Università degli Studi Roma Tre Corso di laurea in Matematica A.A. 2013-2014 AL210 - Algebra 2 3 Ottobre 2013 - Esercitazione n.2 Antonio Cigliola

Esercizio 1. Sia G un gruppo. Dato $g \in G$, si indichi con g' il simmetrico di g. Dimostrare che

- (i) l'elemento neutro di G è unico;
- (ii) ogni elemento di G ha un unico simmetrico;
- (iii) (g')' = g, per ogni $g \in G$;
- (iv) (gh)' = h'g', per ogni $g, h \in G$.

Esercizio 2. Sia G un gruppo e siano x, y, z suoi elementi. Dimostrare che valgono le seguenti $leggi di \ cancellazione$:

- (i) $xy = xz \implies y = z$;
- (ii) $yx = zx \implies y = z$.

Esercizio 3. A partire dalle tavole moltiplicative, costruire tutti i possibili gruppi con uno, due, tre elementi. Dedurne che questi sono tutti necessariamente commutativi e ciclici.

Esercizio 4. Costruire un sottogruppo di S_3 isomorfo a \mathbb{Z}_3 .

Esercizio 5. Costruire un sottogruppo di S_4 isomorfo a \mathbb{Z}_4 .

Esercizio 6. Costruire esplicitamente un isomorfismo tra \mathbb{C}_4 e \mathbb{Z}_4 .

Esercizio 7. Dimostrare che $\mathbb{C}_n \cong \mathbb{Z}_n$, per ogni intero positivo n.

Esercizio 8 (Gruppo di Klein). Si consideri l'insieme

$$V_4 = \{id, (12)(34), (13)(24), (14)(23)\} \subseteq S_4.$$

Verificare che si tratta di un gruppo, che è abeliano e che non è ciclico. Spiegare inoltre perché non è isomorfo a \mathbb{Z}_4 .

Esercizio 9. Costruire le tabelle moltiplicative di $\mathcal{U}(\mathbb{Z}_m)$ per i valori di m = 1, 2, ..., 12.

Esercizio 10. Suddividere in classi di gruppi isomorfi i seguenti gruppi noti: $\mathcal{U}(\mathbb{Z}_{12}), \quad \mathbb{C}_4, \quad \langle (1234) \rangle \subset S_4, \quad V_4, \quad \mathcal{U}(\mathbb{Z}_5).$

Esercizio 11. Sia G un gruppo finito di ordine un primo p. Dimostrare che G è isomorfo a \mathbb{Z}_p . Dedurne che G è necessariamente abeliano e ciclico.