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Abstract


For the domainR arising from the constructionT , M, D, we relate the star class groups ofR to
those ofT andD. More precisely, letT be an integral domain,M a nonzero maximal ideal ofT ,
D a proper subring ofk := T/M, ϕ :T → k the natural projection, and letR = ϕ−1(D). For each
star operation∗ on R, we define the star operation∗ϕ on D, i.e., the “projection” of∗ underϕ,
and the star operation(∗)T on T , i.e., the “extension” of∗ to T . Then we show that, under a mi
hypothesis on the group of units ofT , if ∗ is a star operation of finite type, then the sequenc
canonical homomorphisms 0→ Cl∗ϕ (D) → Cl∗(R) → Cl(∗)T (T ) → 0 is split exact. In particular
when∗ = tR , we deduce that the sequence 0→ CltD (D)→CltR (R)→Cl(tR)T (T ) → 0 is split exact.
The relation between(tR)T andtT (and between Cl(tR)T (T ) and CltT (T )) is also investigated.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction and background results


The interest for constructing a general theory of the class group, extending the
of the divisor class group of a Krull domain, was implicitly present already in the w
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by Claborn and Fossum (cf. Fossum’s book [24]). One of the main objectives for thi
of extension was to establish a general functorial theory by exploiting class-group
techniques in a more general setting than that of Krull domains. An approach to this
lem, using star operations, was initiated by D.F. Anderson in 1988 [4], where he s
in a systematic way the star class group Cl�(R) of an integral domainR, equipped with
a star operation�. The key point of this construction is that, when� is the identity oper-
ationd , Cld(R) coincides with the Picard group Pic(R) (which is, in fact, the “classical
class group of the nonzero fractional ideals whenR is a Dedekind domain); when� is the
v-operation on a Krull domain, Clv(R) coincides with the “usual” divisor class group ofR;
when� is the t-operation, Clt (R), which is defined on arbitrary domainR, is commonly
considered the best generalization of the “usual” divisor class group to the general
(cf. the pioneering work in this area by Bouvier and Zafrullah [12,13,42] and the r
excellent survey paper by D.F. Anderson [5]).


Since various divisibility properties are often reflected in group-theoretic propert
the class groups, a particular interest was given in recent years to the computation
t-class group where the functorial properties can be applied in a very effective wa
instance, cf. [2,26,36]).


In case of the rings arising from pullback construction of various type (cf. [14,16])
t-class group was extensively studied by several authors (cf. for instance [6,7,9,10,1


It is well known that, even in the case of an embeddingA ⊂ B of Krull domains, it is not
possible in general to define a canonical homomorphism between the divisor class
Cl(A) → Cl(B) (the condition (PDE), i.e., “pas d’éclatement”, was introduced in 1
by Samuel [40] in order to characterize the existence of this canonical homomorp
In case of star class groups, the technical difficulties for establishing functorial prop
were surmounted by D.F. Anderson by introducing the notion of compatibility betw
star operations. More precisely, letA be a subdomain of an integral domainB and let
�A (respectively,�B ) be a star operation onA (respectively, onB), then�A and�B are
compatible if(IB)�B = (I �AB)�B for each nonzero fractional idealI of A. In this situation,
the extension mapI �→ IB induces a natural group homomorphism Cl�A(A) → Cl�B (B).
Unfortunately, the compatibility condition is a sufficient but not a necessary conditio
the existence of the natural homomorphism Cl�A(A) → Cl�B (B) [4, page 823]. Moreover
the identity operationdA on A is compatible with any star operation onB while it is very
common that thet-operationtA (respectively, thev-operationvA) on A is not compatible
with the t-operationtB (respectively, thev-operationvB ) onB.


In the present paper we mainly consider the following situation:


(�) T represents an integral domain,M a nonzero maximal ideal ofT , k the residue
field T/M , D a proper subring ofk and ϕ :T → k the canonical projection. Le
R := ϕ−1(D) =: T ×k D be the integral domain arising from the following pullba
of canonical homomorphisms:


R D


T
ϕ


k = T/M.
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It is easy to see thatM = (R : T ) is the conductor of the embeddingι :R ↪→ T . In this
situation, we will say that we are dealing witha pullback of type(�) and we will still
denote byϕ the restrictionϕ|R , giving rise to a canonical surjective homomorphism fr
R = ϕ−1(D) ontoD.


Let L denote the field of quotients ofD (and hence,L ⊆ k). If we assume, moreove
that L = k, then we will say that we are dealing witha pullback of type(�+).


The main goal of this work is to establish functorial relations among the star class g
of R, D, andT , by using the theory that we have recently developed in [22] concer
the “lifting” and the “projection” of a star operation under a surjective homomorphis
integral domains, the “extension” of a star operation to its overrings and the “gluein
star operations in pullback diagrams of a rather general type. One of the principal
proven in this paper is that, given a pullback diagram of type(�+) and a star operation∗ of
finite type onR, if ∗ϕ denotes the “projection” of∗ ontoD (respectively,(∗)T denotes the
“extension” of∗ to T ), under a mild hypothesis on the group of units ofT , the sequenc
of canonical homomorphisms


0 −→ Cl∗ϕ (D)
α−→ Cl∗(R)


β−→ Cl(∗)T (T ) −→ 0


is split exact (Theorem 2.17). In particular, when∗ = tR , we deduce that the sequence


0−→ CltD (D)
α−→ CltR (R)


β−→ Cl(tR)T (T ) −→ 0


is split exact. The relation between(tR)T andtT (and between Cl(tR)T (T ) and CltT (T )) is
also investigated. Among the applications of the main results of this paper, a charac
tion of whenR is a Prüfer∗-multiplication domain is given.


Let D be an integral domain with quotient fieldL. Let F (D) denote the set of a
nonzeroD-submodules ofL and letF (D) be the set of all nonzero fractional ideals ofD,
i.e., allE ∈ F (D) such that there exists a nonzerod ∈ D with dE ⊆ D. Let f (D) be the
set of all nonzero finitely generatedD-submodules ofL. Then, obviouslyf (D) ⊆ F (D) ⊆
F (D).


For each pair of fractional idealsE,F of D, we denote as usual by(E :L F) the frac-
tional ideal ofD given by{y ∈ L | yF ⊆ E}; in particular, for each fractional idealI of D,
we setI−1 := (D :L I).


We recall that a mapping� :F (D) → F (D), E �→ E�, is called asemistar operation on
D if the following properties hold for all 0�= x ∈ L, andE,F ∈ F (D):


(�1) (xE)� = xE�;
(�2) E ⊆ F ⇒ E� ⊆ F�;
(�3) E ⊆ E� andE� = (E�)� =: E��


(cf. for instance [17,33,34,37,38]).
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Example 1.1. (a) If � is a semistar operation onD such thatD� = D, then the map (stil
denoted by)� :F (D) → F (D), E �→ E�, is called astar operation onD. Recall [27,
(32.1)] that a star operation� satisfies the properties(�2), (�3) for all E,F ∈ F (D); more-
over, for each 0�= x ∈ L and for eachE ∈ F (D), a star operation� satisfies the following
“stronger” version of(�1) (when restricted toF (D)):


(��1) (xD)� = xD, (xE)� = xE�.


Conversely, if� :F (D) → F (D), E �→ E�, is a star operation onD (i.e., if � satisfies
the properties(��1), (�2) and(�3)), then� can be extended trivially to a semistar operat
on D, denoted by�e (or, sometimes, just by�), by settingE�e := L, whenE ∈ F (D) \
F (D), andE�e := E�, whenE ∈ F (D).


A semistar operation� on D such thatD � D� is called aproper semistar operatio
onD.


(b) Theidentity semistar operationdD onD (simply denoted byd) is a trivial semistar
(in fact, star) operation onD defined byEdD := E for eachE ∈ F (D) (dD , when restricted
to F (D), is a star operation onD).


(c) For eachE ∈ F (D), setE�f := ⋃{F� | F ⊆ E, F ∈ f (D)}. Then�f is also a
semistar operation onD, which is calledthe semistar operation of finite type associa
to �. Obviously,F� = F�f for eachF ∈ f (D); moreover, if� is a star operation, then�f


is also a star operation. If� = �f , then the semistar (respectively, the star) operation� is
called asemistar(respectively,star) operation of finite type.


Note that�f � �, i.e., E�f ⊆ E� for eachE ∈ F (D). Thus, in particular, ifE = E�,
thenE = E


�
f . Note also that�f = (�f )f .


More generally, if�1 and�2 are two semistar operations onD, we say that�1 � �2 if
E�1 ⊆ E�2 for eachE ∈ F (D). In this situation, it is easy to see that(E�1)�2 = E�2 =
(E�2)�1.


There are several examples of nontrivial semistar or star operations of finite typ
best known is probably thet-operation. Indeed, we start from thevD star operationon an
integral domainD (simply denoted byv), which is defined by


EvD := (
E−1)−1 = (


D :L (D :L E)
)


for anyE ∈ F (D), and we settD := (vD)f (or, simply,t = vf ).
(d) Let ι :R ↪→ T be an embedding of integral domains with the same field of quot


K and let∗ be a semistar operation onR. Define∗ι :F (T ) → F (T ) by setting


E∗ι := E∗ for eachE ∈ F (T )
(⊆ F (R)


)
.


Then, it is easy to verify (cf. also [20, Proposition 2.8]) that:


(d1) If ι is not the identity map, then∗ι is a semistar, possibly nonstar, operation onT ,
even if∗ is a star operation onR (obviously, ifι is the identity map, then∗ι = ∗ and
thus this phenomenon does not occur).
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Note that when∗ is a star operation onR and(R :K T ) = (0), a fractional idealE of T


is not a fractional ideal ofR, hence∗ι is not necessarily defined as a star operation onT .


(d2) If ∗ is of finite type onR, then∗ι is also of finite type onT .
(d3) If T = R∗, then∗ι defines a star operation onT .


(e) Let� be a semistar operation on the overringT of R. Define�ι :F (R) → F (R) by
setting


E�ι := (ET )� for eachE ∈ F (R).


Then, we know [20, Proposition 2.9, Corollary 2.10]:


(e1) �ι is a semistar operation onR.
(e2) If � = dT , then(dT )ι is a semistar operation of finite type onR, which is also de-


noted by�{T } (i.e., it is the semistar operation onR defined byE�{T } := ET for each
E ∈ F (R)).


(e3) For each semistar operation� onT , (�ι)ι = �.


(f) Let ∆ be a set of prime ideals of an integral domainD with quotient fieldL. The
mappingE �→ E�∆ , whereE�∆ := ⋂{EDP | P ∈ ∆} for eachE ∈ F (D), defines a semi
star operation onD. Note that�∆ (restricted to the nonzero fractional ideals ofD) is a
star operation onD if and only if D = ⋂{DP | P ∈ ∆}. Moreover ([17, Lemma 4.1] o
[1, Theorem 1]):


(f1) For eachE ∈ F (D) and for eachP ∈ ∆, EDP = E�∆DP .
(f2) The semistar operation�∆ is stable(with respect to the finite intersections), i.e., for


all E,F ∈ F (D), we have(E ∩ F)�∆ = E�∆ ∩ F�∆ .


A semistar operation� on D is calledspectralif there exists a subset∆ of Spec(D)


such that� = �∆; in this case we say that� is the spectral semistar operation associat
with ∆.


(g) Let� be a star operation onD. If E ∈ F (D), we say thatE isa �-ideal if E = E�. We
denote byF �(D) (respectively,f �(D)) the set{E ∈ F (D) | E = E�} (respectively,{E ∈
F (D) | E = F� whereF ∈ f (D)}. Obviously,F d(D) = F (D) (respectively,f d(D) =
f (D)) and the setF v(D) is calledthe set of divisorial ideals ofD.


SetP(�) := Spec�(D) := {P ∈ Spec(D) | P = P �} andM(�) := Max�(D) which is the
(possibly empty) set of all the maximal elements of the set{I proper ideal ofD | I = I �}.
Assume that each proper�-ideal ofD is contained in some prime ideal of Spec�(D), then
it is known that�P(�) is a star operation onD [1, Theorem 3]. In particular, for each st
operation� onD which is not a field,M(�f ) is a nonempty subset ofP(�f ) and it satisfies
the property that each proper�f -ideal ofD is contained in some prime ideal ofM(�f ).
Then �̃ := �M(� ) is a star operation of finite type and stable onD, which is calledthe

f
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stable operation of finite type associated to�. It is easy to see that̃�f = �̃ = ( �̃ )f and
�̃ = �P(�f ). Note that [17, Corollary 3.9]


� = �̃ ⇔ � is a stable star operation of finite type.


Particularly interesting is the case in which� = v. Using the notation introduced b
Wang Fanggui and R.L. McCasland [41], we will denote bywD (or, simply,w) the star
operatioñvD = t̃D (simply,w := ṽ = t̃ ; cf. also [3,29]).


Note that if�1 and�2 are two star operations onD, then


�1 � �2 ⇔ F �2(D) ⊆ F �1(D).


It is well known that for each star operation�, we havẽ� � �f � � [3, Theorem 2.3]. Thus
in particular, ifE = E�, thenE = E�̃ = E�f . Moreover, note that


f �(D) = f �f (D) ⊆ F �(D) ⊆ F �f (D).


It is also known that if�1 and �2 are two star operations onD and �1 � �2, then
(�1)f � (�2)f and �̃1 � �̃2 . In particular, for each star operation�, we have� � v [27,
Theorem 34.1(4)] and so�f � t and̃� � w. Thus we get


F v(D) ⊆ F t (D) ⊆ Fw(D) ⊆ F (D),


F v(D) ⊆ F �(D), F t (D) ⊆ F �f (D), Fw(D) ⊆ F �̃(D).


(h) Let ι :R ↪→ T be an embedding of integral domains with the same field of quot
K and let∗ be a semistar operation onR. It is not difficult to prove:


∗ is stable onR ⇒ ∗ι is stable onT .


(k) If {�λ | λ ∈ Λ} is a family of semistar (respectively, star) operations onD, then∧{�λ | λ ∈ Λ} (simply denoted by∧�λ ), defined by


E∧�λ :=
⋂{


E�λ | λ ∈ Λ
}
, for eachE ∈ F (D) (respectively,E ∈ F (D)),


is a semistar (respectively, star) operation onD. Note that if at least one of the semis
operations in the family{�λ | λ ∈ Λ} is a star operation onD, then∧�λ is still a star
operation onD.


Let � be a star operation on an integral domainD and letF ∈ F (D). We say thatF
is �-invertible if (FF−1)� = D. In particular, when� = d (respectively,v, t , w) is the
identity star operation (respectively, thev-operation, thet-operation, thew-operation), we
reobtain the classical notion ofinvertibility (respectively,v-invertibility, t-invertibility, w-
invertibility) of a fractional ideal. Recall that:
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Lemma 1.2. Let�, �1, �2 be star operations on an integral domainD. Let Inv(D,�) be the
set of all�-invertible fractional ideals ofD andInv(D) (instead ofInv(D,d)) the set of all
invertible fractional ideals ofD. Then


(1) D ∈ Inv(D,�).
(2) If �1 � �2, then Inv(D,�1) ⊆ Inv(D,�2). In particular, Inv(D) ⊆ Inv(D, �̃) ⊆


Inv(D,�
f
) ⊆ Inv(D,�) and soInv(D) ⊆ Inv(D,w) ⊆ Inv(D, t) ⊆ Inv(D,v).


(3) I, J ∈ Inv(D,�) if and only ifIJ ∈ Inv(D,�).
(4) If I ∈ Inv(D,�), thenI−1 ∈ Inv(D,�).
(5) If I ∈ Inv(D,�), thenI v ∈ Inv(D,�).


Let � be a star operation onD. Then F �(D) is a commutative monoid under th
�-multiplication defined by(I, J ) �→ (IJ )� for eachI, J ∈ F �(D). If �1 and�2 are two
star operations onD with �1 � �2, then whileF �2(D) ⊆ F �1(D), F �2(D) is not a sub-
monoid ofF �1(D) in general (see [4, page 811]). However, there is a special subm
of F �(D) which reverses the inclusion:


Lemma 1.3 (D.F. Anderson [4, Proposition 3.3]). Let �, �1, �2 be star operations on a
integral domainD and suppose that�1 � �2. Let Inv�(D) := {I ∈ Inv(D,�) | I = I �} be
the set of all�-invertible�-ideals ofD and letInv(D) (instead ofInvd(D)) be the set of al
invertible fractional ideals ofD. Then


(1) Inv�(D) is a submonoid ofF �(D); moreover, it is an abelian group.
(2) Inv�1(D) is a subgroup ofInv�2(D) (in symbol,Inv�1(D) � Inv�2(D)). In particular,


for each star operation� on D, Inv(D) � Inv�(D) � Invv(D), Inv(D) � Inv�f (D) �
Invt (D) and Inv(D) � Inṽ�(D) � Inv�f (D) � Inv�(D).


In [22] we considered the problem of “lifting a star operation” with respect to a su
tive ring homomorphism between two integral domains. More precisely:


Lemma 1.4 [22, Corollary 2.4]. Let R be an integral domain with field of quotientsK ,
M a prime ideal ofR. Let D be the quotient-domainR/M and let ϕ :R → D be the
canonical projection. Assume that� is a star operation onD. For each nonzero fractiona
idealE of R, we set


E�ϕ :=
⋂{


x−1ϕ−1
((


xE + M


M


)�) ∣∣∣ x ∈ E−1, x �= 0


}


=
⋂{


xϕ−1
((


x−1E + M


M


)�) ∣∣∣ x ∈ K, E ⊆ xR


}
,


where, if zE+M
M


is the zero ideal ofD, then we setϕ−1(( zE+M
M


)�) = M . Then�ϕ is a star
operation onR.
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In [22] we also considered the problem of “projecting a star operation” with res
to a surjective homomorphism of integral domains, with particular emphasis on pu
constructions of a “special” kind. More precisely:


Lemma 1.5 [22, Propositions 2.6, 2.7, 2.9 and Theorem 2.12]. Letϕ :R → D be a surjec-
tive homomorphism of integral domains, let∗ be a star operation onR and letL be the
quotient field ofD. For each nonzero fractional idealF of D, we set


F ∗ϕ :=
⋂{


yϕ
((


ϕ−1(y−1F
))∗) ∣∣y ∈ L, F ⊆ yD


}
.


(1) ∗ϕ is a star operation onD.


Assume, now, that we are dealing with a pullback diagram of type(�). Then


(2) F ∗ϕ = ϕ((ϕ−1(F ))∗) = (ϕ−1(F ))∗/M for eachF ∈ F (D).
(3) (�ϕ)ϕ = � for each star operation� onD.
(4) ∗ � (∗ϕ)ϕ for each star operation∗ onR.


2. Main results


Lemma 2.1. Assume that we are dealing with a pullback diagram of type(�+). Let ∗
be a star operation onR and let∗ϕ be the star operation onD defined in Lemma1.5.
Then the mapα(ϕ,∗) (or, simply,α) : Inv(D,∗ϕ) → Inv(R,∗), defined byJ �→ ϕ−1(J ),
is injective withIm(α) = {I ∈ Inv(R,∗) | M � I ⊆ I vR � T }. Moreover, if we use th
same notationα = α(ϕ,∗) for the restriction of the mapα to the subsetInv∗ϕ (D), then
α : Inv∗ϕ (D) → Inv∗(R) is still injective withIm(α) = {I ∈ Inv∗(R) | M � I ⊆ I vR � T }.
Proof. Recall first that the mapJ �→ ϕ−1(J ) establishes a 1–1 correspondence betw
F (D) and the set{H ∈ F (R) | M � H ⊆ HvR � T } [19, Corollary 1.9]. LetJ ∈ F (D).
Then by applying Lemma 1.5(2), we haveJ ∗ϕ = (ϕ−1(J ))∗/M . Therefore,


J = J ∗ϕ ⇔ ϕ−1(J ) = (
ϕ−1(J )


)∗
,(


JJ−1)∗ϕ = D ⇔ (
ϕ−1(JJ−1))∗ = R.


By [19, Propositions 1.6 and 1.8(a)],ϕ−1(JJ−1) = ϕ−1(J )ϕ−1(J−1) = ϕ−1(J )(ϕ−1(J ))−1


Therefore, (
JJ−1)∗ϕ = D ⇔ (


ϕ−1(J )
(
ϕ−1(J )


)−1)∗ = R. �
Let Prin(D) be the subgroup of Inv�(D) of all the nonzero fractional principal ideal


of D. We recall that the quotient group


Cl�(D) := Inv�(D)


Prin(D)


is calledthe class group of an integral domainD with respect to a star operation� onD.
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If � = d is the identity star operation onD, then Cld(D) is denoted by Pic(D) and it is
calledthe Picard group of an integral domainD.


Lemma 2.2. Let �, �1, �2 be star operations on an integral domainD and suppose tha
�1 � �2. ThenCl�1(D) is a subgroup ofCl�2(D). In particular, for each star operation�
on D, Pic(D) � Cl�(D) � Clv(D), Pic(D) � Cl�f (D) � Clt (D) andPic(D) � Cl̃�(D) �
Cl�f (D) � Cl�(D).


Proof. Easy consequence of Lemma 1.3.�
Remark 2.3. Note that the previous statement can be strengthened, since Anderson
(in [3, Theorem 2.18]) proved thatfor any star operation� on an integral domainD,
Inṽ�(D) = Inv�f (D), and thusCl̃�(D) = Cl�f (D).


Lemma 2.4. Assume that we are dealing with a pullback diagram of type(�+). Then the
following statements are equivalent:


(1) the canonical map̃ϕ :U(T ) → k•/U(D), u �→ ϕ(u)U(D), is a surjective group homo
morphism, wherek• is the multiplicative group of the nonzero elements of the fiek


andU(T ) (respectively,U(D)) is the group of units ofT (respectively,D);
(2) for each nonzero elementx ∈ k, ϕ−1(xD) is a fractional principal ideal ofR;
(3) the mapα(ϕ,∗) (or, simply,α) : Cl∗ϕ (D) → Cl∗(R), [J ] �→ [ϕ−1(J )] (= [α(J )],


whereα is defined in Lemma2.1), is a well-defined group homomorphism for a
star operation∗ onR.


Proof. (1) ⇔ (2) ⇐ (3). See [19, Theorem 2.3 (i)⇔ (ii) ⇐ (iv)]. The direction (2)⇒ (3)
is a consequence of Lemma 2.1.�
Remark 2.5. General examples for which the mapϕ̃ :U(T ) → k•/U(D) is surjective are
provided in [19, Proposition 2.9].


The next theorem presents a generalization of the result by D.F. Anderson [4, Pr
tion 5.5]:


Theorem 2.6. Assume that we are dealing with a pullback diagram of type(�). If, more-
over, T is quasilocal, then the canonical mapα(= α(ϕ,∗)) : Cl∗ϕ (D) → Cl∗(R) is an
isomorphism for any star operation∗ onR.


Proof. We adapt the argument used in the proof of [4, Proposition 5.5]. We first s
that Cl∗(R) = 0 whenD is a proper subfield ofk. In this case,R is quasilocal, sinceR
andT have the same prime spectrum [8]. LetI ∈ Inv∗(R). As M = (R : T ) is a divisorial
ideal of R, if II−1 ⊆ M , then (II−1)∗ ⊆ M∗ = M , a contradiction. Then, necessari
II−1 = R; thusI is invertible in the quasilocal domainR, and henceI is principal. Thus
Cl∗(R) = 0.
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Without loss of generality, we may assume thatD is a proper subring ofk with quotient
field k, i.e., that we are dealing with a pullback diagram of type(�+). In this situation,
the mapα : Cl∗ϕ (D) → Cl∗(R) is a homomorphism, because whenT is quasilocal, the
condition (1) of Lemma 2.4 holds [19, Proposition 2.9].


Let J ∈ Inv∗ϕ (D) such thatϕ−1(J ) is principal in R, say ϕ−1(J ) = xR for some
nonzerox ∈ T . ThenJ = xR/M = ϕ(x)D is principal inD. Thereforeα is injective.


Conversely, letI ∈ Inv∗(R). Then, necessarily,II−1 �⊆ M , and henceII−1T = T , i.e.,
IT is invertible inT . SinceT = RM is quasilocal [19, Corollary 0.5],IT = IRM is prin-
cipal, sayIT = iRM for somei ∈ I . SetI1 := i−1I . Then, obviously,I1 ∈ Inv∗(R) and
R ⊆ I1 ⊆ T = I1T . To prove thatϕ(I1) = I1/M belongs to Inv∗ϕ (D), it suffices to show
that (I1)


v � T by Lemma 2.1, becauseϕ−1(ϕ(I1)) = I1. Suppose that(I1)
v = T , then


I−1
1 = (R : T ) = M . SoR = (I1I


−1
1 )∗ = (I1M)∗ ⊆ (T M)∗ = M∗ = M , a contradiction


Thus, necessarily, we have(I1)
v � T . Therefore[I ] = [i−1I ] = [I1] = [ϕ−1(I1/M)] =


α([I1/M]). Henceα is also surjective and thus we conclude thatα is an isomorphism. �
Corollary 2.7. Assume that we are dealing with a pullback diagram of type(�). If, more-
over,T is quasilocal, then we have the following canonical isomorphisms:


Pic(D) ∼= Pic(R), Clt (D) ∼= Clt (R), Clw(D) ∼= Clw(R), Clv(D) ∼= Clv(R).


Proof. Since(dR)ϕ = dD , (tR)ϕ = tD , (wR)ϕ = wD and(vR)ϕ = vD [22, Propositions 3.3
3.7, Corollaries 3.10 and 2.13], the conclusion follows from the above theorem. The
isomorphism also follows from the second one by Remark 2.3.�
Corollary 2.8. Assume that we are dealing with a pullback diagram of type(�). LetT be
quasilocal. Then


(1) The canonical homomorphismα(ϕ, �ϕ) : Cl�(D) → Cl�
ϕ
(R) is an isomorphism fo


any star operation� onD.
(2) Cl∗(R) = Cl(∗ϕ)ϕ (R) for any star operation∗ onR.


Proof. (1) Set∗ := �ϕ . Then∗ϕ = (�ϕ)ϕ = � by Lemma 1.5(3). The conclusion follow
immediately from Theorem 2.6.


(2) Recall that∗ � (∗ϕ)ϕ and ((∗ϕ)ϕ)ϕ = ∗ϕ by Lemma 1.5(3) and (4). Then, if w
apply Theorem 2.6 to both the star operations(∗ϕ)ϕ and∗ on R, we have the following
chain of canonical isomorphisms:


Cl(∗ϕ)ϕ (R) ∼= Cl((∗ϕ)ϕ)ϕ (D) = Cl∗ϕ (D) ∼= Cl∗(R).


Since these isomorphisms are canonical and Cl∗(R) is a subgroup of Cl(∗ϕ)ϕ (R) (Lem-
ma 2.2), we easily conclude that Cl(∗ϕ)ϕ (R) = Cl∗(R). �
Remark 2.9. (1) We present an example of a pullback diagram of type(�+) in which T


is quasilocal and∗ � (∗ϕ)ϕ (with Cl∗(R) = Cl(∗ϕ)ϕ (R) by Corollary 2.8(2)). LetD be an
integral domain in which each nonzero ideal is divisorial (e.g., a Dedekind domain) a
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k be the quotient field ofD. SetT := k[X2,X3]Q, whereQ := X2k[X], andM := QT .
Let ϕ andR be as in(�+). Then((dR)ϕ)ϕ = (dD)ϕ = (vD)ϕ = vR [22, Proposition 3.3 and
Corollary 2.13]. Meanwhile, sinceT vR = (R : (R : T )) = (R : M) ⊇ k[X] but T �⊇ k[X],
dR �= vR = ((dR)ϕ)ϕ .


(2) We give an example to show that the quasilocal hypothesis is essential in
lary 2.8(2). LetD be an integral domain in which each nonzero ideal is divisorial
let k be the quotient field ofD. Let B be the polynomial ringk[{Xi}∞i=1] and letT be
the subring ofB generated overk by the productsXiXj for all pairs i, j � 1. Then it
is known thatT is a Krull domain [24, Example 1.10]. LetN := (1 + X1,X2,X3, . . .)B


and letM := N ∩ T . Sincek ⊆ T/M ⊆ B/N ∼= k, T/M ∼= k andT = k + M . Let ϕ and
R be as in(�+). Then((dR)ϕ)ϕ = (dD)ϕ = (vD)ϕ = vR [22, Proposition 3.3 and Coro
lary 2.13]. LetQ := X1B ∩ T and note thatX1B(�⊆ N) is a prime ideal of height one i
the Krull domainB. SinceB is integral over the integrally closed domainT , Q is a prime
ideal of height one inT . Note thatQ �⊆ M , becauseX2


1 ∈ Q \ N . SinceR = D + M ,
T = RD\{0}, thusQ = qT , whereq := Q ∩ R andq �⊆ M . SinceQ is a prime ideal of
height one in the Krull domain,Q is a tT -invertible tT -ideal ofT , thusq is a tR-invertible
tR-ideal of R by [7, Lemma 3.1 and Theorem 2.2(6)]. Moreover, sinceQ is not finitely
generated as an ideal ofT [24, Example 1.10],q is not finitely generated as an ideal
R and hence it is not invertible. Therefore Pic(R) = CldR (R) � CltR (R) ⊆ ClvR (R), thus
CldR (R) �= ClvR (R) = Cl((dR)ϕ)ϕ (R).


This example also shows that the quasilocal hypothesis is essential in Corollary
ChooseD to be a PID. Then CldD (D) = Pic(D) = 0, but since CldR (R) � ClvR (R) =
Cl(dD)ϕ (R), we have Cl(dD)ϕ (R) �= 0.


The next goal is to give a complete description of Cl∗(R) by means of Cl∗ϕ (D) and
of an “appropriate star class group” ofT . For this purpose, recall that, in [22], we al
considered the problem of “extending a star operation” defined on an integral domaiR to
some overringT of R.


We need the following notation. Let∗ be a star operation on an integral domainR and
let T be an overring ofR such that(R : T ) �= 0. Then, for eachE ∈ F (T )(⊆ F (R)), we
set


E(∗)T := E∗ ∩ (
T : (T : E)


) = E∗ ∩ EvT .


Lemma 2.10. Assume that we are dealing with a pullback diagram of type(�+). Let
ι :R ↪→ T be the canonical embedding and let∗ be a star operation onR.


(1) (∗)T is a star operation onT with (∗)T = ∗ι ∧ vT .
(2) If ∗ is a star operation of finite type onR, then(∗)T coincides with∗ι (restricted to


the fractional ideals ofT ) and it is a star operation of finite type onT .
(3) If ∗1,∗2 are two star operations onR, then


∗1 � ∗2 ⇒ (∗1)T � (∗2)T .


(4) (∗f )T � ((∗)T )f .


(5) ( ∗̃ )T = (̃∗)T .
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Proof. (1) follows from [22, Examples 1.2 and 1.5(a)] and the observation thatT (∗)T =
T ∗ ∩ T vT = T ∗ ∩ T = T .


For (2), we need the following:


Claim 1. T is a tR-ideal ofR.


Choose a nonzeror ∈ M , then obviouslyrT is an integraltT -ideal of T and rT ⊆
M ⊂ R. SinceT is R-flat, rT = rT ∩ R is a tR-ideal of R by [19, Proposition 0.7(a)]
Therefore,T = r−1 · rT is a tR-ideal ofR.


By using Claim 1, we can complete the proof of (2). As a matter of fact, if∗ is a star
operation of finite type onR, then∗ � tR , thus the mapE �→ E∗ι := E∗, for eachE ∈
F (T )(⊆ F (R)), defines a star operation onT (sinceT ⊆ T ∗ ⊆ T tR = T ). In particular,
∗ι � vT , and so(∗)T = ∗ι (being∗ι restricted to the fractional ideals ofT ). Finally, it is
straightforward that if∗ is a star operation of finite type onR, then∗ι (= (∗)T ) is of finite
type onT (cf. also for instance [22, Example 1.2(b)]).


(3) is a straightforward consequence of the definition.
(4) follows from (3) and (2) since(∗f )T is a star operation of finite type onT .
(5) Note that( ∗̃ )T is a star operation of finite type and( ∗̃ )T = ( ∗̃ )ι (by (2)). Moreover,


( ∗̃ )ι is stable, sincẽ∗ is stable. Therefore( ∗̃ )T = (̃ ∗̃ )T , and hence we conclude by (3) th
( ∗̃ )T � (̃∗)T .


Claim 2. For each star operation� onR, M = M�f = M�.


It follows from the fact thatM = (R : T ) is a divisorial ideal ofR.


Claim 3. Max(∗f )T (T ) coincides with the set of maximal elements of{PT | P ∈
Spec∗f (R),PT �= T }.


SinceT is R-flat [19, Lemma 0.3], each ideal ofT is extended fromR. In particular,
each prime idealQ of T is equal to(Q ∩ R)T . Note that Max(∗f )T (T ) ⊆ {PT | P ∈
Spec∗f (R),PT �= T }. Indeed, letQ ∈ Max(∗f )T (T ) and letP := Q∩R. ThenP ⊆ P ∗f ⊆
Q∗f = Q(∗f )T = Q, henceP ⊆ P ∗f ⊆ Q ∩ R = P .


Now letPT be a maximal element in the set{PT | P ∈ Spec∗f (R),PT �= T }. Suppose
(PT )(∗f )T = T . Then 1∈ (PT )(∗f )T = (PT )∗f , i.e., 1∈ F ∗ for someF ∈ f (R) such that
F ⊆ PT . Let m ∈ M \ {0}. Thenm ∈ mF ∗ = (mF)∗ ⊆ (mPT )∗f ⊆ (PR)∗f = P ∗f = P .
Thus we haveM ⊆ P . SincePT �= T , M �⊂ P , and henceM = P . ThenT = (PT )(∗f )T =
M(∗f )T = M∗f = M (Claim 2), a contradiction. Therefore,(PT )(∗f )T �= T .


Let Q′ ∈ Max(∗f )T (T ) such that(PT )(∗f )T ⊆ Q′. Then by the above argument,Q′ ∩
R ∈ Spec∗f (R). SincePT ⊆ Q′ = (Q′ ∩ R)T , PT = Q′ by the maximality ofPT . Thus
we havePT ⊆ (PT )(∗f )T ⊆ Q′ = PT and soPT ∈ Max(∗f )T (T ).


Claim 4. Max(∗f )T (T ) = Max((∗)T )f (T ).
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Let Q ∈ Max((∗)T )f (T ) and let P := Q ∩ R. Then P ⊆ P ∗f ⊆ Q∗f = Q(∗f )T ⊆
Q((∗)T )f = Q (by (4)), and henceP ⊆ P ∗f ⊆ Q ∩ R = P . Thus we have Max((∗)T )f (T ) ⊆
{PT | P ∈ Spec∗f (R),PT �= T }.


Now let PT be a maximal element in the set{PT | P ∈ Spec∗f (R),PT �= T }. Sup-
pose(PT )((∗)T )f = T . Then 1∈ (PT )((∗)T )f , i.e., 1∈ G(∗)T for someG ∈ f (T ) such that
G ⊆ PT . We may assume thatG = JT for someJ ∈ f (R) such thatJ ⊆ P . Let m ∈
M \ {0}. Thenm ∈ mG(∗)T = (mG)(∗)T = (mJT )(∗)T ⊆ (mJT )∗ι = (mJT )∗ ⊆ (JR)∗ =
J ∗ ⊆ P ∗f = P . Thus we haveM ⊆ P . SincePT �= T , M �⊂ P , and henceM = P .
ThenT = (PT )((∗)T )f = M((∗)T )f ⊆ M(∗)T ⊆ M∗ι = M∗ = M (Claim 2), a contradiction
Therefore,(PT )((∗)T )f �= T .


Let Q′ ∈ Max((∗)T )f (T ) such that(PT )((∗)T )f ⊆ Q′. Then sincePT ⊆ Q′ = (Q′ ∩R)T


and since we have already proved thatQ′ ∩R ∈ Spec∗f (R), we conclude thatPT = Q′ by
the maximality ofPT . ThusPT ⊆ (PT )((∗)T )f ⊆ Q′ = PT and soPT ∈ Max((∗)T )f (T ).


Claim 5.


(a) For each prime idealP of R such thatP �⊇ M , RP = T RP = TPT .
(b) For each prime idealP of R such thatP ⊇ M , RP ⊆ RM = TM , and moreover


T RP = TM .


The statement (a) and the first part of (b) are well known [16, Theorem 1.4 and its p
SinceT RP ⊆ TM for eachP ∈ Spec(R) with P ⊇ M , to prove the equality, it suffices t
show that if a prime idealQ′ of T is such thatQ′ ∩ R ⊆ P , thenQ′ is contained inM .
Suppose not, i.e.,Q′ �⊆ M , thenQ′ ∩R �⊆ M . Choosea ∈ (Q′ ∩R)\M . ThenM +aT = T ,
so 1= m + at for somem ∈ M , t ∈ T . Then 1− m = at ∈ aT ∩ R ⊆ Q′ ∩ R ⊆ P . Since
m ∈ M ⊆ P , 1∈ P , a contradiction.


Claim 6. Max(∗f )T (T ) = {PT | P ∈ Max∗f (R),P �⊇ M} ∪ {M}.
Note that, the conditionPT �= T (or, equivalently,PT ∈ Spec(T )) implies thatP �⊃ M ,


sinceM is a maximal ideal inT . Moreover, by Claim 2,M belongs to Spec∗f (R), thus
MT = M belongs, in any case, to Max(∗f )T (T ) by Claim 3.


Recall that, by the properties of the prime ideals in a pullback of type(�+), it follows
that the canonical map Spec(T ) → Spec(R) is an order preserving embedding, and ifQ ∈
Spec(T ) andQ ∩ R ⊆ P for someP ∈ Spec(R) with P ⊇ M , thenQ ⊆ M (see also the
proof of Claim 5). By the previous ordering properties and Claim 3, we easily con
that{PT | P ∈ Max∗f (R),P �⊇ M} ∪ {M} = Max(∗f )T (T ).


Claim 7. (̃∗f )T = ( ∗̃ )T .


Note that, by Claim 4,


(̃∗f )T = ˜((∗)T
)
f


= (̃∗)T .


Now we want to show that̃(∗f )T = ( ∗̃ )T .
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SetP∗f


1 := {P ∈ Spec∗f (R) | P �⊇ M} andP∗f


2 := {P ∈ Spec∗f (R) | P ⊇ M}. If we


let P∗f


0 be the set of maximal elements in the setP∗f


1 , then {PT | P ∈ P∗f


0 } = {Q ∈
Max(∗f )T (T ) | Q �= M} by Claim 6.


Let E ∈ F (T ), then by using Claims 5 and 6, we have


E( ∗̃ )T = E( ∗̃ )ι = E∗̃ = (ET )̃∗ =
⋂{


ETRP | P ∈ Spec∗f (R)
}


=
(⋂{


ETRP | P ∈P∗f


1


}) ∩
(⋂{


ETRP | P ∈P∗f


2


})
=


(⋂{
ETRP | P ∈P∗f


0


}) ∩ ETM


=
⋂{


ETPT | P ∈ Max∗f (R), P �⊇ M
} ∩ ETM


=
⋂{


ETQ | Q ∈ Max(∗f )T (T )
}


= E(̃∗f )T . �
Remark 2.11. (1) We were not able to prove or disprove the equality in the statement
Lemma 2.10. However(∗f )T = ((∗)T )f for the case∗ = vR , which is the most importan
star operation of nonfinite type. More precisely,in the situation of Lemma2.10, we have


(tR)T = (
(vR)f


)
T


= (
(vR)T


)
f
.


Since (tR)T � ((vR)T )f and both terms are star operations of finite type (Le
ma 2.10(2)), it suffices to show thatH(tR)T ⊇ H(vR)T for all nonzero finitely generate
integral idealsH of T . Let H be a nonzero finitely generated integral ideal ofT . Then
H = IT for some finitely generated idealI of R.


If ITM is not principal, thenI vR = I vRT by [25, Proposition 2.7(1b)]. Therefor
H(vR)T ⊆ H(vR)ι = (IT )vR = (I vRT )vR = I vR = I tR ⊆ HtR = H(tR)ι = H(tR)T .


Now assume thatITM is principal. ThenHvT ⊆ (HTM)vTM = (ITM)vTM = ITM . Let
R(M) be the CPI-extension ofR with respect toM , i.e.,R(M) is defined by the following
pullback diagram [11]:


R(M) := ϕ−1(D) D


TM


ϕ
k = TM/MTM.


Then by [19, Lemma 1.3],R = R(M)∩T . Note first thatT R(M) = TM , becauseT R(M) =⋂{T R(M)N̄ | N̄ ∈ Max(R(M))} = ⋂{T RN | N ∈ Max(R) such thatN ⊇ M} = TM by
Claim 5(b) in the proof of Lemma 2.10. Now by [1, Theorem 2(4)],H(tR)T = HtR ⊇
(HR(M))tR(M) ∩ (HT )tT = (IT R(M))tR(M) ∩ HvT = (ITM)tR(M) ∩ HvT ⊇ ITM ∩ HvT =
HvT ⊇ H(vR)T .


(2) As another special case, we have the following positive result.
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Consider a pullback diagram of type(�+), let �′ be a star operation onD and �′′
a star operation onT . Set�:= �′ϕ ∧ �′′ι. We know that� is a star operation onR [22,
Corollary 2.5]. If ((�′ϕ)T )f = ((�′ϕ)f )T (e.g., this hypothesis is satisfied in each one of
following cases: (a) �′ = vD , (b) (�′


f )ϕ is a star operation of finite type onR, (c) T is a
Prüfer domain), then(�f )T = ((�)T )f .


Claim 1. If ∗1 and∗2 are two semistar operations on an integral domainR, then


(∗1 ∧ ∗2)f = (∗1)f ∧ (∗2)f .


This is an easy consequence of the fact that “
⋃


α distributes over∩”.


Claim 2. Let ι :R ↪→ T be an embedding of an integral domainR in one of its overrings
T and let� be a semistar operation onT . Then, inR, (�ι)f = (�f )ι, and inT , � = (�ι)ι
(Example1.1(e3)).


LetE ∈ F (R) and letG ∈ f (T ) be contained inET . ThenG := (x1t1, x2t2, . . . , xntn)T


for somen � 1, {x1, x2, . . . , xn} ⊆ E, and{t1, t2, . . . , tn} ⊆ T . ThusG ⊆ HT , whereH :=
(x1, x2, . . . , xn)R ∈ f (R) (andH ⊆ E). Therefore


E(�ι)f =
⋃{


F�ι | F ∈ f (R), F ⊆ E
}


=
⋃{


(FT )� | F ∈ f (R), F ⊆ E
}


=
⋃{


G� | G ∈ f (T ), G ⊆ ET
}


= (ET )�f = E(�f )ι .


Claim 3. Let ι :R ↪→ T be an embedding of an integral domainR in one of its overrings
T and let∗1 and∗2 be two semistar operations onR. Then(∗1 ∧ ∗2)ι = (∗1)ι ∧ (∗2)ι .


This is an obvious consequence of the definitions.


Claim 4. Let ι :R ↪→ T be an embedding of an integral domainR in one of its overrings
T and let∗ be a semistar operation onR. Then(∗f )ι is a semistar operation of finite typ
onT .


For eachE ∈ F (T ), we have


E(∗f )ι = E∗f =
⋃{


F ∗ | F ∈ f (R), F ⊆ E
}


=
⋃{⋃{


F ∗ | F ∈ f (R), F ⊆ G
} | G ∈ f (T ), G ⊆ E


}
=


⋃{
G∗f | G ∈ f (T ), G ⊆ E


}
=


⋃{
G(∗f )ι | G ∈ f (T ), G ⊆ E


}
= E((∗f )ι)f .
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Claim 5. In a pullback diagram of type(�), let � be a star operation onD. Then
(�ϕ)ι = (vR)ι (when restricted toF (T )), and hence(�ϕ)T = (vR)T . Moreover, in a pull-
back diagram of type(�+), ((�ϕ)T )f = (tR)T by (1).


Let I be a nonzero integral ideal ofT . Note that


x ∈ (R : I ) ⇒ xIT = xI ⊆ R ⇒ xI ⊆ (R : T ) = M
(⇔ I ⊆ x−1M


)
.


Therefore we have


I (�ϕ)ι = I �ϕ =
⋂{


x−1ϕ−1
((


xI + M


M


)�) ∣∣∣ x ∈ (R : I ), x �= 0


}


=
⋂{


x−1M | x ∈ (R : I ), x �= 0
} = I vR = I (vR)ι .


Note thatT (�ϕ)ι = T (vR)ι = T vR , thus(�ϕ)ι (when restricted toF (T )) is a star operation
onT if and only if T = T vR .


Now we use the previous claims to prove the statement. By applying Claims 2, 3,
we have


(�)T = �ι ∧ vT = (
�′ϕ ∧ �′′ι)


ι
∧ vT


= (
�′ϕ)


ι
∧ (


�′′ι)
ι
∧ vT = (


�′ϕ)
ι
∧ �′′ ∧ vT


= (
�′ϕ)


ι
∧ �′′ = (vR)ι ∧ �′′ or equivalently


= (
�′ϕ)


T
∧ �′′ = (vR)T ∧ �′′.


Therefore, by Claim 1 and (1), we have(
(�)T


)
f


= ((
�′ϕ)


ι


)
f


∧ �′′
f = ((


�′ϕ)
T


)
f


∧ �′′
f = (


(vR)T
)
f


∧ �′′
f = (tR)T ∧ �′′


f .


On the other hand, by Lemma 2.10(2), Claims 1, 2 and 3, we have


(�f )T = (�f )ι = ((
�′ϕ)


f


)
ι
∧ ((


�′′ι)
f


)
ι
= ((


�′ϕ)
f


)
ι
∧ ((


�′′
f


)ι)
ι


= ((
�′ϕ)


f


)
ι
∧ �′′


f = ((
�′ϕ)


f


)
T


∧ �′′
f .


It is obvious now that, if((�′ϕ)T )f = ((�′ϕ)f )T , then(�f )T = ((�)T )f .
Finally, we check the parenthetical statement.
Assume that�′ = vD , then we know that(vD)ϕ = vR [22, Corollary 2.13]. Therefore


((�′ϕ)f )T = (tR)T and so((�′ϕ)f )T coincides with((�′ϕ)T )f = ((vR)T )f by (1).
Assume that(�′


f )ϕ is a star operation of finite type. Note that, from the fact t
(�′


f )ϕ � �′ϕ and from the assumption, it follows that(�′
f )ϕ � (�′ϕ)f . Therefore, by [22


Proposition 2.9, Theorem 2.12 and Proposition 3.6(b)], we have(
�′ϕ)


�
(((


�′ϕ) ) )ϕ = (((
�′ϕ) ) )ϕ = (


�′ )ϕ
,


f f ϕ ϕ f f
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thus(�′
f )ϕ = (�′ϕ)f . In this situation, by Claim 5, we have


(tR)ι � (vR)ι = ((
�′
f


)ϕ)
ι
= ((


�′ϕ)
f


)
ι
� (tR)ι.


Therefore,


(tR)ι = ((
�′
f


)ϕ)
ι
= ((


�′ϕ)
f


)
ι
= (vR)ι = (


(vR)ι
)
f


and so, in particular,(tR)T = ((�′
f )ϕ)T = ((�′ϕ)


f
)T = (vR)T . On the other hand, b


Claim 5, we know that((�′ϕ)T )f = ((vR)T )f = (tR)T .
Assume thatT a Prüfer domain, then clearlyT has a unique star operation of fini


type, sincedT = tT . In this situation, obviouslydT = ((�′ϕ)f )T = (tR)T = tT , and from
Claim 5, we have((�′ϕ)T )f = (tR)T .


(3) Under the assumptions of Lemma 2.10, as a consequence of Claims 3 an
its proof, we have that Max(tR)T (T ) coincides with the set of the maximal eleme
of {PT ∈ Spec(T ) | P ∈ SpectR (R)} (which is equal to the set{PT | P ∈ MaxtR (R),
P �⊇ M} ∪ {M}).


We can give a little different proof of this result under the additional assumption th
mapϕ̃ :U(T ) → k•/U(D) is surjective. LetQ ∈ Max(tR)T (T ) and letP := Q ∩ R. Then
Q = PT andQ = Q(tR)T = QtR . ThereforeP ⊆ P tR ⊆ QtR ∩ R = Q ∩ R = P and so
Max(tR)T (T ) ⊆ {PT ∈ Spec(T ) | P ∈ SpectR (R)}.


Conversely, letQ := PT be a maximal element of the set{PT ∈ Spec(T ) | P ∈
SpectR (R)}. Assume thatP = M , then sinceM = MT is a maximal ideal ofT and
M = MtR , M is also a(tR)T -ideal of T , thus M = MT ∈ Max(tR)T (T ). Assume tha
P �= M . ThenP �⊆ M by the maximality ofQ = PT . Now, if S := U(T ) ∩ R, then by
[7, Theorem 2.2(5) and Lemma 3.1] we have(PT )tT = (PRS)tT = P tRRS = PRS = PT .
SinceQ = PT ∈ SpectT (T ), Q ∈ Spec(tR)T (T ).


Lemma 2.12. Assume that we are dealing with a pullback diagram of type(�+). Let∗ be
a star operation of finite type onR and let(∗)T be the star operation onT defined just
before Lemma2.10.


(1) If H ∈ Inv∗(R), thenHT ∈ Inv(∗)T (T ).
(2) The canonical mapβ(ϕ,∗) (or, simply,β) : Inv∗(R) → Inv(∗)T (T ), H �→ HT , is a


group-homomorphism.
(3) The mapβ, defined in(2), induces a group-homomorphismβ(ϕ,∗) (or, simply,β) :


Cl∗(R) → Cl(∗)T (T ), [H ] �→ [HT ].


Proof. (1) Note that ifH is a∗-invertible∗-ideal ofR and∗ = ∗f , thenH is atR-invertible
tR-ideal of R (Lemma 1.3(2)). Moreover,T is a flat overring ofR [19, Lemma 0.3],
and henceHT is a tT -invertible tT -ideal of T [19, Proposition 0.7(b)]. We know b
Lemma 2.10(2) that(∗)T is a star operation of finite-type onT , so(∗)T � tT , and hence
HT is a(∗)T -ideal ofT . Now, we show thatHT is also(∗)T -invertible:
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].

(
HT (HT )−1)(∗)T = (


HT (HT )−1)∗ ∩ (
HT (HT )−1)vT = (


HT (HT )−1)∗ ∩ T


⊇ (
HH−1T


)∗ ∩ T = ((
HH−1)∗


T
)∗ ∩ T


= (RT )∗ ∩ T = T ∗ ∩ T = T ,


thus 1∈ (HT (HT )−1)(∗)T and soT = (HT (HT )−1)(∗)T .
(2) is an obvious consequence of (1) and (3) follows from (2).�


Theorem 2.13. Assume that we are dealing with a pullback diagram of type(�+). Suppose
that the mapϕ̃ :U(T ) → k•/U(D) is surjective and that∗ is a star operation of finite typ
onR. Thenβ := β(ϕ,∗) : Cl∗(R) → Cl(∗)T (T ) is surjective.


Proof. Let J be an integral(∗)T -invertible(∗)T -ideal ofT . ThenJ = (IT )(∗)T = (IT )tT


for some finitely generated integral idealI of R ([4, Propositions 3.1 and 3.2] and [1
Lemma 0.3]).


Claim 1. Without loss of generality, we may assume thatI �⊆ M .


Suppose thatII−1 ⊆ M . Then


(JJ−1)(∗)T = (
(IT )(∗)T


(
(IT )(∗)T


)−1)(∗)T = (
(IT )(IT )−1)(∗)T = (


II−1T
)(∗)T


⊆ (MT )(∗)T = M(∗)T = M,


which contradicts thatJ is (∗)T -invertible. Thus,II−1 �⊆ M and so we can choosex ∈ I−1


such thatxI �⊆ M . SetI ′ := xI andJ ′ := xJ . ThenI ′ �⊆ M andJ ′ = (I ′T )(∗)T . Since the
classes[J ] and[J ′] in Cl(∗)T (T ) are the same, we can replaceJ by J ′ andI by I ′.


Set S := U(T ) ∩ R (as in Remark 2.11) andN := {x ∈ R | ϕ(x) ∈ U(D)}. Then
T = RS and S · N = R \ M [7, Lemma 3.1]. Since we may assume thatI �⊆ M , by
[7, Theorem 2.2(2)] we haveI tR = ((S1)(N1))


tR for some nonempty finite subsetsS1
of S andN1 of N . Again by [7, Theorem 2.2],J = (IT )tT = I tRT = ((S1)(N1))


tRT =
((S1)(N1)T )tT = ((N1)T )tT = (N1)


tRT , and henceJJ−1 = ((N1)
tRT )(((N1)T )tT )−1 =


((N1)
tRT )((N1)T )−1 = (N1)


tR (N1)
−1T .


Claim 2. If ∗ = ∗̃, thenβ is surjective.


Let P ′ ∈ Spec∗(R) such thatM �⊆ P ′. Then there exists a unique prime idealQ′ of
T such thatQ′ ∩ R = P ′ and RP ′ = TQ′ [16, Theorem 1.4, point (c) of the proof
SinceT = (JJ−1)(∗)T = (JJ−1)∗ι = ⋂{JJ−1RP | P ∈ Max∗(R)} = ⋂{JJ−1RP | P ∈
Spec∗(R)} ⊆ JJ−1RP ′ = JJ−1TQ′ , JJ−1 �⊆ Q′, and hence(N1)


tR (N1)
−1 �⊆ P ′.


Now let P ′′ ∈ Spec∗(R) such thatM ⊆ P ′′. Then P ′′ ∩ N = ∅, because ifx ∈
P ′′ ∩ N , thenϕ(x) ∈ P ′′/M ∈ Spec(D), which contradicts thatϕ(x) ∈ U(D). Therefore
(N1)


tR (N1)
−1 �⊆ P ′′.


Thus since(N1)
tR (N1)


−1 �⊆ P for all P ∈ Spec∗(R), ((N1)
tR (N1)


−1)∗ = R, i.e.,(N1)
tR


is a ∗-invertible ∗-ideal of R. Therefore, passing to the classes,[J ] = [(N1)
tRT ] =


β([(N1)
tR ]).
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Claim 3. Cl(∗)T (T ) = Cl(̃∗)T (T ) (it does hold without the conditioñϕ :U(T ) → k•/U(D)


is surjective).


By [3, Theorem 2.18] and Lemma 2.10(5), Cl(∗)T (T ) = Cl(̃∗)T (T ) = Cl( ∗̃ )T (T ).


Finally, since Cl∗(R) = Cl̃∗(R) by [3, Theorem 2.18],β(ϕ,∗) = β(ϕ, ∗̃) and hence the
conclusion follows. �


From Claim 3 in the proof of Theorem 2.13 we deduce immediately:


Corollary 2.14. Assume that we are dealing with a pullback diagram of type(�+). Then
Cl(tR)T (T ) = Cl(wR)T (T ).


In order to give a description of Cl∗(R) by means of Cl∗ϕ (D) and Cl(∗)T (T ), we need
the following result from [19]:


Lemma 2.15 [19, Lemma 2.2 and the subsequent considerations]. Assume that we ar
dealing with a pullback diagram of type(�+).


(1) For eachH ∈ Invt (R) there exist a nonzero elementz in the quotient field ofR and
H ′ ∈ Invt (R), with H ′ �⊆ M , H ′ ⊆ R, andH = zH ′.


(2) The mapγ : CltR (R) → CltD (D), [H ] �→ [(ϕ(H ′))vD ], is a well-defined group-homo
morphism(whereH ′ is chosen as in(1)).


Corollary 2.16. Assume that we are dealing with a pullback diagram of type(�+). Let
γ : CltR (R) → CltD (D) be as in Lemma2.15and let∗ be a star operation of finite typ
on R. Then, by restriction toCl∗(R)(⊆ CltR (R)), γ defines a group-homomorphismγ =:
γ (ϕ,∗) : Cl∗(R) → Cl∗ϕ (D).


Proof. We want to show thatγ (Cl∗(R)) ⊆ Cl∗ϕ (D) ⊆ CltD (D). First, recalling that∗ϕ �
(tR)ϕ = tD [22, Proposition 3.7], we have Cl∗ϕ (D) ⊆ CltD (D). Now letH be a∗-invertible
∗-ideal of R such thatH ⊆ R and H �⊆ M . Chooser ∈ H \ M . Then rH−1 ⊆ R and
rH−1 �⊆ M . By using the fact thatϕ(r)D is a divisorial ideal ofD and [22, Proposi
tion 2.7], we have


ϕ(r)D = (
ϕ(r)D


)∗ϕ = (
ϕ(rR)


)∗ϕ = (
ϕ
(
r
(
HH−1)∗))∗ϕ


=
(


r(HH−1)∗ + M


M


)∗ϕ


= (r(HH−1)∗ + M)∗


M


= (rHH−1 + M)∗


M
=


(
rHH−1 + M


M


)∗ϕ


=
(


H + M rH−1 + M
)∗ϕ


= (
ϕ(H)ϕ


(
rH−1))∗ϕ .

M M
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Henceϕ(H) is ∗ϕ-invertible, and so(ϕ(H))vD is a ∗ϕ-invertible ∗ϕ-ideal of D (Lem-
ma 1.2(5)). Thereforeγ induces a homomorphismγ (ϕ,∗) : Cl∗(R) → Cl∗ϕ (D). �
Theorem 2.17. Assume that we are dealing with a pullback diagram of type(�+). Suppose
that the mapϕ̃ : U(T ) → k•/U(D) is surjective and that∗ is a star operation of finite typ
onR. Then the sequence


0−→ Cl∗ϕ (D)
α−→ Cl∗(R)


β−→ Cl(∗)T (T ) −→ 0


is split exact.


Proof. It is obvious thatα is injective, because ifJ ∈ Inv∗ϕ (D) such thatα(L) = ϕ−1(J )


is pricipal inR, sayϕ−1(J ) = xR for somex ∈ T , thenJ = ϕ(x)D is also principal inD.
The surjectivity ofβ follows from Theorem 2.13. To see that Im(α) = Ker(β), let [H ] ∈
Im(α). We can assume thatH = ϕ−1(J ) for someJ ∈ Inv∗ϕ (D) and soM � H ⊆ T .
Hence, in particular,HT = T , becauseM is a maximal ideal ofT , and thusβ([H ]) =
[HT ] = [T ]. Conversely, let[H ] ∈ Ker(β). Without loss of generality, we can assum
thatH ∈ Inv∗(R) andHT = T . Then by [19, Proposition 1.1] and [4, Proposition 3.1(
M � H = HvR ⊆ T . Moreover, sinceT is not a∗-invertible (∗-)ideal ofR, HvR � T . By
Lemma 2.1,H = ϕ−1(J ) for some∗ϕ -invertible∗ϕ-idealJ of D, henceH ∈ Im(α). Thus
the sequence is exact.


Lastly, by the definitions ofα = α(ϕ,∗) and γ = γ (ϕ,∗) (Lemma 2.4 and Corol
lary 2.16), we immediately obtain thatγ ◦ α : Cl∗ϕ (D) → Cl∗(R) → Cl∗ϕ (D) is such that
[J ] �→ γ ([ϕ−1(J )]) = [(ϕ(ϕ−1(J )))


vD ] = [J vD ] = [J ], i.e., it is the identity map. There
fore the above exact sequence splits.�
Corollary 2.18. Assume that we are dealing with a pullback diagram of type(�+) and
that the mapϕ̃ :U(T ) → k•/U(D) is surjective. Then the sequence


0−→ CltD (D)
α−→ CltR (R)


β−→ Cl(tR)T (T ) −→ 0


is split exact.


Proof. Recall that(tR)ϕ = tD [22, Proposition 3.7]. Then apply Theorem 2.17.�
Note that, when we are dealing with a pullback diagram of type(�+), (tR)T � tT


(Lemma 2.10(2)) and so Cl(tR)T (T ) is a subgroup of CltT (T ). In general, it can happe
that (tR)T � tT (for instance, whenM is not a tT -ideal). We will show, moreover, tha
Cl(tR)T (T ) can be a proper subgroup of CltT (T ) (Remark 2.20).


Corollary 2.19. Under the same notation and hypotheses of Corollary2.18, if we as-
sume thatT is quasilocal, thenCl(tR)T (T ) = 0. (In particular, we reobtain thatCltD (D) ∼=
CltR (R), see Corollary2.7.)
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Proof. Let J be a (tR)T -invertible (tR)T -ideal of T . Then J = (IT )(tR)T for some
nonzero finitely generated fractional idealI of R [23, Proposition 2.6]. By the sam
argument as in Claim 1 of the proof of Theorem 2.13, we haveII−1 �⊆ M . Therefore
JJ−1 ⊇ (IT )(IT )−1 = II−1T = II−1RM = RM = T , and soJ is invertible inT . Since
T is quasilocal, we conclude thatJ is principal. Therefore Cl(tR)T (T ) = 0. �
Remark 2.20. Note that for a pullback diagram of type(�+) with T quasilocal, it is
quite common that CltT (T ) is nonzero, but Im(β) = 0 (Corollaries 2.18 and 2.19). A
explicit example can be obtained as follows. LetT := Q[X2,XY,Y 2](X2,XY,Y 2), M :=
(X2,XY,Y 2)T , thusT = Q + M , and setR := Z + M . Then, clearlyT = RM andM


is a tR-prime ofR. In this situation, the mapβ : CltR (R) → CltT (T ) = CltRM (RM) is the
zero map, while CltT (T ) is nonzero [9, Proposition 2.3 and Example 3.4]. Therefore in
case, by Corollary 2.19, Cl(tR)T (T ) �= CltT (T ).


From Theorem 2.17 applied to∗ = dR , we reobtain [19, Theorem 2.5(c)], since(dR)ϕ =
dD [22, Proposition 3.3] and(dR)T = dT . More precisely,


Corollary 2.21. Assume that we are dealing with a pullback diagram of type(�+). Sup-
pose that the map̃ϕ :U(T ) → k•/U(D) is surjective. ThenPic(R) ∼= Pic(D) ⊕ Pic(T ).


Remark 2.22. Note that, in [19, Remark 2.7], it was proved more generally that:Assume
that we are dealing with a pullback diagram of type(�). The mapϕ̃ :U(T ) → k•/U(D)


is surjective if and only ifPic(R) ∼= Pic(D) ⊕ Pic(T ). A similar result was reobtained i
[7, Theorem 3.9].


The next goal is to study the behavior of the property of being a Prüfer star mu
cation domain in a pullback diagram of type(�). Recall that, given a star operation∗ on
an integral domainR, we say thatR is a P∗MD if for each nonzero finitely generate
fractional idealI of R, (II−1)∗f = R (cf. for instance [18,28,30,31,35]).


Theorem 2.23. Consider a pullback diagram of type(�) and let∗ be a star operation
on R. ThenR is a P∗MD if and only ifk is the quotient field ofD, D is a P∗ϕMD, T is a
P(∗)T MD, andTM is a valuation domain.


Proof. If R is a P∗MD, thenR is a PvMD, and hencek is the quotient field ofD andTM


is a valuation domain by [19, Theorem 4.1]. It is easy to see that ifR is a P∗MD, then
D is a P∗ϕMD andT is a P(∗)T MD. Actually, to prove thatT is a P(∗)T MD, let J be a
nonzero finitely generated ideal ofT . SinceT is R-flat,J = IT for some finitely generate
ideal I of R. Then by Lemma 2.10(4),(JJ−1)((∗)T )f ⊇ (JJ−1)(∗f )T = (II−1T )(∗f )T =
(II−1T )∗f = ((II−1)∗f T )∗f = T ∗f = T .


Conversely, assume thatk is the quotient field ofD, D is a P∗ϕMD, T is a
P(∗)T MD, and TM is a valuation domain. SinceD and T are PvMDs, R is a PvMD
by [19, Theorem 4.1]. LetI be a nonzero finitely generated fractional ideal ofR.
Then (II−1)tR = R, and henceII−1 �⊆ M . To show thatI is ∗f -invertible, we may
assume thatI is a nonzero finitely generated integral ideal ofR such thatI �⊆ M .
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Since D is a P∗ϕMD, (ϕ(I )ϕ(I )−1)(∗ϕ)f = D. Since (∗ϕ)f = (∗f )ϕ [22, Proposi-
tion 3.6], (ϕ(I )ϕ(I )−1)(∗f )ϕ = D, i.e., ((I + M)(I + M)−1)∗f = R, which implies that
(II−1 + M)∗f = R. Now supposeII−1 ⊆ P for someP ∈ Max∗f (R). ThenM �⊆ P ,
because otherwiseR = (II−1 + M)∗f ⊆ P ∗f = P . Note thatPT ∈ Max((∗)T )f (T ) (by
Claims 4 and 6 in the proof of Lemma 2.10). But sinceT is R-flat andT is a P(∗)T MD,
(IT (IT )−1)((∗)T )f = (II−1T )((∗)T )f = T , which contradicts thatII−1T ⊆ PT . There-
fore II−1 �⊆ P for all P ∈ Max∗f (R), i.e.,(II−1)∗f = R. ThusR is a P∗MD. �
Corollary 2.24. Consider a pullback diagram of type(�). R is a PvRMD (= P tRMD =
PwRMD) if and only if k is the quotient field ofD, D is a PvDMD (= P tDMD =
PwDMD), T is a P(vR)T MD (= P(tR)T MD = P(wR)T MD), andTM is a valuation do-
main.


Proof. We can use Theorem 2.23 and the following facts:


(1) for any star operation∗ on an integral domainA, A is a P∗MD if and only if A is a
P∗̃MD [18, Theorem 3.1];


(2) (vR)ϕ = vD [22, Corollary 2.13];
(3) whenk is the quotient field ofD, (̃vR)T = (ṽR)T = (wR)T � (tR)T = ((vR)f )T �


((vR)T )f � (vR)T (Lemma 2.10). �
Remark 2.25. Given a star operation∗ on an integral domainR, recall thatR is a P∗MD
if and only if R is a PvRMD and ∗̃ = tR (or, equivalently,∗f = tR) [18, Proposition 3.4]
Therefore (using Lemma 2.10(5) and [22, Proposition 3.9]) the previous theorem c
restated as follows:Consider a pullback diagram of type(�) and let∗ be a star operation
on R. Theñ∗ = tR andR is a PvRMD if and only ifk is the quotient field ofD, ∗̃ϕ = tD ,
( ∗̃ )T = tT , D is aPvDMD, T is aPvT MD, andTM is a valuation domain.


Lemma 2.26. Let R be a PvRMD and letT be a flat overring ofR such that(R : T ) �= 0.
Then(wR)T = (tR)T = tT = wT .


Proof. SinceT is a flat overring ofR, T is a subintersection ofR and henceT is aPvT MD
[31, Theorem 3.11]. Recalling the fact thatwA = tA on a PvAMD A ([39, Theorem 2.4] o
[18, Proposition 3.4]), it suffices to show that(tR)T = tT .


Note first thatT is a wR-ideal of R and hence atR-ideal of R. Let x ∈ T wR . Then
xI ⊆ T for some finitely generated idealI of R such thatI vR = R [21, Remark 2.8]. By
flatness,(IT )vT = (I vRT )vT = T , and thusx ∈ T .


Then (tR)T � tT and both are star operations onT of finite type. LetJ be a non-
zero finitely generated integral ideal ofT . Then J = IT for some finitely generate
ideal I of R. By [15, Proposition 2.17],I vRT is a vT -ideal of T , and henceJ tT =
(I tRT )tT = (I vRT )tT = I vRT ⊆ (I vRT )tR = (I tRT )tR = (IT )tR = J tR = J (tR)T . Thus we
have(tR)T = tT . �
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Corollary 2.27. Consider a pullback diagram of type(�). ThenR is a PvRMD if and only
if k is the quotient field ofD, D is a PvDMD, T is a PvT MD, and TM is a valuation
domain. Moreover, in this situation,(wR)T = (tR)T = tT = wT .


Proof. The first statement is [19, Theorem 4.1] and the “moreover” statement follows
Lemma 2.26. �


Acknowledgment


During the preparation of this paper, the first named author was supported in pa
research grant MIUR 2003/2004.


References


[1] D.D. Anderson, Star-operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553.
[2] D.D. Anderson, D.F. Anderson, M. Zafrullah, Splitting thet -class group, J. Pure Appl. Algebra 74 (199


17–37.
[3] D.D. Anderson, S.J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000


2475.
[4] D.F. Anderson, A general theory of class groups, Comm. Algebra 16 (1988) 805–847.
[5] D.F. Anderson, The class group and the local class group of an integral domain, in: S.T. Chapman,


(Eds.), Non-Noetherian Commutative Ring Theory, Kluwer Academic, 2000, pp. 33–55.
[6] D.F. Anderson, S. El Baghdadi, S. Kabbaj, On the class group ofA + XB[X] domains, in: D.E. Dobbs


M. Fontana, S. Kabbaj (Eds.), Advances in Commutative Ring Theory, in: Lecture Notes in Pure and
Math., vol. 205, Dekker, New York, 1999, pp. 73–85.


[7] D.F. Anderson, G.W. Chang, The class group of integral domains, J. Algebra 264 (2003) 535–552.
[8] D.F. Anderson, D.E. Dobbs, Pairs of rings with the same prime spectrum, Canad. J. Math. 32 (198


384.
[9] D.F. Anderson, A. Ryckaert, The class group ofD + M , J. Pure Appl. Algebra 52 (1988) 199–212.


[10] S. El Baghdadi, On the class group of a pullback, J. Pure Appl. Algebra 169 (2002) 159–173.
[11] M.P. Boisen, P.B. Sheldon, CPI-extensions: overrings of integral domains with special prime spe


Canad. J. Math. 29 (1977) 722–737.
[12] A. Bouvier, Le groupe des classes d’un anneau intègre, in: 107ème Congrès National des Sociétés


Brest, IV, 1982, pp. 85–92.
[13] A. Bouvier, M. Zafrullah, On some class groups of integral domains, Bull. Sc. Math. Grèce 29 (1988) 4
[14] P.-J. Cahen, Couples d’anneaux partageant un idéal, Arch. Math. 51 (1988) 505–514.
[15] D.E. Dobbs, E.G. Houston, T.G. Lucas, M. Zafrullah,t -linked overrings and Prüferv-multiplication do-


mains, Comm. Algebra 17 (11) (1989) 2835–2852.
[16] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 129 (1980) 33
[17] M. Fontana, J.A. Huckaba, Localizing systems and semistar operations, in: S.T. Chapman, S. Gla


Non-Noetherian Commutative Ring Theory, Kluwer Academic, 2000, pp. 169–198.
[18] M. Fontana, P. Jara, E. Santos, Prüfer�-multiplication domains and semistar operations, J. Algebra App


(2003) 21–50.
[19] M. Fontana, S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181


803–835.
[20] M. Fontana, K.A. Loper, Kronecker function rings: a general approach, in: D.D. Anderson, I.J. Papick


Ideal Theoretic Methods in Commutative Algebra, in: Lecture Notes in Pure and Appl. Math., vol
Dekker, 2001, pp. 189–205.







M. Fontana, M.H. Park / Journal of Algebra 292 (2005) 516–539 539


Comm.


4.


1–42.


7–44.
7


uston,
ekker,


er. A 28


(1995)


5–183.
iv. Ser.


–21.
(2001)


mental


306.

[21] M. Fontana, K.A. Loper, Nagata rings, Kronecker function rings, and related semistar operations,
Algebra 31 (2003) 4775–4805.


[22] M. Fontana, M.H. Park, Star operations and pullbacks, J. Algebra 274 (2004) 387–421.
[23] M. Fontana, G. Picozza, Semistar invertibility of integral domains, Algebra Colloq. 12 (2005) 645–66
[24] R.M. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973.
[25] S. Gabelli, E. Houston, Coherentlike conditions in pullbacks, Michigan Math. J. 44 (1997) 99–123.
[26] S. Gabelli, M. Roitman, On Nagata’s theorem for the class group, J. Pure Appl. Algebra 66 (1990) 3
[27] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
[28] M. Griffin, Some results onv-multiplication rings, Canad. J. Math. 19 (1967) 710–721.
[29] J.R. Hedstrom, E.G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980) 3
[30] E.G. Houston, S.B. Malik, J.L. Mott, Characterization of�-multiplication domains, Canad. Math. Bull. 2


(1984) 48–52.
[31] B.G. Kang, Prüferv-multiplication domains and the ringR[X]Nv , J. Algebra 123 (1989) 151–170.
[32] M. Khalis, D. Nour El Abidine, On the class group of a pullback, in: P.-J. Cahen, M. Fontana, E.G. Ho


S. Kabbaj (Eds.), Commutative Ring Theory, in: Lecture Notes in Pure and Appl. Math., vol. 185, D
New York, 1997, pp. 377–386.


[33] R. Matsuda, I. Sato, Note on star operations and semistar operations, Bull. Fac. Sci. Ibaraki Univ. S
(1996) 5–22.


[34] R. Matsuda, T. Sugatani, Semistar operations on integral domains, II, Math. J. Toyama Univ. 18
155–161.


[35] J.L. Mott, M. Zafrullah, On Prüferv-multiplication domains, Manuscripta Math. 35 (1981) 1–26.
[36] D. Nour El Abidine, Sur le groupe des classes d’un anneau intègre, Ann. Univ. Ferrara 36 (1990) 17
[37] A. Okabe, R. Matsuda, Star operations and generalized integral closures, Bull. Fac. Sci. Ibaraki Un


A 24 (1992) 7–13.
[38] A. Okabe, R. Matsuda, Semistar operations on integral domains, Math. J. Toyama Univ. 17 (1994) 1
[39] M.H. Park, Group rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (3)


301–318.
[40] P. Samuel, Lectures on Unique Factorization Domains, Notes by P. Murty, Tata Institute for Funda


Research, No. 30, Bombay, 1964.
[41] F. Wang, R.L. McCasland, Onw-modules over strong Mori domains, Comm. Algebra 25 (1997) 1285–1
[42] M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985) 29–62.






