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Cali a domain R an sQQR-domain if each simple overring of l?, i.e., each ring of the
form -Rlu] with u in the quotient fietd of R, is an intersection of localizations of -R.
We characterize Priifer domains as integrally closed sQQR-domains. In the presence
of certain finiteness conditions, we show that the sQQR-property is very strong; for
instance, a Mori sQQR-domain must be a Dedekind domain. We also show how to
construct sQQR-domains which have (non-simple) overrings which are not intersections
of locaiizations.
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0. Introduction

Throughout this work,.R will denote an integral domain with quotient field 1{. The
Kaplanskytransformof an ideal I of R is denoted by 0(/) and is defined by

C)(1) : {r e K I for each o € / there is an integer n(a) 21 such that a"G)r € R}.

(The notation OR(I) will be used when the context involves more than one ring.)
In [7] the first- and second-named authors studied domains R each of whose over-
rings is a Kaplansky transform of an ideal I of R. This work is in part a sequel to
that paper. It turns out, however, that our investigations depend more heavily on
the notions of unique minimal overrings and QQR-domains developed by Gilmer
and Heinzer in [10] . Recall that a domain R is a QQR-domai,n if each overring of R
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is an intersection of localizations of R. Davis [4] showed that a Priifer domain must

have the QQR-property and asked whether the converse is true. In their paper,

Gilmer and Heinzer showed that the converse does not hold, and they explored in

depth the relation between the Priifer and QQR-properties.
We review basic definitions and prove basic facts in Sec. 1. In particular, we

dub the domains of the title sQQR-doma'ins, and we characterize Priifer domains

as being integrally closed sQQR-domains. The remainder of the paper is devoted

to studying the non-integrally closed case. Since QQR-domains were characterized

in 110], we are interested in sQQR-domains which are not QQR-domains. Much of

Sec. 2 is concerned with showing that, in the presence of many frequently stud-

ied finiteness conditions, there ate no such examples. For instance, we show that

a Mori sQQR-domain is a Dedekind domain, that an sQQR-domain with Noethe-

rian spectrum is a Priifer domain, and that a semilocal sQQR-domain with treed

spectrum is a QQR-domain. In Sec. 3 we do provide many (non-local) examples of

sQQR-domains which are not QQR-domains. Finally, in the last section, we briefly

discuss connections with seminormality.

1. Definitions and Basic Facts

We begin by collecting some of the results we shall need. Recall that for an ideal 1

of R, the u-closure of f is defined by Io : (f-t;-r and the t-closure by ! : [J J,,

where the union is taken over all finitely generated subideals J of I. We assume

familiarity with these star operations.

Proposition 1.1. Let I be an ideal of R. Then:

( 1 )  o ( r )  : f i { a p l P e  S p e c ( R ) , I g P } .
(2) If I is fini,tely generated and S i's a multipl'icati'uely closed subset of R, then

CIR(1)As :  f ln , (1Rs).
(3)  c l ( I )  :  f ) ( radI) .
(4) If I has the property that for each P e Spec(.R) wi'th I C P. we hauel]) g RP,

thenradl ' is largest ideal J for whi,ch CI(/) : f)(J).

( 5 )  f i ( I )  : 0 (1 t ) .

Proof. Statement (1) is proved in 111]. For statement (2), one sees easily that

the Kaplansky transform coincides with the familiar Nagata transform for finitely

generated ideals, and the Nagata transform is known to localize well. That

f)(1) : a(rad 1) is [6, Lemma 3.1(c)]. For (4) suppose that .I C P and that

O(J) : f l(1) g Rp.By (7), J e P. Hence J C rad -L Finally, (5) appears in

16, Proposition 3.4]. tr

Notation. Let R be a domain with quotient field K. It (I is a subset of K, we

shall write (R: U) for the fractional ideal {z e K I zU C rR} and (R:nU) for the

i d e a l  { r  e  R l r U  c  R } .
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Lemma L.2. Let R be a doma,in, and let U be a subset of K. Then

(1)  RlUl  c  o(R:a t / ) .
(2) A U 'is f"n'ite, then RlUl is the KaplanskE transfor"rn of an ideat of R e RlLrl :

Q ( R : 6  t / ) .

Proof. Statement (1) follows easily from the definitions (with the convention that
f)(0) :1{). Suppose that [/ is f inite and that RIU]: f l(I) : OryeRr for some

ideal 1of B. Let P be a prime ideal of R with I g P. Then I/ C Rp, whence
(R :p t J )  f  P .  Thus  Q(R :p  I / )  :  f l r n , , q1aRa  c  Re .  Hence  f ) ( rB :6  t / )  c

) tgc Rc :  Rlu l .This  proves (2) .  t r

Lemma L.3. Let R be a doma,in wi,th quot'ient field K. Then a fini,tely generated
ouerring of R i,s a Kaplansky transforrn of an i,deal of R ?.f and only i,f it i,s an
'intersect'ion of local'izations of R.

Proof. Let U be a finite subset of 1{, and suppose that there is a set of primes P
in ,R wi th RIU): ) r .oRr.  For  each P eP,  we then have ( rR :RU) g P Hence

Rlu l :11  ae :  n  rqq :a (R :pu ) )  R lU l ,
PeP @,nu)fQ

the last inclusion following from Lemma 1.2. Thus RlUl: f,t(R :6 t/). The converse
holds in general (without the finiteness assumption) by Proposition 1.1(1). tr

Definition. We say that a domain R is an sQQR-d,omarJn (respectively, fQQR-
domai,n) if each simple overring (respectively, each finitely generated overring) of
R is an intersection of Iocalizations of .R.

Recall from 110] that a domain is a QQR-doma'in if each overring of R is an
intersection of localizations of R. In [7] the authors defined an {'!-doma'in to be one
for which each overring is a Kaplansky transform; hence a f,)-domain is a QQR-
domain. It was shown in [7] that the two properties are not the same. However, if
one restricts to finitely generated overrings, then the properties are the same, as is
shown by Lemma 1.3. Since 110] is a much older paper than l7l , we have chosen to
use the terminology "sQQR" (respectively, "fQQR") instead of "sf,)" (respectively,
',fc)" \

In the integrally closed case, the sQQR- and fQQR-properties coincide (Proposi-
tion 2.1), but we have not been able to determine whether these properties coincide
in general. We can easily see, however, that the sQQR- and f)-properties are dis-
tinct (even in the integrally closed case). This follows frorn the fact that a valuation
domain is automatically a QQR-domain (and therefore an sQQR-domain), whereas
a vaiuation domain need not be an Q-domain [7, Example 2.16].

In Sec. 3, we produce examples of sQQR-domains which are not QQR domains.
However, we have not been able to produce local examples of sQQR-domains which
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are not QQR. Indeed, we devote much of the next section to showing that such

examples cannot exist in the presence of certain finiteness assumptions.

2. Finiteness Results

We have the following result in the integrally closed case.

Proposition 2.L. Let R be i,ntegrally closed. Then the followi,ng statements are

equ'iualent.

(l) R is an sQQR-domain.
(2) R is an fQQR-domain.
(3) R QQR-doma'in.
( ) R is a Priifer domain.

Proof. Davis [4, p. 197] proved (a) + (e). Hence it suffices to prove (1) + ( ). This

is a familiar argument (cf. 18, proof of Theorem 26.2)). Let u € K, and consider the

simple overring Rlu2]. By hypothesis, this ring is an intersection of localizations of

E and is therefore integrally closed. Hence u e Rlu2), and so u satisfies a polynomial

/ over R such that some coefficient of / is a unit of R. It now follows from the u,

z-1-lemma (as in [8, Lemma 19.14]) that rR is a Priifer domain. tr

Proposition 2.2. Let R be an sQQR-doma'in wh'ich i,s not integrallg closed, let

r e R\R, and letP denote the set of primes of R which do not conta'in (R:pr).

Then

(1) Up.p P is the set of nonuniis of R, and
(2) P is infinite (so that R has i,nfini,tely many primes).

Proof .  I f  s  e .Rbut  s  t '  UrrpP, then s isauni tof  l - lpep Rp:  Rlr l  ( theequal i ty

following from LemmaI.2). Since r is integral over R, this implies that s is a unit

of r?. This proves (1). For (2), note that (1) implies that (R :R r) C Up.p P; prime

avoidance then implies that P must be infinite. tr

This leads to our first restriction on (possible) local examples of sQQR-domains

which are not QQR-domains.

Corollary 2.3. Let (R, M) be a local sQQR-domai,n wht'ch is not 'integrally closed.

Then

(1 )  d im  R>  2 ,  and
(2) M 'is not minimal ouer a princtpal i'deal.

Proof. Statement (1) is clear from Proposition 2.2(2). statement (2) follows

from Proposition 2.2(1), upon observing that for a nonzero element a € fuI ,
(R  :p  l l a ) :  ( o ) .  t r
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Proposition 2.4. If Ru i,s an sQQR-doma'in (respectiuely, fQQR-domai.n) for
each matimal i,deaL M of R, then R is an sQQR-domain (respectiuely, |QQR-
domai,n).

Proof. For r € K, we have

,Rfr l  :  n (Rfzl)pyr: n RuVl.
M€Mu(E)  M€Mi l (R)

For M e Max(R), since R14 is an sQQR-domain, Rntl"] is an intersection of local-
izations of Ru and therefore also of R. This takes care of the sQQR-property; the
proof for the fQQR-property is similar.

Despite Proposition 2.4, neither the sQQR-property nor the fQQR-property is
a local property. (We produce a specific example of this in Sec. 3.) In fact, in
Proposition 2.12 below, we show that a domain which is locally a finite dimensional
sQQR-domain is actually a Priifer domain (and hence a QQR-domain).

We are able to localize the sQQR-property in some cases. The first such case
is described in the followine result: other cases will be examined in Remark 2.14
below.

Proposition 2.5. Let R be a sern'ilocal sQQR-domain wi.th Spec(.R) treed. Then
Ru is an sQQR-doma'in for each matimal i,deal M of R.

Proof. Fix a maximal ideal IVI . Let :x e K\M, and let P (respectively, Q) denote
the set of primes which do not contain (R :p r) and which are contained in
M (respectively, are not contained in M). Then we have Rlr] : (fipepRp) n
(l^le.n Rq) by Proposition 1.1. Set S : R\M. Then

Rmlrl

We claim that ([-lq.qfiC)s I )r.pRo. This will suffice to establish the result.
To verify this, select a maximal ideal l/ different ftom M. Since Spec(R) is treed,
Zorn's lemma produces a unique prime ideal N/ which is maximal with respect to
being contained in M a N (possibly, l/' : 0). If (.R :6 r) ( jV', then

/ \

t n Ra I r (Rru)s : RN'f fl ,Rr.
\Q€A.QqN /  s  PeP

If (R :6 r) a N', then no Q e Q satisfies Q C N, and the intersection "degenerates"

to K. The claim now follows easily. tr

We require the concept of unique minimal overring: A proper overring T of a
domain rR is said to be the uni,que minimal ouerring of R if each proper overring

:Rt"t,: b"")"n (n*)": (go") n ("a*)"
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of R is actually an overring of ?. This concept was introduced in [10] as a tool for

studying QQR-domains.

Proposition 2.6. Let (R,M) be a local sQQR-domain, and suppose that R j

Q(tuI). Then

(1) f)(M) is the unique m'inimal ouerring of R,

(2) CI(M) i,s an sQQR-domai:n, and'

(3) ,/0(n1) : R. then R is a Priifer domain.

Proof. (1) Let ? be a proper overring of R, and let t € 7\R. Then Rlt] : )rrp Ro

for some set P of prime of rR with M e P'Since O(l/) : )e+uRq, we have

f ) (M) q Rl t le r .
(2) Pick r Q K, and write Rl"] : lr., Rt for some set P of primes of R.

Since f)(M) is the unique minimal overring of R, this yields Rlr] : f,t(M)lr]; hence

fl(M)[r] is an intersection of localizations of E and therefore also of O(M).

(3) An integrally closed sQQR-domain is a Priifer domain by Proposition 2.1.

tr

Proposition 2.7. Let (R,M) be a local sQQR-domain which is not integrally

c losed,  and,  for  which R 9 @: M).  Then (R:  M) :  (M :  I \ t I )  :  f ) (M) 'CI(M)
'is the un'ique m'i,nimal oaerring of R, and (eractly) one of the following must occur:

(1) (,R : M) is local wi'th marimal ideal M,

(2) (R : M) i,s local wtth marimal ideal di'fferent from M, or

(3) (,R : M) has two marimal ideals lh, 1tr2 with N1O N2 : tu[ .

Proof. By corollary 2.3, M is not principal. since M is maximal, we then have

(R: NI) : (M :,4,1), and this is a proper overring of R. Since (R: M) c C)(M)' this

implies that (R : M): c)(M) and that f)(,4,1) is the unique minimal overring of R

by Proposition 2.6. That this situation results in just the three cases mentioned

follows from 110, Sec. 2]. tr

The next result shows that in cases (1) and (3) above, -R is a QQR-domain. We

recall that a prime ideal of a domain D is unbranched if P is the only P-primary

ideal of D and that in a Priifer domain this is equivalent to having P be the union

of the prime ideals properly contained in P [8, Theorem 23.3].

Proposition 2.8. Let (R,luI) be a local sQQR-domai,n whi.ch i,s not zntegrally

closed, and, for whi,ch R t (R: M). If (R: M) is local w,' ith m,arimal i.deal M

or i.f (R: M) has two mo{ximal ideals, then

(1)  (R :  L ' I ) :  R.
(2) (R: M) is a Priifer domai'n, and

( 3 )  R t s a Q Q R - d o m a i ' n .
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Proof. We first deal with the case where (r? : M) has maximal ideal M. By 110,
Proposition 2.6], R is a valuation domain with maximal ideal M. Hence for u € R,
we have uM C M, and this implies that (R : M) : E. Thus E : ettM) :

fip+u Rp : f|,geqEg for some set Q of primes of E, with Q ) R f M fot each

Q e Q.Since R is a valuation domain, this implies that M is unbranched in E.
By 110, Theorem 3.3], R is a QQR-domain.

Now suppose that (R : M) has two maximal ideals l/r and l/2. In this case, E
is a Priifer domain, M is an ideal of R and 16 n lI2 : M by 110, Proposition 2.5].
Hence  fo r  ue  E ,  wehave  MuC MAc  16  n l / ,  :  M ,andwe  have  u€  (R :  M) .
Hence R : (R : M). We claim that each ,n/, is unbranched. As before we have
R : frot* Rp : )ee'Eq for some set Q of primes in F, with Q a R I M for
each Q. Hence for Q e Q, we must have Q * lL for i : 1,2. If l{. is branched,
we can choose t € Ni but with f in no other prime of E. However, this yields
llt € naeaRa: R, a contradiction. Thus each ly', is unbranched, and -R is a

QQR-domain, again by 110, Theorem 3.3]. tr

Recall that a pseudo-ualuation doma'in is a local domain (R, IV) such that
(R: M) is a valuation domain with maximal ideal M.By Proposition 2.8, we
have the following:

Corollary 2.9. Let (R, M) be a PVD. Then R is sQQR-domain # R i,s a QQR-
dorna'in.

We are not able to rule out the possibility of an example as in case (2) ot
Proposition 2.7. The following result places some restrictions on such an example.

Proposition 2.10. Let (R, M) be a local sQQR-domai,n whi,ch ' is not a QQR-
doma'in. Supposethat R'is as i,n case (2) of Proposi,t i,on2.7. SetT: (R: M), and
let N d,enote the marimal ideal of T. ThenT is non-integrally closed sQQR-domain,
a n d ,  ( T :  N )  : 7 :  Q r ( l t ) .

Proof. 7 is an sQQR-domain by Proposition 2.6. Suppose, by way of contradiction,
that 7 is integrally closed. Then T is a valuation domain by Proposition 2.1. In
particular, we must have ? : R. tfre fact that T : fr"+ttfie then implies that
T : lecaTg for some set Q of primes of ? with N f q. This, in turn, implies
that l/ is unbranched. However, L'I is an ideal of 7 and is therefore an l[-primary
ideal of 7 different fiom ly', a contradiction. Thus 7 is not integrally closed. Now
note that (T : M) : (R ' IVI2) C (-)(,4,1) : ?, from which it follows immediately
that (7 : N) : 7. Moreover, 0(l/) : l^lCl' Te : )etrMTTe : Oplm Rp :

Qp(M) :  f .  t r

Corollary z.LL. If there ' is a local IQQR d,omain (R,ltt ) which i.s not a QQR-
doma'in, then there ' is such an erample with (R: M) : R: A(M).

Proposition 2.L2. Let R be a doma'in such that Ry i,s a fi,ni,te di,mens'ional IQQR-
doma'in for each matimal ideal M of R. Then R i,s a Prti.fer doma'in.
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Proof. If R is a Iocal sQQR-domain of dimension 1, then R is a valuation domain

by Corollary 2.3 and Proposition 2.7. Let (R,I\[) be a local sQQR-domain of finite

dimension greater than 1. By induction, we may assume that .Rp is a valuation

domain for each nonmaximal ideal p.If R: f)(M) : )p+uRp, then rR is an

integrally closed sQQR-domain and is therefore a valuation domain by Proposi-

tion 2.1. Otherwise, f)(M) is the unique minimai overring of R by Proposition 2'6,

and, again since each Rp is integrally closed, we have 0(M) : R. Hence E is

a Priifer domain by Proposition 2.6. Moreover, R has at most two maximal ide-

als f10, Corollary 2.21 and therefore R, and hence also R, has only finitely many

prime ideals. It now follows from Proposition 2.2 that R : R. tnis takes care of

local ,R. The general case follows easily. tr

We are now able to consider what happens when various finiteness conditions

are imposed on an sQQR-domain. Recall that a domain R is said tobe u-coherent if

for each finitely generated ideal .I of ft, we have f 
- I : J, for some finitely generated

fractional ideal J of rR and that .R is a finr,te conductor doma'in if each conductor

ideal (R:s r), where r € K, is finitely generated.

Proposition 2.13. If R is an sQQR-d,omai,n wh'ich i's locally fi'ni,te di'mensional,

and i,f, furtherrnore, R 'is u-coherent or a fin'ite conductor d'oma'in, then R 'is a

Prtifer domai,n. In part'icular, a Noetherian sQQR-doma'in'is a Dedeki'nd doma'in.

Proof. Let r € K.If R is a finite conductor domain, then (R :6 r) is finitely

generated, and .Rlr] is the Kaplansky transform of a finitely generated ideal. If

-R is u-coherent, then (R:p r): (R : (1,")) : I for some finitel;r generated

ideal ,I. Hence by Proposition 1.1 and Lemma 1.2, we again have that R[r] is the

Kaplansky transform of a finitely generated ideal. It then follows from Proposi-

tion 1.1 that each localization of ,R is also an sQQR-domain. The resuit now follows

from Proposition 2.12. tr

Recall that a domain ,R is said to have Noetherian spectru"m if it satisfies the

ascending chain condition on radical ideals and to be a Mori domain if it satisfies

the ascending chain condition on divisorial ideals.

Rernark 2.14. From Proposition 2.4 and the proof of Proposition 2.13, we obtain

that if E is a u-coherent or a finite conductor domain, then B is sQQR if and only

if R is locally sQQR. We shall see later (in the proof of Theorem 2.17) that the

sQQR-property is also a local property for domains with Noetherian spectrum and

for Mori domains.

Lemma 2.I5. Let (R, M) be a non-'integrally closed local sQQR-domain wh'ich

sat'isfies the ascendi,ng chain condit'ion on radi,cals of conductor i,deals. Then Q(XI)
'is the un'ique min'imal ouerring of R.
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Proof. Since R is an sQQR-domain, for each r € K we have Rlt]: f)(,R:6r) :
Q(rad(.R :a z)) by Proposition 1.1 and Lemma 1.2. Nloreover, the ideal (.R :6 r) sat-
isfies the hypothesis of Proposition 1.1(4); hence for r,y € K we have Al/ j Rly)
if and only if rad(R ,n A) 9 rad(rR :6 z). It then follows by our assumption that we
may pick u € E\R such that Rlz] is a minimal extension of rR (i.e., there are no
rings properly between fi and A[u]). By 110, Lemma 2.3), M is the conductor of -R in
Rfu], whence R j (R: M) c AW).The lemma now follows from Proposition 2.6.

tr

It is known that in a Mori domain the radical of a divisorial ideal is again
divisoriai. Hence domains with Noetherian spectrum and Mori domains satisfy the
ascending chain condition on radicals of conductor ideals.

Theorem 2.L6. If R'is a Mori sQQR-domain, then R i,s a Dedekind, doma,in.

Proof. We first handle the case where R is actually assumed to be a Mori QQR-
domain. In this case, since both properties localize. we may as well assume that -R
is also local with maximal ideal M. If lB is integrally closed, then -rR is a valuation
domain, and it is well known that a Mori Priifer domain is a Dedekind domain (see,
e.g., the proof of 13, Proposition 2.6]). Hence we also assume that R is not integrally
closed. By 110, Theorem 3.3], R is a Priifer domain, and the (at most two) maximal
ideals of E are unbranched. However, if Q is a nonzero, nonmaximal prime ideal of
E, then by [7, Lemma 3.4], Rqnn : Re, whence Rqnn is a Mori valuation domain.
It is well known that this implies that Eq is a rank one discrete valuation domain,
whence Q has height one. Thus the maximal ideals of E have finite heiqht, which
contradicbs the fact that they are unbranched.

For the rest of the proof, we explicitly assume that B is not a QQR-domain.
Since for an ideal 1 of a Mori domain, we have ft : Iu : Ju : { for some finitely
generated ideal J of R, we have fl(I) : 0(J) by Proposition 1.1, so that the sQQR-
property localizes. Hence we may assume that R is a local Nlori sQQR-domain with
maximal ideal M . Of course, we may also assume that ,R is not integraily closed. By
Lemma 2.L5, AQ,I): (R : -421) is the unique minimal overring of R. Hence C)(M)
is integral over R, and by 110, Lemma 2.31, It'I is the conductor of fi in fl(M). In
particular, M is divisorial. By Propositions 2.7,2.8, and 2.10, f : A@) is a locai
sQQR-domain which is not integrally closed, and the maximal ideal ,n/ of ? satisfies
(" : ,nf) : 7, so that l/ is nondivisorial. Moreover, since C)(M) : (R: M), A(M)
is again a Mori domain by 113, I, Th6orbme 2]. However, as we just showed, this
implies that the maximal ideal ,A/ of 7 is divisorial. a contradiction. tr

Theorem 2.17. Let R be an sQQR-domain wi,th Noetherian spectrum. Then R is
a Prtifer domai,n.

Proof. A ring with Noetherian spectrum has the property that each radical ideal
is the radical of a finitely generated ideal. Hence each Kaplansky transform is
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the transform of a finitely generated ideal. It then follows from Proposition 1.1

that the sQQR-property localizes for domains with Noetherian spectrum. Hence

we may assume that rR is a local sQQR-domain with maximal ideal ,44. We may

also assume that R is not integrally closed. If R is a QQR-domain, then M is

unbranched by 110, Theorem 3.3]. Howevet, M is the radical of a finitely generated

ideal, which contradicts that fact lhat M is unbranched. (To see this, let M : rad ,,I,

J finitely generated. since M is unbranched, we must have &1 : J , i.e., &1 is finitely

generated. However, Nakayama's lemma then guarantees that M + M', and M2 is

then an M-primary ideal distinct from M, a contradiction.) Hence we may assume

that R is not a QQR-domain. By Lemma2.75,f)(M) is the unique minimal overring

of R, and, as in the proof of Theorem 2.16, M is the conductor of R in 0(M). so

that M is divisorial. Also as in the proof of Theorem 2.16, we obtain that 7- : f)(M)

is a local sQQR-domain with nondivisorial maximal ideal -l/. However, it is easy to

see that the contraction map from Spec(?) to Spec(R) is a homeomorphism' from

which it follows that ? also has Noetherian spectrum. But then the argument just

given shows that lf is divisorial, a contradiction. tr

A one-dimensional domain in which each nonzero element is contained in

only finitely many primes has Noetherian spectrum. Hence we have the following

result.

corollary 2.L8. Let R be a one-di,mens,ional doma'in, and assume that each

nonzero element of R i,s conta,ined 'in only fini,tely many primes. Then R i's an

sQQR-domain e R is a Prilfer doma'in.

Theorem 2.L9. If R is a sem'ilocal sQQR-domain wi,th treed, spectrwm, then R'is

a QQR-domai,n.

Proof. By i10, Theorem 1.9], it suffices to prove that each localization of R is

a QQR-domain. Hence by Proposition 2.5, we may assume that R is local with

maximal ideal M. we may also assume that R is not integrally closed. Let r e E\R,

and write Rl"] :01n,"";ge Rp. Since r is integral over -R, this intersection cannot

contain Bq for any prime Q + M.Thus we must have rad(.R :11 r) : M' Hence

Rltl : ft(M). By Proposition 2.6, ft(M) is the unique minimal overring of R, and.

since r was chosen arbitrarily, we have f)('11) : R, so that fi is a Priifer domain'

Note that in this situation R : )r+*.Rp, and so M must be the union of the

chain of primes properly contained in lff. W" claim that each maximal ideal of E

is unbranched. If not. Iet l/ be a branched maximal ideal of R. Then. since R is

a Priifer domain, ly': rad Ru for some u € R [8. Theorem 23.3]. By 110. sec. 2].

u2 € R, whence M : rad Ru2. However, this contradicts the fact that,&f is the

union of the chain of primes properly contained in M. Hence R is a QQR-domain

by 110, Theorem 3.3]. tr
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3. Examples

In this section, we construct examples of sQQR-domains which are not QQR-
domains.

Lemma 3.7. Consider the following pullback d'iagram.

R ----------+ D

Here, T is a domain, k : T ILI for some mari,mal ideal M of T, g is the canon'ical
homomorphism, and D is a doma'in conta'ined i,n k. Let I be an i,deal of R which
properly conta'ins M. Then CIn(1) :,p-1(flD(p(1))).

Proof. Let n € On(I). Notethat since f ) M wehaver € T.Let u : p(a) € pQ),
where o € /. Then ran e R for some positive integer n. It follows that g@)g@)" e
D. Thus r  e g-r (Qp(e( f ) ) ) .  Now let  a € p-L(QD(e( / ) ) ) ,  and let  b e 1.  We have
p(A) e f)p(p(/)), so that g(Ab*) : p(y)p(b)^ € D for some positive integer m;
that is, Ab* e.R. It follows that y € OR(I). I

Proposition 3.2. Consider the pullback d'iagram of Lemma 3.1, and assume that
T : V 'is a ualuat'ion doma,in and that k is the quotient field of D. Then R 'is an
sQQR-doma'in (respecti,aely, fQQR-domai,n) e D is an sQQR-domai;n (respecti,uely,

fQQR-domai,n).

Proof. We give the details for the sQQR-case, the fQQR-case being similar.
Assume that ,R is an sQQR-domain. Let u € k, and let 1 : ,p-r(D:p u). Pick
u € V wi th p(u) :  u .  Then t :  (R:6 u) ,  and Rlu l :  On(I ) .Hence by Lemma 3.1,
D l " l :  e@lu ) ) :  e (on ( I ) )  :  f ) p (p ( / ) ) )  :  f i o (D  :p  u ) .  Thus  D  i s  an  sQQR-
domain.

For the converse, let r € K. If r € V we can use the same techniques to show
that Rfr] : Cla(fi :p r). If :r e V,then r-1 € M cE, and it is well known (and
easy to show) that RL"]: CIR(r-ift). tr

Proposition 3.3. Let T be a Priifer domain wi.th the following proper-ties:

(I) T i.s one-d'imensi,onal w'ith Max(?) : {M}lP, wi.thP ' inf,n'ire,

(2) Each element of M is in P for almost all P e P (equi,ualently, each fi,ni,tely
generated i;deal contai,ned i,n M 'is contained in P for almost all P eP).

(3) Each element a € 7\ M sat' isfi,es a( P for i.nf,ni,tely many P €P, and

e) f /I't adm'its a proper subfield F such that there are no fields between F
and T lht .
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Then R i,s an sQQR-cJ,oma,in but i,s not a QQR-doma'in, where R is defi'ned by

the following pullback diagram:

R -  F

I I
T  e , T l M

Moreouer. Ru i's not an sQQR-domai'n.

Proof. Let K denote the common quotient field of R and ?. Suppose that Q is

an infinite subset of P. Then for u € )qrnTq,we have that the finitely generated

ideal (77777 r u) f Q for each Q e Q, whence bv (2) (T :7 u) { M'Thusu €Tv'

That is, f1ereTq g TM for each infinite subset Q of P '

Now let r € K\R' We consider two cases'

Case 1. Suppose that ?[r] e Tu' Then (? ry r) g l'f, whence by (3) (" r r) g

P for infinitely many P e P. Thus ?lr] :0o.oTq for some infinite subset Q of

P. Since (T :7 r) f M, wecan choose t €T\M with tr € 7' Now t ( M implies

that g(t) f 0, andwe may find t/ € T with e\t'�) :1. Let r : ttl. Then r € R\"\'f,

andrr €T.If rr ( R, then, since rr e T and 'R C T is a minimal extension

(there are no rings properly between R and ?), we have ? : Rlrrl c R[r] ' whence

Ot"] : flrl : Oe.eTe : fie.sRqnn-Thus we may assume that ru Q R,

so that (i ,n r) f-i,f , ""a *"-hu,r" R["] q R,1a. We shall show, in fact, that

Rlrl : "[r] n R1a, which will complete the proof in this case. Note that M[r] is

a maximal ideal of ?[r], and it follows that Mlr) is also a maximal ideal of R[r]'

Thus we have the following pullback diagram:

Moreover, RIM g RlrllMlrl t RMIMRM, whence Rlr)lMlr): F' Similarlv'

T|r)lM|r) - TlM. Hence R|r] c T[r] is a minimal extension. However, we have

Rlrl e"[r] n R, 9 Tlrl, whence R[r] : rlrlo Ru, as desired'

Case 2. Suppose that ?irl f Tr. Then (?:7r) C Jl'y' ', so that (?:7r) I P

for almost all P e P by (2)' Hence Tlrl:TP')"'aTp* for some finite subset

{&,. . . ,p,}  of  P. I t  foi lows that Mrl l :  r l " l .  However,  MTlr l  :  Mlr)  --

i,r i7"1 c Rlrl, so that Rlrl : Tlr) : )i:rTr, : OT:, Rp,nn'This completes the

proof that fi has the sQQR-property.

Rltl ----, Rlrllrwlrl

t l
rlrl - rlrllMlrl.
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Now by 110, Theorem 1.91 the QQR-property is a local property. Moreover, M is
branched (R is one-dimensional), whence by 110, Theorem J.J), Ry does not have
the QQR-property. Hence rR is not a QQR-domain. Finally, observe that, since R1a
is not integrally closed, Corollary 2.3 assures that Rv is not an sQQR-domain.

tr

There remains the construction of domains with the properties described in
Proposition 3.3. Begin with an almost Dedekind domain ?s which is not Dedekind
(so that there are necessarily infinitely many maximal ideals), which has precisely
one non-finitely generated maximal ideal M, and which satisfies property (2) of
the proposition; [9, Example 2, pp. 338-339] is one such example. We claim that
condition (3) of the proposition is then automatically satisfied. To see this pick
a e Ts\M; then (M, a) : To, and we may choose c e M so that (a,c) : 7o.
Since c lies in almost all P2, o fails to be in almost all P,. As for condition (4),
if it is not already satisfied, replace Ts by T : 7o (X) ("0 (X) : TolX)s, where S
is the multiplicatively closed subset of "slX] consisting of all polynomials having
unit content). By 18, Proposition 36.7], T is again an almost Dedekind domain.
Moreover, the maximal ideals of T are just the extensions of the maximal ideals of
Ts; hence Z has properties (1)-(3) above. The pertinent residue field is TlMf (X) :
(TolM)(X), which admits appropriate subfields F, e.8., F : (TolM)6\.

Since valuation domains are (s)QQR-domains, Propositions 3.2 and 3.3 can be
used to produce examples of arbitrary dimension of sQQR-domains which are not

QQR-domains.

4. Seminorrnality

Recall that if R is a domain with quotient field K, then R is sem'inormol if whenever
r € K with 12, 13 € R, we have r e R. We show below that a QQR-domain is
seminormal, but we have not been able to determine whether an sQQR-domain
(or even an fQQR-domain) need be seminormal. The example of an sQQR-domain
which is not a QQR-domain discussed at the end of Sec. 3 is seminormal (it is also
an fQQR-domain), so a seminormal sQQR-domain need not be a QQR-domain,
but we do not know whether a local seminormal sQQR-domain (or fQQR-domain)
must be a QQR-domain.

Proposition 4.L. A QQR-doma,in ,is semi,normal.

Proof. It suffices to establish the result locally. Hence we assume that (.R, M) is a
local QQR-domain, and we may as weil assume that lQ is not Priifer. By 110, Sec. 2
and Theorem 3.3] either R is a valuation domain with maximal ideal M or R is
a Prtfer domain with two maximal ideals l[,1y'2 such that ,n[ n l/2 : M.In
particular, M is a radical ideal of ,R. Now let r € y'( be such that 12 ,r3 e ,R. Then
r € R. If 12 ( M,then r: n3 lr2 € fi. If 12 € M, then since M is a radical ideal
of -R, we have r e M C R, as desired. tr
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we close with a characterization of seminormal fQQR-domains.

propositio n 4.2. The foltowi,ng statements are equiualent for an fQQR-domai'n R'

(1) Each ouerring of R is serninormal'

iD no"n 'integral finitety generated' ouerring of R is sem'inormal'

(3) n[r] : Rlrz,r3) for each r e K'

iaj tuain :p r) : rad(R iR z'2) 'rad(R :p 13) for each r € K '

(5) R Zs sem'inorrnal.

If R satisfies anE of these equiualent cond''iti'ons, then R is a Prtifer domain'

Proof. The implications (3) e (1) + (2) + (5) are straightforward' Let r € K '

Then, using Proposition i.i' *" have R'lrz,n3l : R[r] <+ 0(R :p (r2'n3)) :

Q ( R : 6 r ) . A s i n t h e p r o o f o f L e m m a - 2 ' l 5 , t h i s l a s t e q u a l i t y h o l d s e r a d ( R : 6
(") , " i j  :  rad(R,*  r ) .  S ln""  (R :p ( r2, r3))  :  (R :p 12)n (R^ ' t  r3) '  th is  proves

(3)  <+ (4) .  Assume (S) ,  t , ta  Iet  o € (Etn ( " , " t ) ) 'Then arz 'ar3 € R'  whence

ia'r)2,(or)3 e R. Since R is seminotma1, ar e R. Thus rad(R ,n 12) orad(R :p

13) c rad(R :a r). The converse always holds' Hence (5) + (4)' Finally' the last

staternent holds by [1, Theorem 2'3]' tr
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