Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2013/2014AL210 - Algebra 2 Appello C 11 Giugno 2014

Nome_____

 $Cognome_{----}$

Numero di matricola_____

Avvertenza: Svolgere il maggior numero di esercizi nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'uso di alcun ausilio esterno (libri, appunti, telefono, tablet, computer, calcolatrice...).

1. Sia $SL_2(\mathbb{Z})$ il gruppo delle matrici di ordine 2 a coefficenti \mathbb{Z} aventi determinante uguale a 1. Sia N il sottogruppo di $SL_2(\mathbb{Z})$ dato da

$$N := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \ | \ 3 \ \text{divide} \, \text{sia} \, b \, \text{che} \, c \right\}.$$

- (a) Dimostrare che, per ogni matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ che appartiene ad N, 3 divide d-a;
- (b) Usare il primo punto per dimostrare che N è un sottogruppo normale di $SL_2(\mathbb{Z})$;
- (c) Sia $g := \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$. Determinare l'ordine di g in $SL_2(\mathbb{Z})$ e l'ordine della classe gN nel gruppo quoziente $SL_2(\mathbb{Z})/N$.

2. Sia \mathbb{C}^* il gruppo moltiplicativo dei numeri complessi non nulli e si consideri l'applicazione

$$\varphi: \mathbb{C}^* \longrightarrow \mathbb{C}^*; \quad z \mapsto z^3.$$

- (a) Verificare che φ è un omomorfismo di gruppi.
- (b) Determinare il nucleo e l'immagine di φ .
- (c) Mostrare che \mathbb{C}^* è isomorfo al suo gruppo quoziente $\mathbb{C}^*/Ker(\varphi)$.

- 3. Si considerino nell'anello $\mathbb{Z}[i]$ gli ideali $I:=\langle 1+3i\rangle$ e $J:=\langle 3-3i\rangle.$
 - (a) Determinare un generatore per gli ideali I+J e $I\cap J$.
 - (b) Stabilire se gli anelli quozienti $\frac{\mathbb{Z}[i]}{I+J}$ e $\frac{\mathbb{Z}[i]}{I\cap J}$ sono integri o/e campi.

4. Si determini il gruppo degli automorfismi del gruppo ciclico \mathbb{Z}_8 . Si stabilisca inoltre se questo gruppo è ciclico.

- 5. Sia $A := \mathbb{Z}_2[X]$ e sia $I := \langle X^3 + X + 1 \rangle$.
 - (a) Determinare esplicitamente tutti gli elementi di A/I.
 - (b) Stabilire se A/I è un campo