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Abstract

For the domainR arising from the constructiod, M, D, we relate the star class groupsto
those ofT and D. More precisely, leT” be an integral domain¥ a nonzero maximal ideal df,
D a proper subring of := T/M, ¢:T — k the natural projection, and & = ¢—1(D). For each
star operation: on R, we define the star operaticfy, on D, i.e., the “projection” of+ underg,
and the star operatiofx)7 on T, i.e., the “extension” ok to 7. Then we show that, under a mild
hypothesis on the group of units @f, if x is a star operation of finite type, then the sequence of
canonical homomorphisms-8 Cl*¢ (D) — CI*(R) — CI®7(T) — 0 is split exact. In particular,
whens = tg, we deduce that the sequencex0CI'2 (D)— CI'R (R)— CIVR)T (T) — 0 is split exact.
The relation betweefrg)7 andry (and between G)T(T) and CIT (T)) is also investigated.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction and background results

The interest for constructing a general theory of the class group, extending the theory
of the divisor class group of a Krull domain, was implicitly present already in the work
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by Claborn and Fossum (cf. Fossum’s book [24]). One of the main objectives for this type
of extension was to establish a general functorial theory by exploiting class-group-type
techniques in a more general setting than that of Krull domains. An approach to this prob-
lem, using star operations, was initiated by D.F. Anderson in 1988 [4], where he studied
in a systematic way the star class group(®) of an integral domairR, equipped with

a star operatior. The key point of this construction is that, wheris the identity oper-
ationd, Cl¢(R) coincides with the Picard group RiR) (which is, in fact, the “classical”
class group of the nonzero fractional ideals wieis a Dedekind domain); whesis the
v-operation on a Krull domain, €{R) coincides with the “usual” divisor class group Bf
whenx is ther-operation, CI(R), which is defined on arbitrary domaiR, is commonly
considered the best generalization of the “usual” divisor class group to the general setting
(cf. the pioneering work in this area by Bouvier and Zafrullah [12,13,42] and the recent
excellent survey paper by D.F. Anderson [5]).

Since various divisibility properties are often reflected in group-theoretic properties of
the class groups, a particular interest was given in recent years to the computation of the
t-class group where the functorial properties can be applied in a very effective way (for
instance, cf. [2,26,36]).

In case of the rings arising from pullback construction of various type (cf. [14,16]), the
t-class group was extensively studied by several authors (cf. for instance [6,7,9,10,19,32]).

Itis well known that, even in the case of an embedding B of Krull domains, it is not
possible in general to define a canonical homomorphism between the divisor class groups
Cl(A) — CI(B) (the condition (PDE), i.e., “pas d’éclatement”, was introduced in 1964
by Samuel [40] in order to characterize the existence of this canonical homomorphism).
In case of star class groups, the technical difficulties for establishing functorial properties
were surmounted by D.F. Anderson by introducing the notion of compatibility between
star operations. More precisely, ldtbe a subdomain of an integral domahand let
*4 (respectivelyxp) be a star operation oA (respectively, onB), thenx, andxp are
compatible if(I B)*3 = (I*4 B)*8 for each nonzero fractional ideAbf A. In this situation,
the extension map — I B induces a natural group homomorphism4gH4) — CI*3 (B).
Unfortunately, the compatibility condition is a sufficient but not a necessary condition for
the existence of the natural homomorphisn®CHh) — CI*2 (B) [4, page 823]. Moreover,
the identity operatio@4 on A is compatible with any star operation &while it is very
common that the-operationz4 (respectively, the-operationvs) on A is not compatible
with ther-operatioryp (respectively, the-operationvg) on B.

In the present paper we mainly consider the following situation:

(@) T represents an integral domai{ a nonzero maximal ideal df, k the residue
field T/M, D a proper subring ofk and ¢ : T — k the canonical projection. Let
R:=¢ 1(D) =: T x; D be the integral domain arising from the following pullback
of canonical homomorphisms

D
T

1

_—

k=

/M.
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It is easy to see thay = (R : T) is the conductor of the embeddingR < T'. In this
situation, we will say that we are dealing withpullback of type((]) and we will still
denote byp the restrictiony|g, giving rise to a canonical surjective homomorphism from
R=¢ (D) ontoD.

Let L denote the field of quotients dd (and hencel C k). If we assume, moreover,
that L = k, then we will say that we are dealing withpullback of typeg[d™).

The main goal of this work is to establish functorial relations among the star class groups
of R, D, andT, by using the theory that we have recently developed in [22] concerning
the “lifting” and the “projection” of a star operation under a surjective homomorphism of
integral domains, the “extension” of a star operation to its overrings and the “glueing” of
star operations in pullback diagrams of a rather general type. One of the principal results
proven in this paper is that, given a pullback diagram of t§fp&) and a star operationof
finite type onR, if x, denotes the “projection” of onto D (respectively(x) denotes the
“extension” ofx to T'), under a mild hypothesis on the group of unitsTgfthe sequence
of canonical homomorphisms

0—> CI*(D) =% CI*(R) -2 cI®r (1) — 0

is split exact (Theorem 2.17). In particular, wheg- tg, we deduce that the sequence

0—> CI'(D) -% CIF(R) 2> Clt®T (1Y —5 0

is split exact. The relation betweérn;)r andrr (and between €K7 (T) and CI7 (T)) is
also investigated. Among the applications of the main results of this paper, a characteriza-
tion of whenR is a Prifer-multiplication domain is given.

Let D be an integral domain with quotient field. Let F(D) denote the set of all
nonzeroD-submodules of. and letF (D) be the set of all nonzero fractional idealsof
i.e., all E e F(D) such that there exists a nonzete D with dE C D. Let f(D) be the
set of all nonzero finitely generatéasubmodules of.. Then, obviouslyf (D) C F(D) C
F(D).

For each pair of fractional ideals, F' of D, we denote as usual k¥ :; F) the frac-
tional ideal of D given by{y € L | yF < E}; in particular, for each fractional ideélof D,
we setl ~1:=(D:. I).

We recall that a mapping: F(D) — F(D), E — E*, is called asemistar operation on
D if the following properties hold for all & x € L, andE, F € F(D):

(x1) (XE)*=xE™,
(x2) ECF = E*C F*;
(x3) EC E* andE* = (E*)* =: E**

(cf. for instance [17,33,34,37,38]).
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Example 1.1. (a) If x is a semistar operation ab such thatD* = D, then the map (still
denoted byy: F(D) — F(D), E — E*, is called astar operation onD. Recall [27,

(32.1)] that a star operationhsatisfies the properti€s,), (x3) for all E, F € F(D); more-

over, for each @ x € L and for eacht € F(D), a star operatior satisfies the following
“stronger” version of(x1) (when restricted td (D)):

(xx1) (xD)*=xD, (xE)*=xE*.

Conversely, ifx: F(D) — F(D), E — E*, is a star operation o (i.e., if » satisfies
the propertiegxx1), (x2) and(x3)), thenx can be extended trivially to a semistar operation
on D, denoted by, (or, sometimes, just by), by settingk* := L, whenE € F(D) \
F(D), andE* := E*, whenE € F(D).

A semistar operatior on D such thatD C D* is called aproper semistar operation
onD.

(b) Theidentity semistar operatiodp on D (simply denoted byl) is a trivial semistar
(in fact, star) operation oP defined byE?> := E for eachE € F(D) (dp, when restricted
to F(D), is a star operation oP).

(c) For eachE € F(D), setE*/ := | J{F* | F CE, F € f(D)}. Thenx; is also a
semistar operation o, which is calledthe semistar operation of finite type associated
to . Obviously, F’* = F*7 for eachF e f(D); moreover, ifx is a star operation, thesy
is also a star operation. ¥= x ¢, then the semistar (respectively, the star) operation
called asemistar(respectivelystar) operation of finite type

Note thatxy < «, i.e., E*/ C E* for eachE e F(D). Thus, in particular, ifE = E*,
thenE = E*/ . Note also that ; = () s.

More generally, ifx; and+, are two semistar operations dh we say thak < % if
E*1 C E*2 for eachE € F(D). In this situation, it is easy to see th@*1)*2 = E*2 =
(E*2)*.

There are several examples of nontrivial semistar or star operations of finite type; the
best known is probably theoperation. Indeed, we start from thg star operationon an
integral domainD (simply denoted by), which is defined by

E" :=(EY) " =(D: (DL E))
forany E € F(D), and we setp := (vp)  (or, simply,t = vy).
(d) Let:: R — T be an embedding of integral domains with the same field of quotients
K and letx be a semistar operation @h Definex,: F(T) — F(T) by setting
E*:=E* foreachE € F(T) (S F(R)).
Then, it is easy to verify (cf. also [20, Proposition 2.8]) that:
(d1) If ¢ is not the identity map, thes is a semistar, possibly nonstar, operation Bn

even ifx is a star operation orR (obviously, ifi is the identity map, ther, = x and
thus this phenomenon does not ogcur
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Note that wherx is a star operation oR and(R :x T) = (0), a fractional ideaF of T
is not a fractional ideal oR, hencex, is not necessarily defined as a star operatioff on

(d2) If = is of finite type omR, thenx, is also of finite type off.
(d3) If T = R*, thenx, defines a star operation df.

(e) Letx be a semistar operation on the overriigf R. Definex': F(R) — F(R) by
setting

E* :=(ET)* foreachE € F(R).

Then, we know [20, Proposition 2.9, Corollary 2.10]:

(el) «* is a semistar operation oR.

(e2) If x=dr, then(dr)' is a semistar operation of finite type dty which is also de-
noted byxr; (i.e., it is the semistar operation ok defined byE*(") := ET for each
E € F(R)).

(e3) For each semistar operatiohon T, (x), = *.

(f) Let A be a set of prime ideals of an integral domdwith quotient fieldL. The
mappingE — E*4, whereE*4 := ({EDp | P € A} for eachE € F(D), defines a semi-
star operation orD. Note thatx, (restricted to the nonzero fractional idealsj is a
star operation orD if and only if D = (\{Dp | P € A}. Moreover ([17, Lemma 4.1] or
[1, Theorem 1)):

(f1) For eachE € F(D) and for eachP € A, EDp = E*4Dp.
(f2) The semistar operatioR, is stable(with respect to the finite intersectionse., for
all E, F e F(D), we havg EN F)*4 = E*A N F*4,

A semistar operatior on D is calledspectralif there exists a subset of SpegD)
such thatk = x 4; in this case we say thatis the spectral semistar operation associated
with A.

(g) Letx be a star operation aB. If E € F(D), we say thaF isax-idealif E = E*. We
denote byF* (D) (respectively,f*(D)) the sef{E € F(D) | E = E*} (respectively{E €
F(D) | E = F* whereF e f(D)}. Obviously, F(D) = F(D) (respectively,fd(D) =
f(D)) and the seF"(D) is calledthe set of divisorial ideals ab.

SetP(x) := Speé¢ (D) :={P € Spe¢D) | P = P*} and M (x) := Max*(D) which is the
(possibly empty) set of all the maximal elements of the{$qdroper ideal ofD | I = I*}.
Assume that each propefideal of D is contained in some prime ideal of Speb), then
it is known thatxp(,) is a star operation o® [1, Theorem 3]. In particular, for each star
operatiorw on D which is not a field M (x ¢) is a nonempty subset f(x ) and it satisfies
the property that each propeg-ideal of D is contained in some prime ideal &ff(x r).
Then := *M(ss) IS @ star operation of finite type and stable bnwhich is calledthe
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stable operation of finite type associatedstalt is easy to see that; =% = (%), and
*= *p(x;)- Note that [17, Corollary 3.9]

*x=% <& «is astable star operation of finite type.

Particularly interesting is the case in whieh= v. Using the notation introduced by
Wang Fanggui and R.L. McCasland [41], we will denotewy (or, simply, w) the star
operationvp = fp (simply, w := 7 =7; cf. also [3,29]).

Note that ifx; andx, are two star operations a, then

*1<*x2 & F?(D)C F*(D).

Itis well known that for each star operati@nwe havex <y < [3, Theorem 2.3]. Thus,
in particular, if E = E*, thenE = E* = E*/. Moreover, note that

fX(D)= f*(D) € F*(D) € F*/(D).

It is also known that ifx; and x, are two star operations oP and x1 < %2, then
(*x1) 5 < (*2) r and x1 < *2. In particular, for each star operatignwe havex < v [27,
Theorem 34.1(4)] and seoy <t and* < w. Thus we get

F'(D) C F'(D) C F* (D) C F(D),
F’(D) € F*(D), F'(D) C F*/(D), F"(D) C F*(D).

(h) Let:: R — T be an embedding of integral domains with the same field of quotients
K and letx be a semistar operation @ It is not difficult to prove:

x isstable onR =  x, is stable o

(K) If {x, | A € A} is a family of semistar (respectively, star) operationsionthen
Af{*. | A € A} (simply denoted by, ), defined by

EM = m{E*f\ | . € A}, foreachE € F(D) (respectivelyE € F(D)),

is a semistar (respectively, star) operation®@nNote that if at least one of the semistar
operations in the familyx, | . € A} is a star operation o, then Ax, is still a star
operation onD.

Let » be a star operation on an integral domd@irand letF € F(D). We say thatF
is x-invertible if (FF~1)* = D. In particular, wherx = d (respectivelyy, ¢, w) is the
identity star operation (respectively, theoperation, the-operation, thev-operation), we
reobtain the classical notion ofvertibility (respectivelyp-invertibility, ¢-invertibility, w-
invertibility) of a fractional ideal. Recall that:
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Lemma 1.2. Letx, %1, x2 be star operations on an integral domain LetInv(D, x) be the
set of allx-invertible fractional ideals oD andInv(D) (instead ofinv(D, d)) the set of all
invertible fractional ideals oD. Then

(1) D elnv(D,*).

(2) If %1 < %2, then Inv(D, x1) C Inv(D, *2). In particular, Inv(D) C Inv(D,*) C
Inv(D, *,) C Inv(D, %) and solnv(D) C Inv(D, w) C Inv(D, r) C Inv(D, v).

3) 1,J elnv(D, ) ifand only ifIJ € Inv(D, x).

(4) If I e Inv(D, »), thenI~1 e Inv(D, »).

(B5) If I elnv(D, %), thenI® € Inv(D, x).

Let x be a star operation o®. Then F*(D) is a commutative monoid under the
*-multiplication defined by(Z, J) — (IJ)* for eachl, J € F*(D). If x; and* are two
star operations o with x1 < x2, then while F*2(D) C F**(D), F*2(D) is not a sub-
monoid of F*1(D) in general (see [4, page 811]). However, there is a special submonoid
of F*(D) which reverses the inclusion:

Lemma 1.3 (D.F. Anderson [4, Proposition 3.3]let x, x1, xp be star operations on an
integral domainD and suppose that; < x2. LetInv*(D) :={I € Inv(D,x) | I = I*} be
the set of allk-invertiblex-ideals of D and letinv(D) (instead oﬂnvd(D)) be the set of all
invertible fractional ideals o. Then

(1) Inv*(D) is a submonoid oF*(D); moreover, it is an abelian group.

(2) Inv*1(D) is a subgroup ofnv*2(D) (in symbol,Inv*1(D) < Inv*2(D)). In particular,
for each star operatios on D, Inv(D) < Inv*(D) < Inv?(D), Inv(D) < Inv*/ (D) <
Inv! (D) andInv(D) < Inv7(D) < Inv*/ (D) < Inv*(D).

In [22] we considered the problem of “lifting a star operation” with respect to a surjec-
tive ring homomorphism between two integral domains. More precisely:

Lemma 1.4 [22, Corollary 2.4] Let R be an integral domain with field of quotienzs,
M a prime ideal ofR. Let D be the quotient-domai®/M and letg: R — D be the
canonical projection. Assume thafs a star operation orD. For each nonzero fractional
ideal E of R, we set

SR
_ ﬂ{xgp—l((#) ) ‘ xek, E ng},

where, if£EM s the zero ideal oD, then we sep~1((25H4)*) = M. Then? is a star
operation onR.
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In [22] we also considered the problem of “projecting a star operation” with respect
to a surjective homomorphism of integral domains, with particular emphasis on pullback
constructions of a “special” kind. More precisely:

Lemma 1.5 [22, Propositions 2.6, 2.7, 2.9 and Theorem 2.12}¢ : R — D be a surjec-
tive homomorphism of integral domains, iebe a star operation orR and letL be the
quotient field ofD. For each nonzero fractional idedl of D, we set

F*e .— m{y(p(((p_l(y_lF))*) ‘y el, FC yD}.
(1) =, is a star operation orD.

Assume, now, that we are dealing with a pullback diagram of type Then

(2) F* = (¢ (F))*) = (¢~ 1(F))*/M for eachF € F(D).
(3) (**), = for each star operatios on D.
(4) * < (x)? for each star operatios on R.

2. Main results

Lemma 2.1. Assume that we are dealing with a pullback diagram of tyige). Let x
be a star operation orR and letx, be the star operation o defined in Lemmad.5
Then the maje(g, ) (or, simply,a) : Inv(D, x,) — INV(R, %), defined byJ — o XD,
is injective withim(e) = {I € Inv(R, %) | M C I C I®R C T}. Moreover, if we use the
same notatiore = (¢, *) for the restriction of the mag to the subsetnv*s (D), then
a:Inv*e (D) — Inv*(R) is still injective withim(a) ={I e Inv*(R) | M C I C ['R C T}.

Proof. Recall first that the mag — ¢~1(J) establishes a 1-1 correspondence between
F(D) andthe setH € F(R) | M C H C H"®R C T} [19, Corollary 1.9]. LetJ € F(D).
Then by applying Lemma 1.5(2), we hayé& = (¢~1(J))*/M. Therefore,
I=J% & ¢ 'D=(tW)",
I H¥=D & (¢t 1)) =R

By [19, Propositions 1.6 and 1.8(&)}; 2(JJ ) = ¢ 1 (e YUY = o (D) (e 1)~ L.
Therefore,

JIY=D & (o D))=k O

Let Prin(D) be the subgroup of In¥D) of all the nonzero fractional principal ideals
of D. We recall that the quotient group

Inv*(D)
Prin(D)

CI*(D) :=

is calledthe class group of an integral domaih with respect to a star operationon D.
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If »=d is the identity star operation aR, then Cf (D) is denoted by Pid) and it is
calledthe Picard group of an integral domaib.

Lemma 2.2. Let x, x1, x2 be star operations on an integral domaih and suppose that
*1 < x2. ThenCI**(D) is a subgroup ofCI*2(D). In particular, for each star operatior
on D, Pic(D) < CI*(D) < CI*(D), Pic(D) < CI*/ (D) < CI'(D) and Pic(D) < CI*(D) <
CI*/ (D) < CI*(D).

Proof. Easy consequence of Lemma 1.31

Remark 2.3. Note that the previous statement can be strengthened, since Anderson—Cook
(in [3, Theorem 2.18]) proved thdbr any star operationx on an integral domainD,
Inv*(D) = Inv*/ (D), and thusCI*(D) = CI*/ (D).

Lemma 2.4. Assume that we are dealing with a pullback diagram of t§ge&). Then the
following statements are equivalent

(1) the canonical mag:U(T) — k*/U(D), u — @)U (D), is a surjective group homo-
morphism, wheré* is the multiplicative group of the nonzero elements of the field
andi(T) (respectivelyl{ (D)) is the group of units of" (respectivelyD);

(2) for each nonzero elemente k, ¢ ~1(x D) is a fractional principal ideal ofR;

(3) the mapa (g, %) (or, simply,a) : ClI*¢(D) — CI*(R), [J]1 [¢~X())] (= [e(J)],
wherew is defined in Lemm&.1), is a well-defined group homomorphism for any
star operations on R.

Proof. (1) < (2) < (3). See [19, Theorem 2.3 (& (ii) «< (iv)]. The direction (2)= (3)
is a consequence of Lemma 2.10

Remark 2.5. General examples for which the mapi/(T) — k®/U(D) is surjective are
provided in [19, Proposition 2.9].

The next theorem presents a generalization of the result by D.F. Anderson [4, Proposi-
tion 5.5]:

Theorem 2.6. Assume that we are dealing with a pullback diagram of tgfpg If, more-
over, T is quasilocal, then the canonical map= (g, *)):Cl**(D) — CI*(R) is an
isomorphism for any star operationon R.

Proof. We adapt the argument used in the proof of [4, Proposition 5.5]. We first show
that CI(R) = 0 whenD is a proper subfield of. In this caseR is quasilocal, sinc&R
andT have the same prime spectrum [8]. et Inv*(R). AS M = (R : T) is a divisorial

ideal of R, if 1I-1 C M, then(I11~1)* € M* = M, a contradiction. Then, necessarily,
1171 = R; thusI is invertible in the quasilocal domaiR, and hencd is principal. Thus
CI*(R) =0.
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Without loss of generality, we may assume theis a proper subring df with quotient
field k, i.e., that we are dealing with a pullback diagram of typ&"). In this situation,
the mapa : Cl*¢ (D) — CI*(R) is a homomorphism, because whénis quasilocal, the
condition (1) of Lemma 2.4 holds [19, Proposition 2.9].

Let J € Inv* (D) such thaty~=1(J) is principal in R, say ¢~1(J) = xR for some
nonzerax € T. ThenJ =xR/M = ¢(x) D is principal inD. Thereforex is injective.

Conversely, lef € Inv*(R). Then, necessarily,/ =1 ¢ M, and hencd I 1T =T, i.e.,
IT is invertible inT. SinceT = Ry, is quasilocal [19, Corollary 0.5} T = I Ry, is prin-
cipal, sayIT = iRy for somei € I. Setl; := i~11. Then, obviously/; € Inv*(R) and
RC 11 CT=1T. To prove thatp(l1) = I1/M belongs to Ind» (D), it suffices to show
that (11)" C T by Lemma 2.1, becausg 1(¢(I1)) = I1. Suppose that/1)' = T, then
ITY=(R:T)=M.SoR = (II{YH* = (IhM)* C (T M)* = M* = M, a contradiction.
Thus, necessarily, we havé,)” C T. Therefore[l] = i =[n]= [go_l(ll/M)] =
a([I11/M]). Hencex is also surjective and thus we conclude tlaas an isomorphism. O

Corollary 2.7. Assume that we are dealing with a pullback diagram of tfpg If, more-
over,T is quasilocal, then we have the following canonical isomorphisms

Pic(D) = Pic(R), CI'(D) = CI'(R), CI¥(D) Z CI¥(R), CI’(D) Z CI*(R).

Proof. Since(dr)y =dp, (tr)y =1p, (WR)y = wp and(vg), = vp [22, Propositions 3.3,
3.7, Corollaries 3.10 and 2.13], the conclusion follows from the above theorem. The third
isomorphism also follows from the second one by Remark 2c3.

Corollary 2.8. Assume that we are dealing with a pullback diagram of {fpe LetT be
quasilocal. Then

(1) The canonical homomorphisi(g, *?) : CI*(D) — CI*(R) is an isomorphism for
any star operation- on D.
(2) CF(R) = CI**(R) for any star operatiorx on R.

Proof. (1) Setx :=»?. Thenx, = (x*), =« by Lemma 1.5(3). The conclusion follows
immediately from Theorem 2.6.

(2) Recall thats < (x4)? and ((xy)?)y = *, by Lemma 1.5(3) and (4). Then, if we
apply Theorem 2.6 to both the star operatigrg)¥ and+ on R, we have the following
chain of canonical isomorphisms:

C|Cke)? (R) = Cl(G0))g (D) =ClI*(D) = CI*(R).

Since these isomorphisms are canonical arid Bl is a subgroup of ¢’ (R) (Lem-
ma 2.2), we easily conclude that@!’ (R) = CI*(R). O

Remark 2.9. (1) We present an example of a pullback diagram of tfg&) in which T
is quasilocal ane < (x,)? (with CI*(R) = CI*»)* (R) by Corollary 2.8(2)). LetD be an
integral domain in which each nonzero ideal is divisorial (e.g., a Dedekind domain) and let
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k be the quotient field oD. SetT := k[X?, X3]p, whereQ := X?%k[X], andM := QT.
Lety andR be as in((0"). Then((dg),)? = (dp)? = (vp)? = vg [22, Proposition 3.3 and
Corollary 2.13]. Meanwhile, SinCE'® = (R: (R:T))=(R: M) D k[X] butT 2 k[X],
dr #vr = ((dRr)y)?.

(2) We give an example to show that the quasilocal hypothesis is essential in Corol-
lary 2.8(2). LetD be an integral domain in which each nonzero ideal is divisorial and
let k be the quotient field oD. Let B be the polynomial ring[{X;}7°;] and letT be
the subring ofB generated ovek by the productsX; X ; for all pairsi, j > 1. Then it
is known thatT is a Krull domain [24, Example 1.10]. L&¥ := (1 + X3, X2, X3,...)B
and letM := NNT.SincekCT/M CB/N=Zk, T/M=ZkandT =k+ M. Lety and
R be as in(d%). Then((dr)y)? = (dp)? = (vp)? = vg [22, Proposition 3.3 and Corol-
lary 2.13]. LetQ := X1 B N T and note thal1B(Z N) is a prime ideal of height one in
the Krull domainB. SinceB is integral over the integrally closed domdin Q is a prime
ideal of height one ifT'. Note thatQ ¢ M, becauseXf € Q\ N.SinceR=D + M,

T = Rp\(0}, thusQ = ¢qT, whereq := QN R andg £ M. SinceQ is a prime ideal of
height one in the Krull domairng is arr-invertibler;-ideal of T', thusg is atg-invertible
tg-ideal of R by [7, Lemma 3.1 and Theorem 2.2(6)]. Moreover, sigges not finitely
generated as an ideal @f [24, Example 1.10]q is not finitely generated as an ideal of
R and hence it is not invertible. Therefore B9 = CI?%(R) C CI’®(R) C CI'k(R), thus
Cl& (R) £ CI’R (R) = CI(@r)o)* (R).

This example also shows that the quasilocal hypothesis is essential in Corollary 2.8(1):
ChooseD to be a PID. Then GP (D) = Picg(D) = 0, but since Cl(R) C CI'®(R) =
Cl@n)”(R), we have CFP)’ (R) 0.

The next goal is to give a complete description of @) by means of C¥ (D) and
of an “appropriate star class group” @f. For this purpose, recall that, in [22], we also
considered the problem of “extending a star operation” defined on an integral d&nain
some overring’ of R.

We need the following notation. Letbe a star operation on an integral dom&imnd
let T be an overring olR such that(R : T) # 0. Then, for eactt € F(T)(C F(R)), we
set

EWT .= E*N(T:(T:E))=E*NE".

Lemma 2.10. Assume that we are dealing with a pullback diagram of type). Let
t: R — T be the canonical embedding and iebe a star operation omR.

(1) (%) is a star operation off" with (x)7 = %, A vr.

(2) If x is a star operation of finite type oR, then(x)r coincides withx, (restricted to
the fractional ideals of") and it is a star operation of finite type dh.

(3) If %1, x2 are two star operations oR, then

¥ <k = (k1)1 < (27

(4) (xp)7r < (7).
B) (F)r=®r.
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Proof. (1) follows from [22, Examples 1.2 and 1.5(a)] and the observation®hat =
T*NT T =T*NT=T.
For (2), we need the following:

Claim 1. T is atg-ideal of R.

Choose a nonzerp € M, then obviouslyrT is an integralty-ideal of T andrT C
M C R. SinceT is R-flat, rT =rT N R is atg-ideal of R by [19, Proposition 0.7(a)].
Therefore =r~1.rT is atg-ideal of R.

By using Claim 1, we can complete the proof of (2). As a matter of faet,if a star
operation of finite type orR, thenx < tg, thus the magf — E* := E*, for eachFE €
F(T)(C F(R)), defines a star operation dh(sinceT € T* C T'’® =T). In particular,

x, < vr, and so(x)r = x, (beingx, restricted to the fractional ideals @f). Finally, it is
straightforward that i is a star operation of finite type aR, thenx, (= (x)7) is of finite
type onT (cf. also for instance [22, Example 1.2(b)]).

(3) is a straightforward consequence of the definition.

(4) follows from (3) and (2) sincex ) is a star operation of finite type dn.

(5) Note that(¥)7 is a star operation of finite type anid )7 = (%), (by (2)). Moreover,
(¥), is stable, sinc& is stable. Thereforéx ) = (IA)/T and hence we conclude by (3) that

(F)r < (H)7.
Claim 2. For each star operatiogr on R, M = M*/ = M™*.
It follows from the fact that = (R : T') is a divisorial ideal ofR.

Claim 3. Max®*/7(T) coincides with the set of maximal elements{&T | P €
Speé¢’/ (R), PT #T).

SinceT is R-flat [19, Lemma 0.3], each ideal d@f is extended fronR. In particular,
each prime idealp of T is equal to(Q N R)T. Note that MaX/)7 (T) C {PT | P
Speé¢/ (R), PT + T}. Indeed, letQ € Max*/)7 (T') and letP := QN R. ThenP C P*/ C
Q*f = Q™1 =, henceP C P*f CQNR=P.

Now let PT be a maximal elementinthe 8T | P € Spec¢/ (R), PT # T}. Suppose
(PT)*OT =T.Then 1e (PT)*T = (PT)*/, i.e., 1e F* for someF € f(R) such that
F C PT.Letme M\ {0}. Thenm € mF* = (mF)* C (mPT)*/ C (PR)*/ = P*/ = P.
Thus we haved C P. SincePT #T, M ¢ P,and hence/ = P. ThenT = (PT)*/7 =
M®)T = M*r = M (Claim 2), a contradiction. ThereforePT)*/)7 £ T

Let Q' € Max™*/)7 (T such that(PT)*/)7 € Q’. Then by the above argumer@®, N
R € Speé¢/(R). SincePT € Q' =(Q'NR)T, PT = Q' by the maximality ofPT. Thus
we havePT C (PT)*/7 € Q' = PT and soPT € Max®*/)7(T).

Claim 4. Max*n)7 (T) = Max(®1)r (T).
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Let Q € Max(™D/(T) and letP := Q N R. Then P C P*/ C Q*/ = QN7 C
Q™1)r = O (by (4)), and henc® C P*/ € QN R = P. Thus we have Md%“7)/(T) C
{PT | P € Spe¢/(R), PT #T}.

Now let PT be a maximal element in the sgRT | P € Spe¢/ (R), PT # T}. Sup-
pose(PT) ¥ =T, Then 1e (PT) ™17 je., 1le G for someG € f(T) such that
G C PT. We may assume that = JT for someJ € f(R) such that/ C P. Letm €
M\ {0}. Thenm e mG™®7T = (mG)®T = (mJT)®T C (mJT)* = mJT)* C (JR)* =
J* C P*f = P. Thus we haveM C P. Since PT #T, M ¢ P, and henceM = P.
ThenT = (PT)®1)r = M1 5 € M®T C M* = M* = M (Claim 2), a contradiction.
Therefore(PT) 1) £T.

Let Q' € Max{™1)s(T) such tha{ PT)(™7)s € Q’. ThensincePT € Q' = (Q'NR)T
and since we have already proved thaN R € Speé/ (R), we conclude thaPT = Q' by
the maximality of PT. ThusPT C (PT)®7)r € Q' = PT and soPT € Max(™1)s(T).

Claim 5.

(a) For each prime idealP of R suchthatP 2 M, Rp =TRp =Tp7.
(b) For each prime idealP of R such thatP D> M, Rp C Ry = Ty, and moreover,
TRp=Ty.

The statement (a) and the first part of (b) are well known [16, Theorem 1.4 and its proof].
SinceT Rp C Ty for eachP € SpecR) with P 2 M, to prove the equality, it suffices to
show that if a prime idea’ of T is such thatQ’ N R C P, thenQ’ is contained inM.
Suppose not, i.eQ’ Z M,thenQ'NR & M. Choose: € (Q'NR)\M.ThenM +aT =T,
sol=m+at forsomem e M,t€T.Thenl-m=at€caT NRC Q'NR C P. Since
meM C P, le P, acontradiction.

Claim 6. Max*7)7(T) = {PT | P € Max*/ (R), P 2 M} U {M}.

Note that, the conditio® T # T (or, equivalentlyPT € SpecT)) implies thatP » M,
since M is a maximal ideal iril". Moreover, by Claim 2M belongs to Spe¢ (R), thus
MT = M belongs, in any case, to M&x7 (T') by Claim 3.

Recall that, by the properties of the prime ideals in a pullback of type), it follows
that the canonical map Sp@t — SpedR) is an order preserving embedding, an@ik
SpecT) andQ N R C P for someP € SpecR) with P 2 M, thenQ € M (see also the
proof of Claim 5). By the previous ordering properties and Claim 3, we easily conclude
that{PT | P € Max*/ (R), P 2 M} U {M} = Max®*/7 (T).

Claim 7. ()7 = (¥)r.

Note that, by Claim 4,

e~

1 = ((97) ;= (97

Now we want to show tha(gf\); =(¥)r.
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SetP;’ := (P e Spe¢/(R) | P 2 M} andP,’ := {P € Spe¢/(R) | P 2 M}. If we
let P,’ be the set of maximal elements in the $&t', then{PT | P € P’} = {Q €
Max™*/7(T) | Q # M} by Claim 6.

Let E € F(T), then by using Claims 5 and 6, we have

E®T = E® = E¥ = (ET)* = "|{ETRp | P € Spe¢/ (R)}

=(N{ETRe 1 PPy }) N (N(ETRe | PP} })
= (ﬂ{ETRP |Pe P{‘,‘f}) NETy
= ﬂ{ETPT | P eMax*/(R), P2 M}NETy

= ﬂ{ETQ | 0 € Max*17(T)}

—E®T. O

Remark 2.11. (1) We were not able to prove or disprove the equality in the statement (4) of
Lemma 2.10. Howevefx )7 = ((x)7) r for the case: = vg, which is the most important
star operation of nonfinite type. More precisefythe situation of Lemma.10 we have

(tr)r = ((R)f); = ((UR)T)f.

Since (tr)7 < ((vr)7)y and both terms are star operations of finite type (Lem-
ma 2.10(2)), it suffices to show that “®)7 > H®rR)T for all nonzero finitely generated
integral idealsH of T. Let H be a nonzero finitely generated integral idealfofThen
H = IT for some finitely generated idealof R.

If 1Ty is not principal, thenl® = ['RT by [25, Proposition 2.7(1b)]. Therefore,
H@ROT < HOR: — (IT)'R = (IVRT)'R = [k = ['R C H'R = HR): — FUrR)T

Now assume thakTy, is principal. ThenH"T C (HTy)""™ = (ITy)"™ = ITy,. Let
R(M) be the CPl-extension at with respect taV, i.e., R(M) is defined by the following
pullback diagram [11]:

RM):=¢ (D) ———= D

o,

Ty k=Ty/MTy.

Then by [19, Lemma 1.3k = R(M)NT. Note firstthal R(M) = Ty, becausd R(M) =
(UTR(M)y | N € Max(R(M))} = ({T Ry | N € Max(R) such thatv > M} = Ty by
Claim 5(b) in the proof of Lemma 2.10. Now by [1, Theorem 2(4]{®7 = H'r D
(HR(M))'™Ro) N (HT)'T = (ITR(M))'"Ro N HYT = (ITy)'RM N HYT D [Ty N HYT =
HYT D HWR)T

(2) As another special case, we have the following positive result.
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Consider a pullback diagram of typ@l™), let +' be a star operation orD and *”
a star operation onT'. Seto:=+'? A x”. We know thab is a star operation onR [22,
Corollary 2.5]. If (**)7) r = (¥'*) £)7 (e.g., this hypothesis is satisfied in each one of the
following cases(a) ' = vp, (b) (*/f)‘f’ is a star operation of finite type oR, (c) T is a
Prafer domaif, then(e r)r = ((0)7) #.

Claim 1. If 1 and*, are two semistar operations on an integral dom&inthen
1 A*2) =) A (k2.
This is an easy consequence of the fact thgj, ‘distributes oven”.

Claim 2. Let:: R — T be an embedding of an integral domainin one of its overrings
T and letx be a semistar operation ofi. Then, inR, (*) y = (x¢)", and inT, » = (),
(Examplel.1(e3))

LetE € F(R) and letG € f(T) be contained itET. ThenG := (x1t1, X212, . .., Xnty)T
forsomen > 1,{x1,x2,...,x,} € E,and{r1,t2,...,1,} CT.ThusG C HT, whereH :=
(x1,x2,...,x,)R € f(R) (andH C E). Therefore

E® =| J{F* | Fe f(R). F CE}
=J{(FD)" | Fe f(R), F S E}
= J{G*"1Gef(), GCET}

=(ET)* = E*/".

Claim 3. Let:: R — T be an embedding of an integral domaknin one of its overrings
T and letx1 and 2 be two semistar operations dt Then(xy A x2), = (x1), A (*2), .

This is an obvious consequence of the definitions.

Claim 4. Let:: R — T be an embedding of an integral domaknin one of its overrings
T and letx be a semistar operation oR. Then(x ), is a semistar operation of finite type
onT.

For eachE € F(T), we have
ECD = =| J{F*| F e f(R), F C E}
=U{UlF 1 Fesw). F<G)iGe (). G<E)
=J{6* 1Ge f(T). GSE}

= J{6¢*|Ge f(T). G<E}
— EGoIy



M. Fontana, M.H. Park / Journal of Algebra 292 (2005) 516-539 531

Claim 5. In a pullback diagram of type[]), let » be a star operation onD. Then
(*?), = (vg), (when restricted taF (7)), and hencgx¥)r = (vg)r. Moreover, in a pull-
back diagram of typ€™), ((**)7) f = (1r)7 by (2).

Let I be a nonzero integral ideal @f. Note that
xe(R:I) = xIT=xICR = xIC(R:T)=M (& I<x M)

Therefore we have

769 — ' = ﬂ{x_l(p_l((XIj_‘;M) ) ’x e(R:1), x ?50}

=(x*M|xe®:I), x#0} =1 = 1%,

Note that?**) = TR\ = TVr thus(x¥), (When restricted td¥ (7)) is a star operation
onT ifand only if T = TV%.

Now we use the previous claims to prove the statement. By applying Claims 2, 3, and 5,
we have
©@)r =0 Avp = (7 /\*/”)[ AVT
= (#"J)[ A (*”‘)l Avp = (*W)[ A" Avr
= (*"*), A*" = (vg), A¥" orequivalently

= (*/fﬂ)T A = (wrR)T A *.
Therefore, by Claim 1 and (1), we have
((<>)T)f = ((*"p)L)f Ap = ((*"")T)f A= ((UR)T)f AXp = (tR)T N+

On the other hand, by Lemma 2.10(2), Claims 1, 2 and 3, we have

©enr == ((*") ) A (")), = () ), A (7)),
= ((*/(p)f)t Ay = ((*/(p)f)T AR

Itis obvious now that, i{(*'*)7) f = (**) p)7, then(e p)r = (o)1) 5.

Finally, we check the parenthetical statement.

Assume thak’ = vp, then we know thatvp)? = vg [22, Corollary 2.13]. Therefore
(¥*)p)r = (tr)T and so((*'?) s)r coincides with(*'*)7) r = ((vg)7) s by ().

Assume that(x'.)? is a star operation of finite type. Note that, from the fact that
()¢ < *'¥ and from the assumption, it follows that )¢ < (*'¥) ;. Therefore, by [22,
Proposition 2.9, Theorem 2.12 and Proposition 3.6(b)], we have

(), < () ),)" = (7)) )" = (+5)",
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thus(*’f)‘ﬂ = (%) ¢. In this situation, by Claim 5, we have

(1), < ) = ((4))7), = () ), < ().

Therefore,

()= ((*))"), = ((**),), = @) = ((wr):) ;

and so, in particular(rg)r = ((*/f)‘P)T = (#'%),)r = (vg)r . On the other hand, by
Claim 5, we know that(*'*)7) r = ((vr)7) f = (tR)T -

Assume thatl" a Prifer domain, then clearly has a unique star operation of finite
type, sincedr = tr. In this situation, obviouslyly = ((*"")f)T = (tg)7 = t7, and from
Claim 5, we have(*'*)7) r = (tg)7-

(3) Under the assumptions of Lemma 2.10, as a consequence of Claims 3 and 6 in
its proof, we have that M&%)7 (T) coincides with the set of the maximal elements
of {PT € SpedT) | P € Speét(R)} (which is equal to the setPT | P € Max’®(R),

P2 M}U{M}).

We can give a little different proof of this result under the additional assumption that the
map@ :U(T) — k*/U(D) is surjective. LetQ € Max’®7(T) and letP := Q N R. Then
Q= PT andQ = QrRT = Q'r_ThereforeP C P’*r C Q'*NR= QN R =P and so
Max®)T(T) C {PT € SpeT) | P € Speék(R)}.

Conversely, letQ := PT be a maximal element of the s€PT € SpecT) | P €
Speér (R)}. Assume thatP = M, then sinceM = MT is a maximal ideal ofl’ and
M = M'®, M is also a(tg)r-ideal of T, thus M = MT € Max®®T7(T). Assume that
P # M. ThenP £ M by the maximality ofQ = PT. Now, if S :=U(T) N R, then by
[7, Theorem 2.2(5) and Lemma 3.1] we haw&Tl)'T = (PRg)'T = P'RRg= PRg = PT.
SinceQ = PT € Spe& (T), Q € Sped®7 (T).

Lemma 2.12. Assume that we are dealing with a pullback diagram of tfp&). Letx be
a star operation of finite type oR and let(x)7 be the star operation offl defined just
before Lemma.10

(1) If H e Inv*(R), thenHT € Inv®7(T).

(2) The canonical mag (g, ) (or, simply,8) : Inv¥(R) — Inv®7(T), H — HT, is a
group-homomaorphism.

(3) The mapg, defined in(2), induces a group-homomorphisfiy, ) (or, simply,B):
CI*(R) — CI®1(T), [H]+— [HT].

Proof. (1) Note thatifH is ax-invertiblex-ideal of R andx = x ¢, thenH is atz-invertible
tg-ideal of R (Lemma 1.3(2)). MoreovelT is a flat overring ofR [19, Lemma 0.3],
and henceHT is a tr-invertible rr-ideal of T [19, Proposition 0.7(b)]. We know by
Lemma 2.10(2) that«)r is a star operation of finite-type dh, so (x)r < fr, and hence
HT is a(x)r-ideal of T. Now, we show thaH T is also(x)7-invertible:
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(HTHD) ™" = (HT(HT) ™) N (HT(HT) ™" = (HT(HT) ™) N T
S(HH'T)' NnT=((HH™)'T)" nT
—(RT*NT=T*NT =T,

thus 1e (HT(HT) " H)®7 and sol' = (HT(HT) H®™r,
(2) is an obvious consequence of (1) and (3) follows from (2).

Theorem 2.13. Assume that we are dealing with a pullback diagram of t§p&). Suppose
that the mapp :U(T) — k*/U(D) is surjective and that is a star operation of finite type
onR. Theng := B(¢, %) : CI*(R) — CI™7(T) is surjective.

Proof. Let J be an integral(x)7-invertible (x)r-ideal of 7. ThenJ = (IT)™7 = (IT)"
for some finitely generated integral ideklof R ([4, Propositions 3.1 and 3.2] and [19,
Lemma 0.3]).

Claim 1. Without loss of generality, we may assume that M .

Suppose that/~1 € M. Then

I HOT = ()7 ((1TyP1) YT Z (GTyaT) ) PT = (11721) W7
CMT)PT = T = M,

which contradicts thal is (x)7-invertible. Thus//~1 ¢ M and so we can choosec 71
such thatc/ ¢ M. Setl’ := xI andJ’ :=xJ. ThenI’ ¢ M andJ’ = (I'T)™7. Since the
classegJ] and[J'] in CI*7(T) are the same, we can replatdy J’ and] by I’.

SetS:=U(T)N R (as in Remark 2.11) an&/ := {x € R | ¢(x) € U(D)}. Then
T =RsandS-N =R\ M [7, Lemma 3.1]. Since we may assume tliag M, by
[7, Theorem 2.2(2)] we havé’® = ((S1)(N1))'® for some nonempty finite subsess
of S and N1 of N. Again by [7, Theorem 2.2]J = (IT)"7 = I'*RT = ((S1)(N1))'RT =
(SHNDT)'T = (N)T)'T = (N1)'RT, and hence/ J 1 = (N)'RT)((NDT)7) 1 =
(ND*ET)(NDT) = (ND'R(N) T

Claim 2. If « =%, thenp is surjective.

Let P’ € Spec¢(R) such thatM ¢ P’. Then there exists a unique prime idgal of
T such thatQ’ N R = P’ and Rpr = Ty [16, Theorem 1.4, point (c) of the proof].
SinceT = (JJ H®r = (JJ Yy = {JJIRp | P e Max*(R)} =({JJ Rp | P €
Spe¢(R)} S JJRp =TI 1Ty, 7771 € Q', and hencéN1)'*(N1)"1 & P'.

Now let P” € Speé¢(R) such thatM € P”. Then P N N = 4, because ifx ¢
P” N N, thengp(x) € P”/M € SpecD), which contradicts thap(x) € U(D). Therefore
(N)'®(N)™tZ P

Thus sincgN1)'’®(N1)~1 ¢ P forall P € Speé(R), (N1)'’®(N1)~1* = R, i.e.,(N1)'*
is a x-invertible x-ideal of R. Therefore, passing to the class¢g] = [(N1)'*T] =
B([(N1)'R]).
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Claim 3. CI®7(T) = CI®7(T) (it does hold without the conditiof :2/(T) — k® /U (D)
is surjective)

By [3, Theorem 2.18] and Lemma 2.10(5).¢1 (T) = CI®T(T) = CI®7(T).

Finally, since CI(R) = CIF(R) by [3, Theorem 2.18]8 (¢, %) = B(¢, %) and hence the
conclusion follows. O

From Claim 3 in the proof of Theorem 2.13 we deduce immediately:

Corollary 2.14. Assume that we are dealing with a pullback diagram of t§fge&). Then
Clur)T (T) = Clwr)T (7).

In order to give a description of GIR) by means of C¥ (D) and CI¥7(T), we need
the following result from [19]:

Lemma 2.15 [19, Lemma 2.2 and the subsequent consideratiohsjume that we are
dealing with a pullback diagram of typ@&™).

(1) For eachH € Inv'(R) there exist a nonzero elementn the quotient field ot and
H' elInv!(R),withH' ¢ M, H C R,andH =zH'.

(2) The mapy : CI'"®(R) — CI'®(D), [H] +— [(¢(H"))*?], is a well-defined group-homo-
morphism(whereH’ is chosen as ili1)).

Corollary 2.16. Assume that we are dealing with a pullback diagram of tgfpe). Let
y : CI'’®(R) — CI'’>(D) be as in Lemma&.15and letx be a star operation of finite type
on R. Then, by restriction t&€I*(R)(C CI'®(R)), ¥ defines a group-homomorphigi=:

y (¢, x):CI*(R) — ClI**(D).

Proof. We want to show thag (CI*(R)) € CI*¢(D) < CI'>(D). First, recalling that, <
(tr)y = tp [22, Proposition 3.7], we have €l(D) < CI’>(D). Now let H be ax-invertible
x-ideal of R such thatH € R and H € M. Chooser € H \ M. ThenrH 1 C R and
rH=1 ¢ M. By using the fact thaip(r)D is a divisorial ideal ofD and [22, Proposi-
tion 2.7], we have

9(r)D = (p(r)D)* = (p(rR))"™ = (p(r(HH™Y)"))™
3 <r(HH—1)* + M)*w _ (rf(HH™Y* + M)*

M M

_(rHH '+ M)*  (rHH 4+ M\™
B M - M

<H+MrH1+M

M M )*w = (p(Hp(rH ™)™
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Hencep(H) is %,-invertible, and sol¢(H))"? is a x,-invertible x,-ideal of D (Lem-
ma 1.2(5)). Thereforg induces a homomorphisg(p, %) : CI*(R) — CI**(D). O

Theorem 2.17. Assume that we are dealing with a pullback diagram of t§p&). Suppose
that the mapp : U(T) — k®/U(D) is surjective and that is a star operation of finite type
on R. Then the sequence

0—> Cl*(D) -% CI*(R) 2> CI®1(T) —> 0
is split exact.

Proof. Itis obvious thaix is injective, because if € Inv* (D) such thae (L) = ¢~ 1(J)

is pricipal inR, sayp~1(J) = xR for somex € T, thenJ = ¢(x) D is also principal inD.
The surjectivity of8 follows from Theorem 2.13. To see that (@ = Ker(B), let [H] €
Im(a). We can assume thal = ¢~1(J) for someJ e Inv*¢ (D) and soM C H C T.
Hence, in particularHT = T, becauseV is a maximal ideal ofl’, and thusg([H]) =
[HT] = [T]. Conversely, le{H] € Ker(8). Without loss of generality, we can assume
thatH € Inv*(R) andHT = T. Then by [19, Proposition 1.1] and [4, Proposition 3.1(a)],
M C H = H"®? C T. Moreover, sincd’ is not ax-invertible ¢-)ideal of R, H'®* C T. By
Lemma2.1H = ¢~ 1(J) for somesx-invertible x,-ideal J of D, henceH e Im(a). Thus
the sequence is exact.

Lastly, by the definitions otk = a(¢,*) andy = y (¢, *) (Lemma 2.4 and Corol-
lary 2.16), we immediately obtain th@to & : Cl*¢ (D) — CI*(R) — CI*¢(D) is such that
(1= 7{e YD) = (@@ X)) 1= [J"r] =[], i.e., it is the identity map. There-
fore the above exact sequence splitsi

Corollary 2.18. Assume that we are dealing with a pullback diagram of tgpe) and
that the mapp :U(T) — k®/U(D) is surjective. Then the sequence

0—> CI?(D) -% CIR(R) -2 CltmT (1Y — 0
is split exact.
Proof. Recall that(rr), =tp [22, Proposition 3.7]. Then apply Theorem 2.173

Note that, when we are dealing with a pullback diagram of type), (tg)r < tr
(Lemma 2.10(2)) and so &7 (T) is a subgroup of C1(T). In general, it can happen
that (tg)7 < fr (for instance, whenV is not arr-ideal). We will show, moreover, that
CI")7 (T can be a proper subgroup ofQIT’) (Remark 2.20).

Corollary 2.19. Under the same notation and hypotheses of Coroladg if we as-
sume thafl" is quasilocal, therCI“®)7 (T') = 0. (In particular, we reobtain thaCl’> (D) =
CI'®(R), see Corollan2.7.)
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Proof. Let J be a (tg)r-invertible (tg)r-ideal of T. Then J = (IT)®T for some
nonzero finitely generated fractional idehlof R [23, Proposition 2.6]. By the same
argument as in Claim 1 of the proof of Theorem 2.13, we have! ¢ M. Therefore
JITYounar)t=11"1T =11"1Ryy = Ry =T, and soJ is invertible inT. Since
T is quasilocal, we conclude thdtis principal. Therefore ¢®7(T) =0. O

Remark 2.20. Note that for a pullback diagram of typ@l™) with T quasilocal, it is
quite common that @I(T) is nonzero, but Ig8) = 0 (Corollaries 2.18 and 2.19). An
explicit example can be obtained as follows. let= Q[X?, XY, Y?]y2 xy.y2), M :=
(X2, XY, Y®T, thusT = Q + M, and setR := Z + M. Then, clearlyl = Ry and M

is arg-prime of R. In this situation, the mag : CI'’*(R) — CI'7 (T') = CI''u (Ry,) is the
zero map, while CT (T) is nonzero [9, Proposition 2.3 and Example 3.4]. Therefore in this
case, by Corollary 2.19, €7 (T) = CI'T (T).

From Theorem 2.17 applied to= dr, we reobtain [19, Theorem 2.5(c)], sin@&), =
dp [22, Proposition 3.3] an@dg)r = dr. More precisely,

Coroallary 2.21. Assume that we are dealing with a pullback diagram of tfge). Sup-
pose that the ma@ :U/(T) — k* /U (D) is surjective. ThelRic(R) = Pic(D) & Pic(T).

Remark 2.22. Note that, in [19, Remark 2.7], it was proved more generally thasume
that we are dealing with a pullback diagram of tyig). The mapp :U(T) — k*/U(D)

is surjective if and only iPic(R) = Pic(D) @ Pic(T). A similar result was reobtained in
[7, Theorem 3.9].

The next goal is to study the behavior of the property of being a Prifer star multipli-
cation domain in a pullback diagram of ty@&). Recall that, given a star operatieron
an integral domaink, we say thatr is a P<MD if for each nonzero finitely generated
fractional ideall of R, (11-1)*/ = R (cf. for instance [18,28,30,31,35]).

Theorem 2.23. Consider a pullback diagram of typ&l) and letx be a star operation
on R. ThenR is a PxMD if and only ifk is the quotient field oD, D is a Px,MD, T is a
P(x)7MD, and T, is a valuation domain.

Proof. If R isa PMD, thenR is a UMD, and hencé is the quotient field o> and Ty,
is a valuation domain by [19, Theorem 4.1]. It is easy to see th&tig a PMD, then
D is a Px,MD andT is a Rx)7MD. Actually, to prove thatl" is a R*)7MD, let J be a
nonzero finitely generated ideal 6f SinceT is R-flat, J = I T for some finitely generated
ideal 7 of R. Then by Lemma 2.10(4)J J~1)(®1)s o (JJ-Hen)T = (1711607 =
17Ty =T YTy s =T* =T.

Conversely, assume thdt is the quotient field ofD, D is a P,MD, T is a
P(x)rMD, and Ty, is a valuation domain. Sinc® and T are RMDs, R is a RPMD
by [19, Theorem 4.1]. Letl be a nonzero finitely generated fractional ideal ®f
Then (1771)® = R, and hencel1~1 ¢ M. To show that/ is *s-invertible, we may
assume that’ is a nonzero finitely generated integral ideal Bfsuch that/ ¢ M.
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Since D is a Pe,MD, (¢(De(I)"H)*)7 = D. Since (x,) s = (¥f), [22, Proposi-
tion 3.6, (¢(De() " H*e = D, i.e., (I + M)(I + M)~1)*/ = R, which implies that
(I171 4+ M)*/ = R. Now suppose//~1 C P for someP € Max*/(R). ThenM Z P,

because otherwis® = (I1-1 + M)*s € P*/ = P. Note thatPT € Max(®1)7(T) (by

Claims 4 and 6 in the proof of Lemma 2.10). But siricés R-flat andT is a Rx)rMD,

ATUT) " HD)r = (11717)®1)f = T, which contradicts that /=17 < PT. There-
fore /1=l ¢ P forall P € Max*/ (R), i.e.,(I1"1)*/ = R. ThusR isa BxMD. O

Corollary 2.24. Consider a pullback diagram of typ€l). R is a PvgMD (= PtgMD =
PwrMD) if and only if k is the quotient field ofD, D is a PvpMD (= PtpMD =
PwpMD), T isa P(vg)rMD (= P(tg)7MD = P(wg)rMD), and Ty, is a valuation do-
main.

Proof. We can use Theorem 2.23 and the following facts:

(1) for any star operatiom on an integral domai, A is a P<MD if and only if A is a
PxMD [18, Theorem 3.1];

(2) (vr)p =vp [22, Corollary 2.13],

(8) whenk is the quotient field ofD, (vr)7 = (VR)r = (wr)T < (tR)T = (VR) f)T <
((vp)1) r < (vp)7 (LEmMmMa 2.10). O

Remark 2.25. Given a star operatior on an integral domaiw, recall thatr is a P<MD

if and only if R is a RvkMD and% = rx (or, equivalentlyx ; = rg) [18, Proposition 3.4].
Therefore (using Lemma 2.10(5) and [22, Proposition 3.9]) the previous theorem can be
restated as followsConsider a pullback diagram of tygél) and letx be a star operation

onR. Then¥ =z and R is a PugkMD if and only ifk is the quotient field oD, %, = 1p,

(¥*)r =tr, DisaPvpMD, T is a PvyMD, andT), is a valuation domain.

Lemma 2.26. Let R be a Py MD and letT be a flat overring of® such that(R : T') # 0.
Then(wg)r = (tR)r =t1 = wr.

Proof. SinceT is aflat overring ofR, T is a subintersection gt and hencd is aPvyMD
[31, Theorem 3.11]. Recalling the fact that = ¢4 ona R4MD A ([39, Theorem 2.4] or
[18, Proposition 3.4]), it suffices to show thag)r =t7.

Note first thatT is a wg-ideal of R and hence ag-ideal of R. Let x € T¥®. Then
xI C T for some finitely generated idealof R such that/’® = R [21, Remark 2.8]. By
flathness(IT)'T = (IVRT)'T =T,and thust € T.

Then (tg)7 < t7 and both are star operations @hof finite type. LetJ be a non-
zero finitely generated integral ideal @f. ThenJ = IT for some finitely generated
ideal I of R. By [15, Proposition 2.17]JYRT is a vr-ideal of T, and henceJ'T =
(I'RTYIT = (JVRT)'T = [RT C (IRT)'R = (I'RT )R = (JT)'*r = Jir = JURT Thus we
haVG([R)T =tr. O
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Corollary 2.27. Consider a pullback diagram of tyg&l). ThenR is a PugMD if and only
if k is the quotient field oD, D is a PupMD, T is a PurMD, and Ty, is a valuation
domain. Moreover, in this situatiotiwg)r = (tfg)r = tr = wr.

Proof. The first statementis[19, Theorem 4.1] and the “moreover” statement follows from
Lemma 2.26. O
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