Un. Roma Tre - Corso di Laurea in Matematica, a.a. 2007/2008 AL2 - Tutorato 3

- 1. Mostrare che i gruppi D_4 e H non sono isomorfi.
- 2. Sia K un campo. Determinare il centro di $GL_2(K)$.
- 3. Sia A_4 il gruppo alterno di grado 4 e sia

$$\mathbf{V}_4 = \{(1), (12)(34), (13)(24), (14)(23)\}.$$

Mostrare che V_4 è normale in A_4 calcolando esplicitamente le sue classi laterali destre e sinistre. Determinare inoltre il gruppo quoziente A_4/V_4 .

- 4. Sia $H := \{(1), (12)(34)\} \subseteq \mathbf{V}_4 \subseteq \mathbf{A}_4$. Mostrare che H è normale in \mathbf{V}_4 ma non in \mathbf{A}_4 . Dedurne che la normalità non è una proprietà transitiva.
- 5. Mostrare che il gruppo ortogonale speciale di grado n su \mathbb{R} , $SO_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) ; \det(A) = 1\}$, è un sottogruppo normale di indice 2 del gruppo ortogonale $O_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) ; A^{-1} = A^t\}$.
- 6. Determinare esplicitamente tutti i gruppi quoziente di $(\mathbb{Z}_{24}, +)$.
- 7. Determinare esplicitamente tutti i gruppi quoziente del gruppo moltiplicativo delle unità di \mathbb{Z}_{25} .
- 8. Determinare esplicitamente tutti i sottogruppi ed i gruppi quoziente del gruppo $\mathcal{U}(\mathbb{Z}_{15})$.
- 9. Verificare che la relazione di coniugio in un gruppo è una relazione di equivalenza.

Determinare esplicitamente le classi di coniugio di S_3 , H, D_4 .

- 10. Sia G un gruppo. Mostrare che
 - (1) Se ρ è una relazione di equivalenza compatibile su G,allora $N:=[e]_{\rho}$ è un sottogruppo normale di G e

$$a \ \rho \ b \implies a^{-1}b \in N.$$

(2) La corrispondenza che associa ad ogni relazione di equivalenza compatibile ρ su G il sottogruppo $N:=[e]_{\rho}$ è una corrispondenza biunivoca tra l'insieme delle relazioni di equivalenza compatibili su G e i sottogruppi normali di G.