AL210 - prof.ssa Gabelli Tutorato 8 - 02/12/2013 Tutori: Lorenzo Guerrieri

Esercizio 1

Si considerino in $(\mathbb{Z}, +, \cdot)$ gli ideali $n\mathbb{Z} := (n) = \{nz, z \in \mathbb{Z}\}$:

- Si considerino gli ideali (3), (7), (9), (21), dire quali di essi sono primi e quali massimali;
- Determinare $(21) \cap (9)$, $(3) \cap (7)$, (3) + (9), (3) + (7);
- Descrivere i quozienti di Z con gli ideali (3), (7), (9), (21) stabilendo quali di essi sono campi e quali domini e calcolarne la caratteristica;

Esercizio 2

Siano A e B anelli commutativi unitari e sia $\pi:A\to B$ un omomorfismo suriettivo.

Mostrare che la corrispondenza $Q \to \pi^{-1}(Q)$ è una corrispondenza biunivoca tra gli ideali primi di B e gli ideali primi di A contenenti $Ker(\pi)$.

Esercizio 3

Sia $A = \mathbb{Z}_{(15)} := \{ \frac{m}{15^t} \in \mathbb{Q} \mid m, t \in \mathbb{Z}, t \ge 0 \}.$

- Verificare che A è un sottoanello di \mathbb{Q} .
- Determinare gli elementi invertibili di A.
- Se I è un ideale di A, provare che $I \cap \mathbb{Z}$ è un ideale di \mathbb{Z}
- Provare che $\forall p \neq 3, 5$, con p primo, (p) = pA è un ideale massimale in A e $(p) \cap \mathbb{Z}$ è un ideale primo di \mathbb{Z} .
- Provare che se $I \neq J$ sono ideali di A, allora $I \cap \mathbb{Z} \neq J \cap \mathbb{Z}$.
- Provare che se I è primo o massimale allora $I \cap \mathbb{Z}$ è primo o massimale in \mathbb{Z} .

Esercizio 4

Sia R un anello commutativo ed unitario. Siano I,J due suoi ideali. Sia $I+J:=\{x+y\mid x\in I,y\in J\}$. Sia $\varphi:R\to R/I\times R/J$, l'applicazione definita come $\varphi(r):=(r+I,r+J)$ per ogni $r\in R$.

- (a) Si dimostri che I + J è un ideale di R.
- (b) Si dimostri che φ è un omomorfismo unitario di anelli.
- (c) Si dimostri che φ è suriettivo se, e solo se, I + J = R.
- (d) Si dimostri che il nucleo di φ è $I \cap J$.
- (e) Nel caso $R = \mathbb{Z}$, $I = 5\mathbb{Z}$, $J = 12\mathbb{Z}$, si dimostri che $\mathbb{Z}/60\mathbb{Z} \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$.

Esercizio 5

Sia $A := \mathbb{Z}_7 \times \mathbb{Z}_5$ e $\phi : \mathbb{Z} \to A$ l'applicazione definita da $\phi(x) := ([x]_7, [x]_5)$.

Dimostrare che ϕ è un omomorfismo di anelli, descriverne nucleo e immagine e stabilire se è iniettivo e suriettivo.

Dimostrare inoltre che gli unici ideali primi di A sono:

$$P := [0]_7 \times \mathbb{Z}_5 \in Q := \mathbb{Z}_7 \times [0]_5$$

Determinare $\phi^{-1}(P)$ e $\phi^{-1}(Q)$ e verificare se sono ideali primi di \mathbb{Z} . Descrivere infine $\phi^{-1}([5]_7, [2]_5)$.

Esercizio 6

A anello commutativo si dice regolare se $\forall x \in A \ \exists y \in A \ \text{tale che} \ x = yx^2$. Sia A regolare, dimostrare che:

- ullet Se A è un dominio allora A è un campo.
- Gli ideali primi di A sono massimali.
- \bullet Ogni ideale principale di A è generato da un elemento idempotente.
- Se K è un campo e S un insieme non vuoto allora $K^S := \{f: S \to K\}$ è regolare.

Esercizio 7

Sia $n \geq 0$ e $n = p_1^{e_1} \cdots p_s^{e_s}$ la sua fattorizzazione in fattori primi. Mostrare che $[a]_n \in \mathbb{Z}_n$ è nilpotente se e soltanto se $p_1 \cdots p_S$ divide a.

Esercizio 8

Sia $n \in \mathbb{N}$. Si dimostri che l'anello \mathbb{Z}_n è locale e privo di elementi nilpotenti se e solo se è un campo.

Ricordiamo che un anello si dice locale se possiede un unico ideale massimale.

Esercizio 9

Considerare l'applicazione $\psi: M_2(\mathbb{Z}) \to M_2(\mathbb{Z}_8)$ tale che

$$\psi\left(\begin{array}{cc}a&b\\c&d\end{array}\right):=\left(\begin{array}{cc}\bar{a}\pmod{8}&\bar{b}\pmod{8}\\\bar{c}\pmod{8}&\bar{d}\pmod{8}\end{array}\right).$$

Dopo aver verificato che si tratta di un omomorfismo, calcolarne nucleo e immagine.

Esercizio 10

Sia A un anello commutativo unitario. Dimostrare che se ogni ideale $I \neq A$ è primo, allora A è un campo.