . Then t(sI +M )� = (tsI + tM )� �

(tsI+M )� = (I+M )� = I�. Therefore st(sI+M )� � sI�, so st(sI+M )�+M �

sI� +M � (sI +M )�. Put m := st� 1. Since m(sI +M )� = (msI +mM )� �

M� = M (where the last equality follows from the fact that M is a divisorial

ideal of R), we have st(sI +M )� +M = (1 +m)(sI +M )� +M = (sI +M )�.

Thus we can conclude that (sI +M )� = sI� +M .

Now, let F be a nonzero fractional ideal of D and let I := '�1(F ). For each

element y 2 L such that F � yD, we can �nd sy ; ty 2 SnM such that '(sy) = y

and '(ty) = y�1. Using the above claim, we have

F �' = \fy'(('�1(y�1F ))�) j y 2 L; F � yDg

= \fy'((tyI +M )�) j y 2 L; F � yDg

= \fy'(tyI
� +M ) j y 2 L; F � yDg

= \f'(sy(tyI
� +M )) j y 2 L; F � yDg

= \f'(sytyI
� + syM ) j y 2 L; F � yDg

= \f'(sytyI
� + syM +M ) j y 2 L; F � yDg

= \f'(sytyI
� +M ) j y 2 L; F � yDg

= \f'((sytyI +M )�) j y 2 L; F � yDg

= \f'(I�) j y 2 L; F � yDg = '(I�) = I�

M
=

('�1(F ))
�

M
: 2

Remark 2.8 As a consequence of Proposition 2.7 (and in the situation de-

scribed in that statement) we have the following:

If I is a nonzero fractional ideal of R such that I � S and sI � R for some

s 2 S nM , then I� � S for any star operation � on R. As a matter of fact, I� �

I�S = I�(M + sS) = I�M + sI�S � (IM )� + (sI)�S �M� + S = M + S = S.

Proposition 2.9 Let T , K, M , k, D, ', L, S and R be as in (þ+). Let ? be a

given star operation on the integral domain D, let � := ?' be the star operation

on R associated to ? (which is de�ned in Corollary 2.4) and let �' (= (?')')

be the star operation on D associated to � (which is de�ned in Proposition 2.6).

Then ? = �' (= (?')').
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Proof. For each nonzero fractional ideal F of D and for each y 2 L such that

F � yD, J := y�1F is a nonzero integral ideal of D. Set Iy := '�1(J) =

'�1(y�1F ) (� R). Note that Iy is a nonzero ideal of R such that M � Iy � R,

and so '(Iy) = Iy=M = J (� D). Moreover, we have

(Iy)
� = \

n
x�1'�1

��
xIy+M

M

�?�
j x 2 I�1y x 6= 0

o
= \

n
x'�1

��
x�1Iy+M

M

�?�
j Iy � xR � K

o
=

�
\

n
x'�1

��
x�1Iy+M

M

�?�
j Iy � xM ; x 2 K

o�
\

�
\

n
x'�1

��
x�1Iy+M

M

�?�
j Iy � xR � K ; but Iy * xM

o�
= (\fxM j Iy � xM ; x 2 K g)

\

�
\

n
x'�1

��
x�1Iy+M

M

�?�
j Iy � xR � K ; but Iy * xM

o�
:

� For the �rst component of the previous intersection, note that since M

is maximal in S and M � Iy � R, IyS = S. On the other hand, Iy � xM , thus

'�1(D) = R � S = IyS � xMS = xM . Therefore, we have

\fxM j Iy � xM � K g � '�1(D) � '�1
�
(y�1F )?

�
:

� For the second component of the previous intersection, note that

x�1Iy � R and M � Iy � R ) x�1IyS � S and IyS = S ) x�1 2 S :

On the other hand, if Iy 6� xM (Iy � xR) and x�1 2 S, then x�1 2 S n

M , and so '(x�1) 2 '(S nM ) = L n f0g : Note also that (x�1Iy +M )=M =

'(x�1)(Iy=M ) :

Set

I0y := '�1
�
(y�1F )?

�
( � '�1

�
y�1F

�
=: Iy ) ;

hence I0y=M =
�
y�1F

�?
= (Iy=M )

?
:

Then we have

\

n
x'�1

��
x�1Iy+M

M

�?�
j Iy � xR � K ; but Iy * xM

o
= \

n
x'�1

��
'(x�1)

Iy
M

�?�
j Iy � xR � K ; but Iy * xM

o
= \

n
x'�1

�
'(x�1)

�
Iy
M

�?�
j Iy � xR � K ; but Iy * xM

o
= \

n
x'�1

�
'(x�1)

I0y
M

�
j Iy � xR � K ; but Iy * xM

o
= \

�
x
�
x�1I 0y +M

�
j Iy � xR � K ; but Iy * xM

	
= \

�
I 0y + xM j Iy � xR � K ; but Iy * xM

	
= I0y = '�1

�
(y�1F )?

�
;

since for x = 1 we have Iy � xR � K but Iy 6� xM .

Note that the �rst component of the intersection representing (Iy)
� might

not appear, but the second component necessarily appears, since at least for

x := 1 we have that Iy � xR � K but Iy * xM . Putting together the

previous information about the two components of the intersection, we have�
'�1(y�1F )

�
�

= (Iy)
� = '�1

�
(y�1F )?

�
:

14



Therefore we conclude that

F �' = \

n
y'
��
'�1

�
y�1F

��
�

�
j y 2 L ; F � yD

o
= \

�
y'
�
(Iy)

�
�
j y 2 L ; F � yD

	
= \

�
y'
�
'�1

�
(y�1F )?

��
j y 2 L ; F � yD

	
= \

�
y(y�1F )? j y 2 L ; F � yD

	
= \

�
yy�1F ?

j y 2 L ; F � yD
	
= F ? : 2

Remark 2.10 With the notation and hypotheses of Proposition 2.9, for each

nonzero fractional ideal F of D, we have

F ? = '
�
'�1(F )?

'�
:

As a matter of fact, by the previous proof and Proposition 2.7, we have that

F ? = F �' = '�1(F )?
'

=M .

Corollary 2.11 Let T , K, M , k, D, ', L, S and R be as in (þ+).

(a) The map (�)' : Star(R)! Star(D), � 7! �', is order�preserving and

surjective.

(b) The map (�)' : Star(D) ! Star(R), ? 7! ?', is order�preserving and

injective.

(c) Let ? be a star operation on D. Then for each nonzero ideal I of R with

M � I � R,

I?
'

= '�1
�
('(I))

?�
:

Proof. (a) and (b) are straightforward consequences of the de�nitions and

Proposition 2.9, since (�)' is a right inverse of (�)' (i.e., (�)'Æ(�)
' = 1Star(D)).

(c) Let � := ?'. Then by Proposition 2.9, we know that �' = ?. Therefore,

using Proposition 2.7, we have

('(I))
?
= ('(I))

�' =
('�1('(I)))

�

M
= I�

M
= I?

'

M
;

and hence '�1
�
('(I))

?�
= I?

'

. 2

The next result shows how the composition map

(�)' Æ (�)' : Star(R)! Star(R)

compares with the identity map.

Theorem 2.12 Let T , K, M , k, D, ', L, S and R be as in (þ+). Assume

that D ( k. Then for each star operation � on R,

� � ((�)')
'
:

Proof. Let I be a nonzero integral ideal of R. For each nonzero x 2 I�1, if

xI 6�M , then by Proposition 2.7,
�
xI+M
M

�
�'

=
(xI+M)�

M
�

(xI)�+M

M
. Now using
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the fact M� = M for M 6= (0), we have

I(�')
'

= \

n
x�1'�1

��
xI+M
M

�
�'

�
j x 2 I�1 ; x 6= 0

o
=

�
\

n
x�1'�1

��
xI+M
M

�
�'

�
j x 2 I�1 ; x 6= 0 ; xI 6�M

o�
\�

\
�
x�1M j x 2 I�1 ; x 6= 0 ; xI �M

	�
�

�
\

n
x�1'�1

�
(xI)�+M

M

�
j x 2 I�1 ; x 6= 0 ; xI 6�M

o�
\�

\
�
x�1M�

j x 2 I�1 ; x 6= 0 ; I � x�1M
	�

�
�
\
�
x�1 ((xI)� +M ) j x 2 I�1 ; x 6= 0 ; xI 6�M

	�
\ I�

�
�
\
�
x�1 ((xI)�) j x 2 I�1 ; x 6= 0 ; xI 6�M

	�
\ I� = I� : 2

In Section 3, we will show that in general � � ((�)')
'
. However, in some

relevant cases, the inequality is, in fact, an equality:

Corollary 2.13 Let T , K, M , k, D, ', L, S and R be as in Theorem 2.12.

Then

vR = ((vR)')
' ; (vD)

' = vR ; (vR)' = vD :

Proof. Use Proposition 2.9, Corollary 2.11 (b), Theorem 2.12 and [26, Theorem

34.1 (4)]. More precisely, note that (vR)' � vD, and so vR � ((vR)')
'
�

(vD)
'
� vR. On the other hand, if (vR)' � vD, then vR = ((vR)')

'
� (vD)

',

which is a contradiction. 2

Our next goal is to apply the previous results for giving a componentwise

description of the �pullback� star operation � considered in Proposition 2.1.

Proposition 2.14 Let T , K, M , k, D, ', L, S and R be as in (þ+). Assume

that M 6= (0) and D ( k. Let

� : Star(D) � Star(T )! Star(R) , (?D; ?T ) 7! � := (?D)
'
^ (?T )

�
,

be the map considered in Proposition 2.1 and Corollary 2.5. The following

properties hold:

(a) �' = ?D.

(b) �� = (vR)� ^ ?T (2 Star(T )).

(c) � = (�')
'
^ (��)

�
.

Proof. (a) Without loss of generality, we only consider the case of integral

ideals of D. Let J be a nonzero integral ideal of D and let I := '�1(J). Since

M ( I � R, we have IS = S, where S := '�1(L), and so IT = T . Therefore,

by Proposition 2.7 and Corollary 2.11 (c), J�' = '(I�) = '(I(?D)
'

\ I(?T )
�

) =

'(I(?D)
'

\ (IT )?T ) = '(I(?D)
'

\ T ) = '(I(?D)
'

) = '('�1(J?D)) = J?D .

(b) Without loss of generality, we only consider the case of integral ideals of

T . Let I be a nonzero ideal of T (in particular, I is a fractional ideal of R). Then

for each x 2 I�1 = (R :K I), we have xIT = xI � R, so xI � (R :K T ) = M .

Therefore

I(?D)
'

=
T
fx�1'�1(('(xI))?D ) jx 2 I�1; x 6= 0g

=
T
fx�1M jx 2 I�1; x 6= 0g = IvR ;
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and so

I�� = I� = I(?D)
'

\ I?T = IvR \ I?T = I(vR)� \ I?T = I(vR)�^?T :

Note that I�� (� IvR ) is an ideal of R. Moreover, I�� is an ideal of T , because for

each nonzero x 2 T , xI�� = x(IvR \ I?T ) = (xI)vR \ (xI)?T � IvR \ I?T = I�� .

Finally, since ?T is a star operation on T , it is easy to check that �� (restricted

to F (T )) belongs to Star(T ).

(c) Since � � vR � ((vR)�)
�, (using also Example 1.5) we have that

� = (?D)
'
^ (?T )

� = (?D)
'
^ ((vR)�)

�
^ (?T )

�

= (?D)
'
^ ((vR)� ^ ?T )

� = (�')
'
^ (��)

�: 2

Example 2.15 With the same notation and hypotheses of Proposition 2.14,

we show that, in general, �� 6= ?T .

(1) Let T := k[X;Y ](X;Y ) and letM := (X;Y )T . Then T is a 2-dimensional

local UFD. Choose a sub�eld D := L of k such that [k : L] = 2. In this situation

we have that T � (R :K M ) � (T :K M ), and (T :K M ) = T because T is

2-dimensional local UFD (hence, Krull) with maximal ideal M . Therefore,

T = (R :K M ). By Example 2.3 (d), if ?T := vT , then � = vR and MvT = T .

But M�� = M� = MvR = M 6= T = MvT =M?T .

(2) Note that �� 6= ?T , even if L = k. It is su�cient to consider a slight

modi�cation of the previous example. Let D be any integral domain (not a

�eld) with quotient �eld L. Let T := L[X;Y ](X;Y ) and let M := (X;Y )T . Set

� := (vD)
'
^ (vT )

�. Then M�� = M� = M (vD)
'

\M (vT )
�

= MvR \M (vT )
�

= M ,

because MvR = M and M (vT )
�

= (MT )vT = MvT = T .

Remark 2.16 (a) Note that, with the same notation and hypotheses of Propo-

sition 2.14, the map � is not one-to-one in general.

This fact follows immediately from Example 2.15 and Proposition 2.14 (b)

and (c), since

(?D)
'
^ (?T )

� = � = (�')
'
^ (��)

� .

(b) In the same setting as above, the map � is not onto in general.

For instance, in the situation described in Example 2.3 (d), we have that

dR 62 Im(�). Another example, even in case L = k, is given next.

Example 2.17 Let D be a 1-dimensional discrete valuation domain with quo-

tient �eld L. Set T := L[X2; X3], M := X2L[X] = XL[X]\T and K := L(X).

Let ' and R be as in (þ+). Then vR =2 Im(�).

Note that, for each � 2 Im(�), � � (vD)
'
^ (vT )

�
� vR. In order to show

that vR 62 Im(�), it su�ces to prove that (vD)
'
^ (vT )

�
6= vR. The fractional

overring T of R is not a divisorial ideal of R, since T vR = (R :K (R :K T )) =

(R :K M ) � L[X] ) T . Therefore, T (vD)
'
^(vT )

�

= T vR^(vT )
�

= T vR \ T (vT )
�

=

T vR \ T vT = T vR \ T = T ( T vR .

Theorem 2.18 With the notation and hypotheses of Proposition 2.14, set

Star(T ; vR) := f?T 2 Star(T ) j ?T � (vR)�g.

Then
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(a) Star(T ; vR) = f?T 2 Star(T ) j (vR ^ (?T )
�)� = ?T g

= f�� j � 2 Star(R)g \ Star(T )

= f�� j � 2 Star(R) and T � = Tg :

(b) The restriction �0 := �jStar(D)�Star(T ;vR) is one-to-one.

(c) Im(�0) = Star(R; (þ+)) := f� 2 Star(R) j T � = T and � = (�')
'
^

(��)
�
g.

Proof. (a) We start by proving the following:

Claim. Let ?T 2 Star(T ; vR) and let ?D 2 Star(D) be any star operation

on D. Set, as usual, � := (?D)
'
^ (?T )

�. Then �� = ?T .

Note that, by Corollary 2.13, � = �((?D; ?T )) � � := �((vD; ?T )) = (vD)
'
^

(?T )
� = vR^ (?T )

�
2 Star(R) : Hence, by using Theorem 2.14 (b), Examples 1.2

(h) and 1.5 (b), we have (vR)�^?T = �� � �� = (vR^(?T )
�)� = (vR)�^((?T )

�)� =

(vR)� ^ ?T ; thus �� = �� = ?T ; because ?T 2 Star(T ; vR).

From the previous argument we also deduce that

?T � (vR)� , (vR ^ (?T )
�)� = ?T .

Now, let � 2 Star(R) be a star operation on R such that �� 2 Star(T ).

Then obviously �� � (vR)�, whence �� 2 Star(T ; vR), and T
� = T �� = T .

If � 2 Star(R) is such that T � = T , then clearly we have �� 2 Star(T ).

If ?T 2 Star(T ; vR), then by the Claim, ?T = �� with � 2 Star(R), hence

?T 2 f�� j � 2 Star(R)g \ Star(T ).

(b) is a straightforward consequence of the Claim and of Proposition 2.14

(a).

(c) follows from the Claim and from Proposition 2.14 (a) and (c). 2

We next apply some of the theory developed above for answering a problem

posed by D. F. Anderson in 1992.

Example 2.19 (�D +M��constructions).

Let T be an integral domain of the type k+M , where M is a maximal ideal

of T and k is a subring of T canonically isomorphic to the �eld T=M , and let D

be a subring of k with �eld of quotients L (� k). Set R := D +M . Note that

R is a faithfully �at D�module.

Given a star operation � on R, D.F. Anderson [8, page 835] de�ned a star

operation on D in the following way: for each nonzero fractional ideal F of D,

set
F �D := (FR)� \ L :

Note that FR = F +M . From [8, Proposition 5.4 (b)] it is known that for each

nonzero fractional ideal F of D,

(1) F �D +M = (F +M )� ;

(2) F �D = (F +M )� \ L = (F +M )� \ k .

Claim. If ' : R ! D is the canonical projection and if �' is the star

operation de�ned in Proposition 2.6, then �D = �'.

In particular, by [9, Proposition 2 (a), (c)], we deduce that
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(a) (dR)' = dD ; (tR)' = tD ; (vR)' = vD ; and

(b) (�f )' = (�')f .

Note that if y is a nonzero element of the quotient �eld L of D, then y

belongs to k, and thus, y is a unit in T and so y�1M = M . Therefore, for each

y 2 L such that F � yD, we have

y'
��
'�1

�
y�1F

��
�

�
= y'

��
y�1F +M

�
�

�
= y'

��
y�1F + y�1M

�
�

�
= y'

�
y�1 (F +M )

�
�
= y'

�
y�1(F �D +M )

�
= y'

�
y�1F �D + y�1M

�
= y'

�
y�1F �D +M

�
= y

�
y�1F �D

�
= F �D ;

hence (Proposition 2.6) F �' = F �D .

By applying Proposition 2.9 and Corollary 2.11 (a) to the particular case of

R = D +M (special case of (þ+)), we know that the map

(�)' : Star(D+M )! Star(D), � 7! �' = �D ,

is surjective and order-preserving and it has the injective order-preserving map

(�)' : Star(D)! Star(D +M ), ? 7! ?' ,

as a right inverse. This fact gives a complete positive answer to a problem posed

by D.F. Anderson (cf. [9, page 226]).

3 Transfer of star properties

In this section we want to investigate the general problem of the transfer �in

the pullback setting� of some relevant properties concerning the star operations

involved. In particular, we pursue the work initiated by D.F. Anderson in [9]

for the case of the �D +M ��constructions. We start by studying which of the

properties (a) and (b) of Example 2.19 hold in a more general setting.

Proposition 3.1 Let T , K, M , k, D, L, ' and R be as in (þ+).

(a) Let R := fR� j � 2 �g be a family of overrings of R contained in T such

that \fR� j � 2 �g = R, and let D := fD� := '(R�) j � 2 �g be the

corresponding family of subrings of k (with \fD� j � 2 �g = D), then

(?R)' = ?D :

(b) If D := fD� j � 2 �g is a family of overrings of D such that \fD� j

� 2 �g = D and if R := fR� := '�1(D�) j � 2 �g is the corresponding

family of subrings of T (with \fR� j � 2 �g = R), then in general

?R � (?D)
' :

Proof. (a) Note that in the present situation '�1(D�) = R� for each � 2 � ,

D = \fD� j � 2 �g, and for each nonzero fractional ideal J of D, J (?R)' =

'
�
('�1(J))?R

�
(Proposition 2.7). Moreover,

'
�
('�1(J))?R

�
= '

�
\f'�1(J)R� j � 2 �g

�
= '

�
\f'�1(J)'�1(D�) j � 2 �g

�
= '

�
'�1(\fJD� j � 2 �g)

�
= '

�
'�1(J?D )

�
= J?D :
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(b) Note that '(R�) = '('�1(D�)) = D� for each � 2 �. Therefore, by

(a), (?R)' = ?D, thus ((?R)')
' = (?D)

'. If D = k, then D = L is a �eld, thus

D = fDg and R = fRg. So, obviously, ?R = dR � (?D)
'. If D ( k, then the

conclusion follows from Theorem 2.12. 2

Proposition 3.1 (a) can be generalized to a statement concerning a surjective

homomorphism between two integral domains:

Proposition 3.2 Let R, K, M , D, ' be as in Corollary 2.4. Let f�� j � 2 �g

be a family of star operations of R. Then

(^��)' = ^(��)' .

Proof. Let J be a nonzero fractional ideal of D and let y be in the quotient

�eld L of D. Then

J^(��)' = \fJ (��)' j � 2 �g

= \
�
(\fy'(('�1(y�1J))��) j J � yDg) j � 2 �

	
= \

�
y(\f'

�
('�1(y�1J))��

�
j � 2 �g) j J � yD

	
= \

�
y'
�
\f('�1(y�1J))�� j � 2 �g

�
j J � yD

	
= \

�
y'
�
('�1(y�1J))^��

�
j J � yD

	
= J (^��)' :

2

Proposition 3.3 Let R, K, M , D, ' be as in Corollary 2.4. Then

(dR)' = dD :

Proof. For each nonzero fractional ideal J of D, we have

J (dR)' = \

n
y�1'

��
'�1 (yJ)

�dR�
j y 2 J�1 ; y 6= 0

o
= \

�
y�1'

��
'�1 (yJ)

��
j y 2 J�1 ; y 6= 0

	
= \

�
y�1 (yJ) j y 2 J�1 ; y 6= 0

	
= J = JdD :

2

The next couple of examples explicitly show that the inequalities in Theorem

2.12 and Proposition 3.1 (b) can be strict inequalities (i.e., � � ((�)')
'
and

?R � (?D)
').

Example 3.4 Let T , K, M , k, D, ', L, S and R be as in (þ+). Assume,

moreover, that T is local with nonzero maximal ideal M , D = L is a proper

sub�eld of k, and that T ( M�1 = (R :M ). In this situation,

dR � (dD)
' = ((dR)')

'
:

With the notation of Proposition 3.1 (b), take D := fDg, hence R = fRg,

thus ?D = dD = vD and ?R = dR. In this situation, by Corollary 2.13,

(?D)
' = vR. Therefore, by Proposition 3.3 and Example 2.3 (c) and (d),

(?D)
' = (dD)

'
= ((dR)')

'
= vR  dR = ?R.

Note that it is possible to give an example in which � � ((�)')
'
and dR �

(dD)
', even in the case that D ( L = k:
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Example 3.5 Let D be a 1-dimensional discrete valuation domain with quo-

tient �eld L. Set T := L[X2; X3], M := X2L[X] = XL[X]\T and K := L(X).

Let ' and R be as in (þ+) with L = k. Then, dR � vR = ((dR)')
'.

Since (dR)' = dD = vD and (vD)
' = vR (Corollary 2.13), we have ((dR)')

' =

vR. Now consider, for instance, the fractional ideal T of R. We know, from

Example 2.17, that T is not a divisorial ideal of R, i.e., T dR = T � T vR . Thus

we have dR � vR = ((dR)')
'.

The next goal is to show that (tR)' = tD (but, in general, tR � (tD)
' =

((tR)')
'
). We start with a more general result concerning the preservation of

the ��nite type� property.

Proposition 3.6 Let T , K, M , k, D, ', L, S and R be as in (þ+). Let � be

a given star operation on the integral domain R.

(a) If � is a star operation of �nite type on R, then �' is a star operation of

�nite type on D.

(b) If � is any star operation on R, then (�f )' = (�')f :

Proof. (a) To prove the statement we will use the following facts:

(1) For each integral ideal I of R such that M � I,
�
I
M

�
�'

= ('(I))
�' =

'(I�) = I�

M
(Proposition 2.7).

(2) For each nonzero ideal I of R, (I +M )� � I� +M .

(3) For each nonzero ideal J of D and for each y 2 L with J � yD, if Fy
is a �nitely generated ideal of R such that Fy � Iy := '�1

�
y�1J

�
, then y'(Fy)

is a �nitely generated ideal of D with y'(Fy) � J .

For each nonzero ideal J of D, we have

J�' = \

n
y'
��
'�1

�
y�1J

��
�

�
j y 2 L ; J � yD

o
= \

�
y'
�
I �

y

�
j y 2 L ; J � yD

	
= \

�
y'
�
[
�
F �

y j Fy � Iy ; Fy 2 f(R)
	�
j y 2 L; J � yD

	
= \

�
[
�
y'
�
F �

y

�
j Fy � Iy ; Fy 2 f(R)

	
j y 2 L; J � yD

	
= \

n
[

n
y
F �
y +M

M
j Fy � Iy; Fy 2 f(R)

o
j y 2 L; J � yD

o
� \

n
[

n
y
(Fy+M)�

M
j Fy � Iy; Fy 2 f(R)

o
j y 2 L; J � yD

o
= \

n
[

n
y
�
Fy+M

M

�
�'

j Fy � Iy; Fy 2 f(R)
o
j y 2 L; J � yD

o
= \

�
[
�
y ('(Fy))

�'
j Fy � Iy ; Fy 2 f(R)

	
j y 2 L; J � yD

	
= \

�
[
�
(y'(Fy))

�'
j Fy � Iy ; Fy 2 f(R)

	
j y 2 L; J � yD

	
� \f[fG�' j G � J; G 2 f(D)g j y 2 L; J � yDg

= [fG�' j G � J; G 2 f(D)g � J�' ;

where we may assume each Fy 6�M so that we can use Fact (1).

Thus, J�' = [fG�' j G � J; G 2 f(D)g.
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(b) Since both (�f )' and (�')f are star operations of �nite type on D by

(a), it su�ces to show that for each nonzero �nitely generated ideal J of D,

J (�f )' = J (�')f . Recall that if J is a nonzero �nitely generated ideal of D, then

'�1(J) is a �nitely generated ideal of R [20, Corollary 1.7]. Therefore

J (�')f = J�' =

n
y'
��
'�1

�
y�1J

��
�

�
j y 2 L ; J � yD

o
=

n
y'
��
'�1

�
y�1J

��
�f

�
j y 2 L ; J � yD

o
= J (�f )' : 2

Proposition 3.7 Let T , K, M , k, D, ', L, S and R be as in (þ+). Then

(tR)' = tD :

Proof. Easy consequence of Corollary 2.13 and Proposition 3.6 (b).

Remark 3.8 In the same situation of Example 3.5, choosing D to be a Dede-

kind domain with in�nitely many prime ideals, we have

tR � (tD)
'
= ((tR)')

'
:

Using Proposition 3.7 we have (tD)
'
= ((tR)')

'
. We claim that, in the

present situation, the set of the maximal tR�ideals of R coincides with Max(R).

Note �rst that since dim(T ) = 1, the contraction to R of each nonzero prime

ideal of T has height 1 [19, Theorem 1.4], so it is a tR�prime of R [32, Corollaire

3, p. 31 ]. Let Q 2 Max(R). If Q 6�M , then Q is the contraction of a prime ideal

of T , so Q is a tR�prime. If Q � M , then Q

M
= (

Q

M
)vD =

QvR

M
by Proposition

2.7, and hence we have QvR = Q. Therefore, in this case also, Q is a tR�prime.

Note thatM is a divisorial prime ideal in R, hence in particularM is a prime

tR�ideal and it is contained in in�nitely many maximal (tR�)ideals, therefore

R is not a TV-domain, i.e., tR 6= vR [31, Theorem 1.3 and Remark 2.5]. Since

((dR)')
' = (dD)

' = (vD)
' = vR, automatically we have ((tR)')

' = (tD)
' =

vR. Thus, in this example, we have tR � (tD)
'.

Note also that this example shows that if ? is a star operation of �nite type

on D, then ?' is a star operation on R, which is not necessarily of �nite type

(e.g. take ? := tD = (tR)').

In the pullback setting that we are considering, it is also natural to ask about

the transfer of the property of being a �stable� star operation.

Proposition 3.9 Let T , K, M , k, D, ', L, S and R be as in (þ+) and let �

be a star operation on R. Then

~�' = g(�') .
Proof. If D = k, then since D = L is a �eld, obviously we have ~�' = g(�').
Assume that D ( k.

Let J be a nonzero integral ideal of D and let I := '�1(J). We �rst show

that J~�' � J
g(�'). By Proposition 2.7, J~�' = I~�

M
. Moreover, recall that J

g(�') =

fy 2 D j yJ1 � J for some �nitely generated ideal J1 of D such that J
�'

1 = Dg

[respectively, I~� = fx 2 R j xI1 � I for some �nitely generated ideal I1 of
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R such that I�1 = Rg]. Let y 2 J~�' . Then y = '(x) for some x 2 I~�. So

xI1 � I for some �nitely generated ideal I1 of R such that I�1 = R. Set

J1 := '(I1) =
I1+M
M

. Then J1 is nonzero �nitely generated, and by Proposition

2.7, J
�'

1 =
(I1+M)�

M
= R

M
= D. Since xI1 � I, yJ1 = '(xI1) � '(I) = J , and

hence y 2 J
g(�').

Conversely, let J be a nonzero integral ideal of D. If y 2 J
g(�') = J
^(�')f =

J
^(�f )' (Proposition 3.6 (b)), then yJ1 � J for some �nitely generated ideal J1

such that J
(�f )'
1 = D. Set I1 := '�1(J1). Since J

(�f )'
1 =

I
�
f

1

M
= D (Proposition

2.7), I
�f

1 = R. Therefore, there exists a �nitely generated subideal I0 of I1 such

that I�0 = R. Write y := '(x) for some x 2 R. Since xI0 � xI1 � I := '�1(J),

x 2 I~�, and hence (using Proposition 2.7 again) y 2 I
~�

M
= J (~�)' . 2

Corollary 3.10 Let T , K, M , k, D, ', L, S and R be as in (þ+). Then

(wR)' = wD :

Proof. Recall that wR = fvR and wD = fvD. The conclusion follows from

Proposition 3.9. 2

Remark 3.11 The example considered in Remark 3.8 shows that we can have

wR � ((wR)')
' = (wD)

'.

Since Max(R) = M(tR) (= the set of the maximal tR�ideals, according to

the notation in Example 1.3 (e)), wR = ?M(tR) = dR. In particular, TwR = T .

On the other hand, we know that ((dR)')
' = (dD)

' = (vD)
' = vR. Thus we

have ((wR)')
' = (wD)

' = vR. As we have already noticed (Example 3.5), T

is not a divisorial ideal of R, i.e., T vR ) T = TwR . Thus, in this case, we have

wR � (wD)
'.

Since the stable star operation ~� is a particular type of spectral star oper-

ation, the next goal is a possible extension of Proposition 3.9 to the case of

spectral star operations. We start with the following:

Lemma 3.12 Let T , K, M , k, D, ', L, S and R be as in (þ+). Assume that

D ( k.

(a) Let P be a prime ideal of R containing M . Set Q := '(P ) and R(P;') :=

'�1(DQ). Then R(P;') = RP \ T .

(b) Let �(6= ;) � Spec(R) and assume that � := ?� 2 Star(R). Set �1 :=

fP 2 � j P �Mg. For each nonzero integral ideal I of R containing M ,

we have
I� = \fIR(P;') j P 2 �1g :

(Note that �1 6= ;.)

Proof. (a) is straightforward.

(b) IfM = (0), then � = �1 and R(P;') = RP , so it trivially holds. Assume

that M 6= (0). Let I be an integral ideal of R containing M . Recall that for
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each P 2 � n�1, there exists a unique P 0 2 Spec(T ) such that P 0\R = P and

RP = TP 0 [19, Theorem 1.4], hence in particular �1 6= ; (otherwise ?� would

not be a star operation on R). We have

I� = \fIRP j P 2 �g = (\fIRP j P 2 �1g) \ (\fIRP j P 2 � n�1g)

= (\fIRP j P 2 �1g) \ (\fRP j P 2 � n�1g)

� (\fIRP j P 2 �1g) \ T � \fIR(P;') j P 2 �1g :

Conversely, let x 2 I� and let P 2 �1 (which is nonempty). Then there

exists s 2 R n P such that sx 2 I. Since '(s) 2 D n '(P ), '(s) is a unit

element of D'(P ), and hence there exists t 2 R(P;') such that '(t)'(s) = 1, or

equivalently, ts� 1 2M . Put ts� 1 =: m 2M , then tsx = (1+m)x = x+mx.

Since tsx 2 IR(P;') and mx 2 MI� � MR = M � I � IR(P;'), we have

x = tsx �mx 2 IR(P;'). 2

Proposition 3.13 Let T , K, M , k, D, ', L, S and R be as in (þ+). Let �

be a nonempty set of prime ideals of R and assume that � := ?� 2 Star(R).

Set �' := f'(P ) j P 2 �; P �Mg (� Spec(D)). Then

(?�)' = ?�'
:

Proof. IfD = k, then sinceD = L is a �eld, we obviously have (?�)' = ?�'
.

Assume that D ( k, then �' 6= ;. Let J be a nonzero integral ideal of D and let

I := '�1(J). Set �1 = fP 2 � j P �Mg, hence �' = f'(P ) j P 2 �1g. Since

I is an integral ideal of R containing M , I� = \fIR(P;') j P 2 �1g by Lemma

3.12 (b), and so, using Proposition 2.7, we have J�' = '(I�) = \f'(I)D'(P ) j

P 2 �1g = \fJD'(P ) j P 2 �1g = \fJDQ j Q 2 �'g = J?�' . 2

Remark 3.14 (1) Note that from Proposition 3.13 we can deduce another

proof of Proposition 3.9. As a matter of fact, for each star operation � on

R, ~� = ?�, where � := M(�f ) (Example 1.3 (e)). In the present situation,

�1 := fP 2 M(�f ) j P � Mg. By using Proposition 2.7 and Proposition 3.6

(b), it is easy to see that

P 2 �1 , Q := '(P ) 2M((�')f ) :

(2) Note that if ? := ?� is a spectral star operation on D, then ?' is not

necessarily a spectral star operation on R (in particular, (?�)
'
6= ?�' , where

�' := fP 2 Spec(R) j '(P ) 2 �g).

To show this fact, let D be a 1-dimensional discrete valuation domain with

quotient �eld L and maximal ideal N . Let T := L[[X2; X3]] and let M :=

X2L[[X]] = XL[[X]] \ T . Under these hypotheses, let R be the integral domain

de�ned (as a pullback of type (þ+)) from D, T and the canonical projection

' : T ! L. Then, R is a 2-dimensional non-Noetherian local domain. Let � :=

Max(D) = fNg. Then ? := ?� = dD = vD and ?' = (vD)
' = vR (Corollary

2.13). Since �' = Max(R), ?�' = dR. Suppose that ?' is spectral, then by

Proposition 3.13 and Proposition 2.9, we have necessarily that ?' coincides with

?�' , i.e., vR = ?' = ?�' = dR. This is a contradiction, since T vR = (R :K

(R :K T )) = (R :K M ) � L[[X]] ) T = T dR .
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Proposition 3.15 Let T , K, M , k, D, ', L, S and R be as in (þ+). If � is an

a.b. [respectively, e.a.b.] star operation on R, then �' is an a.b. [respectively,

e.a.b.] star operation on D.

Proof. Let J be a nonzero �nitely generated ideal ofD and let J1, J2 be two

arbitrary nonzero ideals of D such that (JJ1)
�' � (JJ2)

�' . Set I := '�1(J),

Ii := '�1(Ji) for i = 1; 2. Since J is �nitely generated and IS = S (because

I �M andM is a maximal ideal of S), there exists a �nitely generated subideal

I0 of I such that '(I0) = J and I0S = S. Then, by Proposition 2.7, we have

(I0I1 +M )� � (I0I2 +M )�. Note that I0Ii � I0M = I0MS = I0SM = SM =

M for i = 1; 2, thus we have (I0I1)
�
� (I0I2)

�. Since I0 is �nitely generated

and � is an a.b. star operation, I1
�

� I2
� and so J1

�'
� J2

�' . The statement

for the e.a.b. case follows from Proposition 3.6 (b) and from the fact that � is

e.a.b. if and only if �f is a.b.. 2

Remark 3.16 (1) Under the assumption of Proposition 3.15, if vR is e.a.b.,

then (vR)' = vD is e.a.b.. In other words, if R is a vR�domain, then D is a

vD�domain [26, page 418].

(2) Let ? be an a.b. [respectively, e.a.b.] star operation on D. Then, in

general, ?' is not an a.b. [respectively, e.a.b.] star operation on R.

To show this fact, take D, T and R as in Remark 3.14 (2). Since D is a 1-

dimensional discrete valuation domain, its unique star operation dD(= bD = vD)

is an a.b. star operation (and hence an e.a.b. star operation). Since R is not

integrally closed (because X 2 K n R is integral over R), R has no e.a.b. star

operations (and hence no a.b. star operations).

Note that it is possible to give an example of this phenomenon also with R

integrally closed.

Example 3.17 Let D be a 1-dimensional discrete valuation domain with quo-

tient �eld L, let T := L[X;Y ] and M := (X;Y )L[X;Y ]. Under these hypothe-

ses, let R := D + (X;Y )L[X;Y ] be the integral domain de�ned (as a pullback

of type (þ+)) from D, T and the canonical projection ' : T ! L. Then (bD)
'

is not e.a.b. (and hence not a.b.) on R.

Note that M is a divisorial ideal of R of �nite type, in fact, M = IvR , where

I := (X;Y )R. Now, choose a1; a2 2 D n (0) such that a1D 6� a2D (e.g. put

a1 := a, a2 := a2, where a is a nonzero nonunit element in D). Set I1 := a1R

and I2 := a2R. Then (IIi)
vR = (aiI)

vR = aiI
vR = aiM = M (where the

last equality holds because ai is a unit in T ) for each i = 1; 2. Thus we have

(II1)
vR = (II2)

vR . On the other hand, since (Ii)
vR = Ii = aiR = ai(D +M ) =

aiD + M for each i = 1; 2, and a1D 6� a2D, we have that (I1)
vR 6� (I2)

vR .

Therefore, vR is not an e.a.b. operation. Since D is a 1-dimensional discrete

valuation domain, the unique star operation dD = bD = vD on D is an a.b.

star operation (and hence an e.a.b. star operation), but vR = (vD)
' (Corollary

2.13) is not e.a.b. (and hence not a.b.).

Recall that given an integral domain T , the paravaluation subrings of T , in

Bourbaki's sense [14, Chap. 6, �1, Exercise 8], are the subrings of T obtained as
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an intersection of T with a valuation domain having the same quotient �eld as

T . It is easy to see that if R is a subring of T then the integral closure of R in T

coincides with the intersection of all the paravaluation subrings of T containing

R [14, Chap. 6, �1, Exercise 9].

Lemma 3.18 Let T , K, M , k, D, ', L, S and R be as in (þ+). Assume that

D ( L = k. Assume, moreover, that D is integrally closed (or equivalently, that

R is integrally closed in T ). Let P := P(R; T ) [respectively, V; V1;W] be the set

of all the paravaluation subrings of T containing R [respectively, the set of all

valuation overrings of R; the set of all valuation overrings (V1; N1) of R such

that N1 \R � M ; the set of all the valuation overrings of D]. Set bR;T := ?P
[respectively, bR := ?V ; ?1 := ?V1 ; bD := ?W ]. Then

(a) bR;T [respectively, bD] is a star operation on R [respectively, on D]; bR
and ?1 are semistar operations on R. Moreover,

bR;T � ?1 ^ ?fTg � bR :

(b) (bR;T )' = bD.

(c) If R is integrally closed (which happens if T is integrally closed), then

?1 ^ ?fTg and bR are star operations on R. Moreover, (bR)' = bD and

bR � (bD)
'
.

(d) If T := V is a valuation domain, then bR;T = ?1 = ?1 ^ ?fTg = bR .

Proof. Note that if (V2; N2) 2 V n V1, then N2 \ R 6� M , and so there

exists a unique prime ideal Q2 in T such that RN2\R = TQ2
[19, Theorem 1.4].

Therefore V2 � RN2\R = TQ2
� T .

(a) The �rst part of this statement is an obvious consequence of the de�ni-

tions and the assumption that R is integrally closed in T (and equivalently,D is

integrally closed [19, Corollary 1.5]). For each I 2 F (R), we have IbR = \fIV j

V 2 Vg = (\fIV1 j V1 2 V1g) \ (\fIV2 j V2 2 V n V1g) � (\fIV1 j V1 2 V1g) \

IT = I?1 \ I?fT g � (\fI(V1 \ T ) j V1 2 V1g) � (\fI(V \ T ) j V 2 Vg) = IbR;T .

(b) Note that since L is a �eld, the paravaluation subrings of L containingD

coincide with the valuation rings in L containing D [14, Chap. 6, �1, Exercise 8

d)]. Moreover, ifW is a valuation overring ofD, then '�1(W ) is a paravaluation

subring of T containing R [14, Chap. 6, �1, Exercise 8 c)]. On the other hand,

if V 0 \ T is a paravaluation subring of T (where V 0 is a valuation domain in

the �eld K, quotient �eld of R), then necessarily '(V 0 \ T ) is a paravaluation

subring of '(T ) = L, i.e., it is a valuation domain in L containing D [14, Chap.

6, �1, Exercise 8 d)]. Therefore, for each J 2 F (D), '�1(JbD ) = ('�1(J))bR;T .

Now, we can conclude, since we know that for each J 2 F (D), J (bR;T )' =

(('�1(J))bR;T )=M (Proposition 2.7).

(c) If R is integrally closed, then bR is a star operation on R [26, Corollary

32.8], and so by (a) it follows that ?1 ^ ?fTg is also a star operation on R.

Let W = fW� j� 2 �g. For each � 2 �, let R� := '�1(W�). Then, by

the argument used in the proof of (b), we have P = fR� j� 2 �g. Denote by
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A0 the integral closure of an integral domain A. Since R� is integrally closed

in T , R� = R�
0
\ T . Let �0� : R� ,! R�

0 and �� : R� ,! T be the canonical

embeddings, and set �� := (bR�
0)�

0
� ^ (dT )

�� for each � 2 � (note that (dT )
��

coincides with the semistar operation ?fTg on R� ). Then �� is a star operation

on R� (see also [2, Theorem 2]).

Claim 1. Let I be an integral ideal of R properly containing M . Then

(IR�)
�� = IR�.

Let Q� be the maximal ideal of the valuation domain W�. If '(IR�) =
IR�

M
6= yQ� for all y 2 L n (0), then since '(IR�) is a divisorial ideal of the

valuation domain W�, '(IR�) = ' ((IR�)
�� ) (and hence, (IR�)

�� = IR�) by

Proposition 2.7. Assume that '(IR�) = IR�

M
= yQ� for some y 2 L n (0).

Choose s 2 S nM such that '(s) = y and let P� := '�1(Q�) ( R�. Then

IR� = sP� + M , and by the Claim in the proof of Proposition 2.7, we have

(IR�)
�� = sP�

�� +M . By (b), R� = V� \ T for some valuation overring V� of

R, which has center P� on R�, thus P�
�� = (P�R�

0
)
bR� 0\P�T � P�V�\T = P�.

Therefore, in either case, we have (IR�)
�� = IR�.

Claim 2. (bR)' � (bR;T )' (= bD by (b)).

It su�ces to show that for each nonzero integral ideal J of D, J (bR)' �

J (bR;T )' , i.e., for each integral ideal I of R properly containingM , IbR � IbR;T .

Let I be such an ideal. Then IbR;T = \fIR� j� 2 �g = \f(IR�)
�� j� 2 �g =

\f(IR�
0

)
bR�

0
\ IT j� 2 �g = \f((IR�

0

)
bR�

0
\ T j� 2 �g = \f((IR�

0

)
bR�

0
j� 2

�g \ T = \ f\fIV jV 2 V� := fvaluation overrings of R�
0
g g j � 2 �g \ T �

\fIV jV 2 Vg = IbR .

Therefore, by Claim2, (a), and the �rst part of (c), we conclude that (bR)' =

bD. Finally, by Theorem 2.12, we have bR � ((bR)')
' = (bD)

'.

(d) If T := V is a valuation domain, then each valuation overring of R is

comparable with V . As a matter of fact, if V 0 is a valuation overring of R and

V 0 6� V , then there exists y 2 V 0 n V , hence y�1 2 M , thus for each v 2 V ,

we have v = v(y�1y) = (vy�1)y 2 MV 0 � V 0. Therefore, V � V 0. From

this observation, we immediately deduce that when T is a valuation domain,

bR;T = ?1 = ?1 ^ ?fTg = bR. 2

Remark 3.19 In a pullback situation of type (þ+), whenD is integrally closed,

we have already noticed that if R is not integrally closed, then there is no hope

that (bD)
' = bR (Remark 3.16 (2)). More explicitly, Example 3.17 shows that

we can have bR � (bD)
', even when R is integrally closed. The next example

shows that bR � (bD)
' is possible even under the hypotheses of Lemma 3.18

(d).

Example 3.20 Let T := V be a valuation domain with maximal ideal M and

let ' : V ! V=M =: k be the canonical projection. Let D be a Dedekind

domain with in�nitely many prime ideals and with quotient �eld L = k. Set

R := '�1(D). Then bR � (bD)
'.

By the same argument as in Remark 3.8, we can see that R is not a TV-

domain, i.e., tR 6= vR. Meanwhile, since R is a Prüfer domain, bR = dR = tR,
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and since D is a Dedekind domain, bD = vD and so (bD)
' = (vD)

' = vR
(Corollary 2.13). Therefore, we have bR = tR � vR = (bD)

'.
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