Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2016/2017 AL210 - Esercizi 5

- 1. Mostrare che, se H è un sottogruppo di $\mathbf{S_n}$ che contiene una permutazione dispari, allora esattamente la metà delle permutazioni di H sono dispari (in particolare l'ordine di H è pari).
- 2. Sia \mathbf{H} il gruppo delle unità dei quaternioni.

Determinare almeno un omomorfismo non nullo $\varphi: \mathbf{H} \longrightarrow \mathbb{Z}_4$ ed applicare il Teorema di Omomorfismo.

- 3. Sia G un gruppo ciclico di ordine 4 e sia G' un gruppo di Klein. Determinare tutti i possibili omomorfismi $G \longrightarrow G'$ e $G' \longrightarrow G$.
- 4. Determinare tutti i possibili omomorfismi $\mathbf{H} \to \mathbf{D_4}$ e $D_4 \to \mathbf{H}$.
- 5. Siano (G, +) e (G', +) gruppi commutativi. Mostrare che l'insieme costituito da tutti gli omomorfismi di G in G' è un gruppo commutativo rispetto all'operazione somma puntuale definita da

$$(\phi + \psi)(x) = \phi(x) + \psi(x)$$

Tale gruppo si indica con Hom(G, G').

Determinare esplicitamente i gruppi

$$(\text{Hom}(\mathbb{Z}_{30}, \mathbb{Z}_{21}), +), \quad (\text{Hom}(\mathbb{Z}_{21}, \mathbb{Z}_{30}), +).$$

- 6. Determinare il gruppo degli automorfismi di \mathbb{Z}_{24} .
- 7. (<u>Facoltativo</u>) Si consideri l'applicazione

$$\alpha: (\operatorname{Hom}(\mathbb{Z}_n, \mathbb{Z}_m), +) \longrightarrow \mathbb{Z}_m; \quad \phi \longrightarrow \phi([1]_n).$$

Mostrare che:

- (a) α è un omomorfismo di gruppi iniettivo;
- (b) $\operatorname{Im}(\alpha)$ è il sottogruppo di \mathbb{Z}_m generato dalla classe $[m/d]_m$, con d=MCD(n,m).

Dedurne che $(\text{Hom}(\mathbb{Z}_n,\mathbb{Z}_m),+)$ è un gruppo ciclico di ordine d.

- 8. (a) Mostrare che in un gruppo due elementi coniugati hanno lo stesso ordine.
 - (b) Mostrare che due elementi x,y di un gruppo G sono coniugati se e soltanto se esistono $a,b\in G$ tali che x=ab e y=ba.

Dedurne che, per ogni $h, g \in G$, gli elementi hg e gh hanno lo stesso ordine.

- 9. In un gruppo infinito G, sia F l'insieme degli elementi che hanno un numero finito di coniugati distinti. Provare che F un sottogruppo normale di G.
- 10. Mostrare che se $\pi \in \mathbf{S_n}$ e $\gamma = (a_1, a_2, , a_r)$ è un r-ciclo, allora $\pi \circ \gamma \circ \pi^{-1} = (\pi(a_1), \pi(a_2), \dots, \pi(a_r)).$

Dedurne che tutti gli r-cicli sono coniugati in $\mathbf{S_n}$.

- 11. (a) Verificare che la classe di coniugio di (123) in A_4 (attenzione, non in S_4 !) è composta da quattro elementi.
 - (b) Determinare le classi di coniugio di A_4 e S_4 . Inoltre, per ciascuna classe, determinare il centralizzante di un rappresentante della classe.
 - (c) Determinare, utilizzando le classi di coniugio, i sottogruppi normali di ${\cal A}_4.$
- 12. Sia $\sigma \in \mathbf{S}_5$ un 5-ciclo. Mostrare che il centralizzante di σ in \mathbf{S}_5 è il sottogruppo ciclico $\langle \sigma \rangle$. Dedurne che i 5-cicli si ripartiscono in due classi coniugate di \mathbf{A}_5 , benché essi siano tutti coniugati in \mathbf{S}_5 . (Ricordare che il numero degli *n*-cicli distinti di \mathbf{S}_n è (n-1)!).
- 13. Determinare le classi di coniugio di \mathbf{A}_5 e verificare l'equazione delle classi. Ragionando sui possibili ordini, mostrare che nessun sottogruppo di \mathbf{A}_5 puó essere unione di classi coniugate. Quindi \mathbf{A}_5 non ha sottogruppi normali.
- 14. Identificare D_4 ad un sottogruppo di $\mathbf{S_4}$ e determinare due elementi di D_4 che sono coniugati in $\mathbf{S_4}$ ma non in D_4 .
- 15. Determinare esplicitamente le classi di coniugio di \mathbf{S}_3 , \mathbf{H} , D_4 e verificare l'equazione delle classi.
- 16. Determinare il gruppo degli automorfismi interni di S_3 , H, D_4 .
- 17. Un sottogruppo H di un gruppo G si dice caratteristico se $\alpha(H)=H$, per ogni $\alpha\in Aut(G)$.
 - Mostrare che ogni sottogruppo caratteristico è normale. Mostrare inoltre che un gruppo di Klein non ha sottogruppi caratteristici.
- 18. Mostrare che un sottogruppo finito di un gruppo G che è unico del suo ordine è caratteristico.
- 19. Mostrare che il centro di un gruppo è un sottogruppo caratteristico.
- 20. Sia D_6 il gruppo delle isometrie dell'esagono regolare. Mostrare che D_6 è isomorfo al sottogruppo G di \mathbf{S}_6 generato da $\delta = (26)(35)$ e $\rho = (123456)$. Determinare inoltre le classi coniugate di G.