Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2016/2017 AL210 - Esercizi 10

1. Un omomorfismo di anelli unitari $f: A \longrightarrow A'$ tale che $f(1_A) = 1_{A'}$ si chiama un *omomorfismo unitario*.

Dimostrare che:

- (a) Se f non è unitario, cioè $f(1_A) \neq 1_{A'}$, allora $f(1_A)$ è uno zerodivisore in A'.
- (b) Se f è unitario e $a \in A$ è invertibile, f(a) è invertibile in A', con inverso $f(a)^{-1} = f(a^{-1})$.
- (c) Se $f:A\longrightarrow A'$ è un omomorfismo di anelli unitari tale che f è suriettivo, oppure A' è un dominio integro, allora f è unitario e $f(\mathcal{U}(A))\subseteq\mathcal{U}(A')$.
- (d) Se A è un anello unitario e B un suo sottoanello, B può non essere unitario, o avere unità diversa da quella di A. In questo secondo caso, la funzione dentità su B (inclusione), $id_{|B}: B \longrightarrow A$;, $b \mapsto b$ è un omomorfismo non unitario.
- (ad esempio si può prendere $A := \mathbb{Z} \times \mathbb{Z}$ e $B := \mathbb{Z} \times \{0\}$. In questo caso, $1_A = (1, 1)$ e $1_B = (1, 0)$).
- 2. Si considerino in $(\mathbb{Z}, +, \cdot)$ gli ideali $n\mathbb{Z} := (n) = \{nz, z \in \mathbb{Z}\}$:

 Descrivere i quozienti di \mathbb{Z} con gli ideali (3), (7), (9), (21) stabilendo quali di essi sono campi e quali domini e calcolarne la caratteristica.
- 3. Siano A e B anelli commutativi unitari e sia $\pi:A\to B$ un omomorfismo suriettivo.
 - Mostrare che la corrispondenza $Q \to \pi^{-1}(Q)$ è una corrispondenza biunivoca tra gli ideali primi di B e gli ideali primi di A contenenti $Ker(\pi)$.
- 4. Sia A un anello commutativo unitario. Dimostrare che se ogni ideale $I \neq A$ è primo, allora A è un campo.

- 5. Sia $A = \mathbb{Z}_{(15)} := \{ \frac{m}{15^t} \in \mathbb{Q}; m, t \in \mathbb{Z}, t \ge 0 \}.$
 - (a) Verificare che A è un sottoanello di \mathbb{Q} .
 - (b) Determinare gli elementi invertibili di A.
 - (c) Se I è un ideale (risp. ideale primo) di A, provare che $I \cap \mathbb{Z}$ è un ideale (risp. ideale primo) di \mathbb{Z} .
 - (d) Provare che $\forall p \neq 3, 5$, con p primo, (p) = pA è un ideale massimale di A e $(p) \cap \mathbb{Z}$ è un ideale primo di \mathbb{Z} .
 - (e) Provare che se $I \neq J$ sono ideali di A, allora $I \cap \mathbb{Z} \neq J \cap \mathbb{Z}$.
- 6. Sia $A := \mathbb{Z}_7 \times \mathbb{Z}_5$ e sia

$$\phi: \mathbb{Z} \longrightarrow A; \quad x \mapsto ([x]_7, [x]_5).$$

- (a) Dimostrare che ϕ è un omomorfismo suriettivo di anelli e determinarne il nucleo.
- (b) Determinare $\phi^{-1}([5]_7, [2]_5)$.
- (b) Dimostrare che gli unici ideali primi di A sono:

$$P := [0]_7 \times \mathbb{Z}_5 \in Q := \mathbb{Z}_7 \times [0]_5$$

Determinare inoltre $\phi^{-1}(P)$ e $\phi^{-1}(Q)$ e stabilire se essi sono ideali primi di \mathbb{Z} .

- 7. Sia A un dominio euclideo rispetto alla valutazione $v:A\longrightarrow \mathbb{N}$. Mostrare che
 - (a) $v(1) \le v(a)$, per ogni $a \in A^*$.
 - (b) $a \in A^*$ è invertibile se e soltanto se v(a) = v(1).
 - (c) Se $a \in b$ sono associati in A, allora v(a) = v(b).
 - (d) Se $a, b \in A^*$ sono tali che a divide b e v(a) = v(b), allora a e b sono associati.
 - (e) Se $a, b \in A^*$ e b non è invertibile, allora v(a) < v(ab).
- 8. Effettuare la divisione euclidea di 13 + 18i per 5 + 3i in $\mathbb{Z}[i]$. Mostrare che i possibili quozienti (e rispettivi resti) sono quattro.

- 9. Usando l'algoritmo delle divisioni successive, determinare un massimo comune divisore di 5+3i e 13+18i in $\mathbb{Z}[i]$ ed una identità di Bezout per esso.
- 10. Si considerino in $\mathbb{Z}[i]$ gli ideali I=(1+3i) e J=(3-3i) . Determinare gli ideali I+J , IJ e $I\cap J$.
- 11. Si considerino A[X] e $f(x), g(x) \in A[X]$ definiti di seguito. Si determini d(x) := MCD(f(x); g(x)) e due polinomi a(x) e $b(x) \in A[X]$ tali che d(x) = a(x)f(x) + b(x)g(x) nei casi :
 - $A := \mathbb{Q}$; $f(x) = x^4 + x^3 + 2x^2 + x + 1$; $g(x) = 2x^3 3x^2 + 2x + 2$;
 - $A := \mathbb{Z}_2$; $f(x) = x^7 + 1$; $g(x) = x^3 + x$;
 - $A := \mathbb{R}$; $f(x) = x^4 + x^3 x^2 + x + 1$; $g(x) = x^3 + 2x^2 + 2x + 1$;
 - $A := \mathbb{C}$; $f(x) = x^{10} + 7x^5$; $g(x) = 2x^7 + 4x$.