Un. Roma Tre - Corso di Laurea in Matematica, a.a. 2007/2008 AL2 - Tutorato 7 (22 Novembre), Tutore Valeria Pucci

- 1. Verificare che l'anello $2\mathbb{Z}_{12}$ non è unitario, ma il suo sottoanello $4\mathbb{Z}_{12}$ lo è.
- 2. Verificare che l'insieme

$$F = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} ; a, b \in \mathbb{Z}_3 \right\}$$

è un campo, rispetto alle usuali operazioni di somma e moltiplicazione di matrici.

- 3. Sia $d \in \mathbb{Z}$. Mostrare che l'insieme $\mathbb{Z}[\sqrt{d}] := \{a + b\sqrt{d}; a, b \in \mathbb{Z}\}$ è un sottoanello di \mathbb{C} .
- 4. Determinare il gruppo degli elementi invertibili di $\mathbb{Z}[i]$ e $\mathbb{Z}[i\sqrt{3}]$.
- 5. Sia A un anello ed $a \in A$. a si dice idempotente se $a^2 = a$, a si dice nilpotente se esiste un intero $n \ge 2$ tale che $a^n = 0$.

Mostrare che, se A è commutativo e unitario e $a \neq 0, 1$:

- (a) Se a è nilpotente, allora a è uno zero-divisore;
- (b) Se a è idempotente, allora a è uno zero-divisore;
- (c) Se a è nilpotente, allora a non è idempotente;
- (d) Se a è nilpotente, allora ab è nilpotente, per ogni $b \in A$;
- (e) Se $u \in A$ è invertibile e a è nilpotente, allora u + ab è invertibile, per ogni $b \in A$.
- 6. Sia $n \geq 2$ e $n = p_1^{e_1} \dots p_s^{e_s}$ la sua fattorizzazione in numeri primi. Mostrare che $[a]_n \in \mathbb{Z}_n$ è nilpotente se e soltanto se $p_1 \dots p_s$ divide a.
- 7. Determinare gli elementi invertibili, idempotenti e nilpotenti dell'anello $\mathcal{M}_2(\mathbb{Z}_2)$ delle matrici quadrate di dimensione 2 ad elementi in \mathbb{Z}_2 .
- 8. Sia S un insieme e sia $X\subseteq S$. Verificare che $\mathcal{P}(X)=X\mathcal{P}(S)$ è un ideale di P(S).
- 9. Sia S un insieme. Mostrare che l'insieme dei sottoinsiemi finiti di S è un ideale di $\mathcal{P}(S)$.
- 10. Sia $\mathcal{H}:=\{z+wj\,;\;z,w\in\mathbb{C}\}$ l'algebra dei quaternioni reali. Verificare che l'applicazione

$$\mathcal{H} \longrightarrow \mathcal{M}_2(\mathbb{C}); \quad z + wj \mapsto \begin{pmatrix} w & -z \\ \overline{z} & \overline{w} \end{pmatrix}$$

è un omomorfismo iniettivo.