AL210 - Appunti integrativi - 3

Prof. Stefania Gabelli - a.a. 2016-2017

Nello studio delle strutture algebriche, sono interessanti le relazioni che sono "compatibili con le operazioni".

Vogliamo dimostrare che le relazioni di equivalenza su un gruppo G = (G, *) che sono compatibili con l'operazione * sono in corrispondenza biunivoca con certi sottogruppi particolari di G, che si chiamano sottogruppi normali. Questi sottogruppi sono stati considerati per la prima volta da J.-L. Lagrange nell'ambito dei suoi studi sulla risolubilità per radicali delle equazioni polinomiali (1770).

Vedremo in seguito che, analogamente, le relazioni di equivalenza su un anello $A=(A,+,\cdot)$ che sono compatibili con entrambe le operazioni di addizione e moltiplicazione sono in corrispondenza biunivoca con certi sottoanelli di A, che si chiamano *ideali*. Il concetto di ideale è nato nella metà del 1800, in seguito ai risultati di E. Kummer sull'Ultimo Teorema di Fermat.

Relazioni compatibili

Sia ρ una relazione sull'insieme X. Se * è una operazione su X, ρ si dice $compatibile \ con *$ se

$$x \rho x', y \rho y' \Rightarrow (x * y) \rho (x' * y').$$

Ad esempio:

L'ordinamento naturale in $\mathbb R$ è compatibile con l'addizione e la moltiplicazione:

$$x > x', y > y' \Rightarrow x + y > x' + y', xy > x'y'.$$

La congruenza modulo n in $\mathbb Z$ è compatibile con l'addizione e la moltiplicazione:

$$x \equiv_n x', y \equiv_n y' \Rightarrow x + y \equiv_n x' + y', xy \equiv_n x'y'.$$

Se ρ è una relazione di equivalenza compatibile con *, si può (ben) definire sull'insieme X/ρ delle classi di equivalenza, una operazione "indotta da *", che si indica ancora con lo stesso simbolo, ponendo:

$$\overline{x} * \overline{y} = \overline{x * y}.$$

Infatti, se ρ è una relazione di equivalenza compatibile con l'operazione *, l'operazione indotta su A/ρ non dipende dai rappresentati delle classi. Infatti:

$$\overline{x} = \overline{x'}; \ \overline{y} = \overline{y'} \quad \Leftrightarrow \quad x \rho x', y \rho y' \Rightarrow (x*y) \rho (x'*y') \quad \Leftrightarrow \quad \overline{x*y} = \overline{x'*y'}$$

È facile verificare che se le operazioni su X sono associative, commutative o distributive, anche le operazioni indotte (qualora siano definite) lo sono.

In particolare:

Se (G,*) è un gruppo (rispettivamente, commutativo) e ρ è una relazione di equivalenza compatibile con l'operazione *, l'insieme quoziente G/ρ è ancora un gruppo (rispettivamente, commutativo) rispetto all'operazione indotta. Ovvero

- (g1) * è associativa su G/ρ ;
- (g2) esistenza dell'elemento neutro: Se e è l'elemento neutro di G, \bar{e} è l'elemento neutro di G/ρ . Infatti

$$\overline{g} * \overline{e} = \overline{g * e} = \overline{g} = \overline{e * g} = \overline{e} * \overline{g},$$

per ogni $g \in G$.

(g3) esistenza del simmetrico: se $g' \in G$ è il simmetrico di g, allora $\overline{g'}$ è il simmetrico di \overline{g} . Infatti

$$\overline{g} * \overline{g'} = \overline{g * g'} = \overline{e} = \overline{g' * g} = \overline{g'} * \overline{g}.$$

Nello stesso modo, se $(A, +, \cdot)$ è un anello (rispettivamente, commutativo, unitario) e ρ è compatibile con le operazioni + e \cdot , l'insieme quoziente A/ρ è ancora un anello (rispettivamente, commutativo, unitario) rispetto alle operazioni indotte. Infatti, come visto sopra,

- (a1) $(A/\rho, +)$ è un gruppo commutativo;
- (a2) $(A/\rho, \cdot)$ è un semigruppo (rispettivamente, commutativo, unitario);
- (a3) valgono le proprietà distributive della moltiplicazione rispetto alla somma.

Esempio: La relazione \equiv_n di congruenza modulo n su l'anello degli interi \mathbb{Z} è compatibile sia con con l'addizione che con la moltiplicazione, quindi, ponendo $\mathbb{Z}_n := \mathbb{Z}/\equiv_n$, si ha che $(\mathbb{Z}_n, +, \cdot)$ è un anello, detto l'anello delle classi resto modulo n.

Le operazioni indotte su \mathbb{Z}_n sono definite da:

$$\overline{a} + \overline{b} = \overline{a+b}, \quad \overline{a} \cdot \overline{b} = \overline{a \cdot b}.$$

Sottogruppi normali

Una famiglia $\{X_i\}_{i\in I}$ di sottoinsiemi di un insieme X è una partizione di X se (1) $X = \bigcup_{i\in I} X_i$, (2) comunque scelti $i, j \in I$, risulta $X_i = X_j$ oppure $X_i \cap X_j = \emptyset$.

Le partizioni di un insieme X sono in corrispondenza biunivoca con le relazioni di equivalenza definite sull'insieme stesso.

Infatti, se ρ è una relazione di equivalenza su X e \overline{x} è la classe di $x \in X$, si ha che $X = \bigcup_{x \in X} \overline{x}$ è una partizione. Viceversa, data una partizione $X = \bigcup_{i \in I} X_i$, la relazione $x \rho x'$ se e soltanto se x e x' appartengono ad uno stesso insieme X_i della partizione è una relazione di equivalenza su X.

Quindi due relazioni di equivalenza sono uguali se e soltanto se hanno le stesse classi di equivalenza.

Abbiamo già visto che importanti partizioni di un gruppo G sono date dalle classi laterali rispetto a un sottogruppo.

Sia G un gruppo (in notazione moltiplicativa) e sia $H \subseteq G$ un sottogruppo. Per ogni $g \in G$, definiamo i due sottoinsiemi:

```
gH = \{gh ; h \in H\} (classe laterale sinistra di H rispetto a g); Hg = \{hg ; h \in H\} (classe laterale destra di H rispetto a g).
```

Il sottogruppo H si dice normale in G se gH=Hg, per ogni $g\in G$, questo significa che, per ogni $g\in G$ ed $h\in H$, esiste $h'\in H$ tale che gh=h'g.

Se G è commutativo, gh=hg, per ogni $h\in H$ e $g\in G$, dunque ogni sottogruppo di un gruppo commutativo è normale.

Il sottogruppo $N:=\langle (123)\rangle$ di S_3 è normale, mentre il sottogruppo $H:=\langle (12)\rangle$ non lo è.

Sappiamo che:

Proposizione 3.1: L'insieme delle classi laterali sinistre (rispettivamente, destre) di H formano un partizione di G. Cioè:

- (1) G è unione delle classi laterali sinistre (rispettivamente, destre) di H, ovvero $G = \bigcup_{g \in G} gH = \bigcup_{g \in G} Hg$;
- (2) Due classi laterali sinistre (rispettivamente, destre) di H coincidono oppure sono disgiunte, ovvero, se $g, g' \in G$, risulta gH = g'H oppure $gH \cap g'H = \emptyset$ (rispettivamente, Hg = Hg' oppure $Hg \cap Hg' = \emptyset$).

Possiamo allora definire due relazioni di equivalenza associate ad H, Relazione di congruenza sinistra modulo <math>H:

```
x\,\sigma_H\,y \quad \Leftrightarrow \quad x,y\in gH, \text{ per qualche }g\in G. Poiché x=xe\in xH,\,y\in yH si ha: x\,\sigma_H\,y \ \Leftrightarrow \ xH=yH \ \Leftrightarrow x^{-1}y\in H.
```

Relazione di congruenza destra modulo H:

$$x \, \delta_H \, y \quad \Leftrightarrow \quad x, y \in Hg$$
, per qualche $g \in G$.

Poiché $x = ex \in Hx, y \in Hy$ si ha

$$x \, \delta_H \, y \iff H x = H y \iff x y^{-1} \in H.$$

Per definizione, la classe di equivalenza dell'elemento $g \in G$ rispetto a σ_H è la classe laterale sinistra gH e, analogamente, la classe di equivalenze di g rispetto a δ_H è la classe laterale destra Hg. Allora, i rispettivi insiemi quozienti sono:

$$G/\sigma_H = \{gH : g \in G\}: G/\delta_H = \{Hg : g \in G\}.$$

Segue subito dalle definizioni che $\sigma_H = \delta_H$ se e soltanto se H è un sottogruppo normale.

Teorema 3.2: Sia H un sottogruppo di G e siano σ_H , δ_H le relazioni associate ad H sopra definite. Le seguenti condizioni sono equivalenti:

- (i) H è un sottogruppo normale di G (cioè gH = Hg, per ogni $g \in G$);
- (ii) La relazione σ_H è compatibile;
- (iii) La relazione δ_H è compatibile;
- (iv) $\sigma_H = \delta_H$.

Dimostrazione: Poniamo $\sigma := \sigma_H$ e $\delta := \delta_H$.

- (i) \Leftrightarrow (iv) Basta osservare che classi di equivalenza di σ sono le classi laterali sinistre e quelle di δ sono le classi laterali destre.
- (i), (iv) \Rightarrow (ii), (iii). Sia $\rho := \sigma = \delta$. Dobbiamo far vedere che, se $x_1 \rho y_1$ e $x_2 \rho y_2$, allora $x_1 x_2 \rho y_1 y_2$.

Poiché per ipotesi $x_1H=Hx_1$, possiamo scrivere $x_1h=h'x_1,\,h,h'\in H.$ Inoltre (poiché $\rho:=\delta)$ $x_1y_1^{-1},x_2y_2^{-1}\in H.$ Allora

$$(x_1x_2)(y_1y_2)^{-1} = (x_1x_2)(y_2^{-1}y_1^{-1}) = x_1(x_2y_2^{-1})y_1^{-1} = x_1hy_1^{-1} = h'(x_1y_1^{-1}) \in H.$$

(ii) \Rightarrow (iv). Sia $x\,\sigma\,y$. Poiché $y^{-1}\,\sigma\,y^{-1},$ per compatibilità $xy^{-1}\,\sigma\,yy^{-1}=e.$ Dunque $xy^{-1}\in H$ e $x\,\delta\,y.$

Viceversa, sia $x \, \delta y$, ovvero $xy^{-1} \in H$. Allora $(xy^{-1}) \, \sigma \, e$ e poiché $y \, \sigma \, y$, per compatibilità risulta $x \, \sigma \, y$.

 $(iii) \Rightarrow (iv)$ Analogamente.

Se N è un sottogruppo normale di G, risulta $\sigma_N = \delta_N$. questa relazione si chiama semplicemente la relazione di congruenza modulo N (senza distinguere tra destra e sinistra) e verrà indicata con ρ_N . Dunque, se N è un sottogruppo normale di G,

$$x \rho_N y \Leftrightarrow x^{-1} y \in H \Leftrightarrow x y^{-1} \in H.$$

Dimostriamo finalmente che le relazioni di equivalenza compatibili sono in corrispondenza biunivoca con i sottogruppi normali.

Proposizione 3.3: Sia ρ una relazione di equivalenza compatibile sul gruppo G. Allora l'insieme $N_{\rho} := \{x \in G \; ; \; x \, \rho \, e\} = \overline{e}$ è un sottogruppo normale di G.

Dimostrazione: Sia $N:=N_{\rho}$ e siano $x,y\in N$, ovvero $x \rho e, y \rho e$. Poiché $y^{-1} \rho y^{-1}$, per compatibilità abbiamo $xy^{-1} \rho y^{-1}$ ed $e \rho y^{-1}$. Dunque $xy^{-1} \rho e$, ovvero $xy^{-1} \in N$. Ne segue che N è un sottogruppo di G.

Inoltre, sempre per la compatibilità,

$$x \rho y \Leftrightarrow xy^{-1} \rho e \Leftrightarrow xy^{-1} \in N \Leftrightarrow x \sigma_N y.$$

Dunque σ_N coincide con ρ e perciò è compatibile. Allora, per il teorema precedente, N è normale.

Se ρ è una relazione compatibile su G e $N_{\rho} := \{x \in G; x \rho e\}$ è il sottogruppo normale di G associato a ρ , si ha che $\rho = \rho_{N_{\rho}}$ è la congruenza modulo N_{ρ} . Infatti:

$$x \rho_{N_{\rho}} y \Leftrightarrow xy^{-1} \in N_{\rho} \Leftrightarrow xy^{-1} \rho e \Leftrightarrow x \rho y.$$

Viceversa, se N è un sottogruppo normale di G e ρ_N è la congruenza modulo N, allora $N=N_{\rho_N}.$ Infatti

$$N_{\rho_N} := \{ x \in G \; ; \; x \, \rho_N \, e \} = N.$$

Abbiamo allora il seguente risultato

Teorema 3.4: Sia G un gruppo. Indichiamo con $\mathcal R$ l'insieme delle relazioni di equivalenza su G compatibili e con $\mathcal N$ l'insieme dei sottogruppi normali di G. L'applicazione

$$\alpha: \mathcal{R} \longrightarrow \mathcal{N} ; \quad \rho \mapsto N_{\rho} := \{x \in G; \ x \rho e\} = \overline{e}$$

è un'applicazione biunivoca, la cui inversa è l'applicazione

$$\beta: \mathcal{N} \longrightarrow \mathcal{R}; \quad \mathcal{N} \mapsto \rho_N$$

che associa ad ogni sottogruppo normale N di G la relazione ρ_N di congruenza modulo N da esso definita.

Dimostrazione: Per quanto visto sopra, α e β sono ben definite. Inoltre $\beta(\alpha(\rho)) = \beta(N_{\rho}) = \rho_{N_{\rho}} = \rho$ e $\alpha(\beta(N)) = \alpha(\rho_N) = N_{\rho_N} = N$.

Se G è commutativo ogni suo sottogruppo è normale. In questo caso, tutte le relazioni di congruenza (destra o sinistra) modulo un sottogruppo H di G sono compatibili.

Se $N \subseteq G$ è un sottogruppo normale e ρ_N è la relazione di congruenza modulo N, l'insieme quoziente G/ρ_N viene indicato con G/N. Dunque si ha

$$G/N := G/\rho_N = \{gN \; ; \; g \in G\} = \{Ng \; ; \; g \in G\}.$$

Con questa notazione, per la compatibilità della relazione ρ_N , abbiamo:

Proposizione 2.5: Se $N\subseteq G$ è un sottogruppo normale del gruppo G, l'insieme quoziente G/N delle classi di congruenza modulo N è un gruppo, con l'operazione tra classi

$$(gN)(g'N) = (gg')N.$$

L'elemento neutro di G/N è la classe di e, cioè eN = N. Il simmetrico della classe gN è la classe del simmetrico di g, $(gN)^{-1} = g^{-1}N$.

Inoltre, se G è commutativo anche il gruppo quoziente G/N lo è.

Se N è un sottogruppo normale di G, il gruppo G/N si chiama il gruppo quoziente modulo N.

Omomorfismi

Ricordiamo che tutte le operazioni considerate sono associative. Quindi, se $(X, *_1, ..., *_n)$ è una struttura algebrica, $(X, *_i)$ è un semigruppo, per ogni operazione $*_i$.

Nello studio delle strutture algebriche, sono interessanti le funzioni di insiemi che "conservano le operazioni". Queste funzioni si chiamano un omomorfismi.

Se (G,*), (G',*') sono (semi)gruppi, un omomorfismo di (semi)gruppi è una funzione $f:G\longrightarrow G'$ tale che

$$f(q * h) = f(q) *' f(h)$$
, per ogni $q, h \in G$.

Più in generale, se $(X, *_1, \ldots, *_n)$ e $(X', *'_1, \ldots, *'_n)$ sono strutture algebriche dello stesso tipo, un *omomorfismo* è una funzione $f: X \longrightarrow X'$ tale che

$$f(x *_i y) = f(x) *'_i f(y)$$
, per ogni $x, y \in X : i = 1, ..., n$.

Cioè f è un omomorfismo di semigruppi, per ogni operazione $*_i$.

Un omomorfismo biiettivo si chiama un isomorfismo. Un omomorfismo di X in X si chiama un endomorfismo e un isomorfismo di X in X si chiama un automorfismo.

Notiamo che:

- (1) La funzione identica $id_X: X \longrightarrow X$; $x \mapsto x$ è un automorfismo di X. Inoltre se $Y \subseteq X$, la funzione identica su Y, $id_Y: Y \longrightarrow X$; $y \mapsto y$ è un omomorfismo iniettivo di Y in X.
- (2) Se $f: X \longrightarrow X'$, $g: X' \longrightarrow X''$ sono omomorfismi (rispettivamente, isomorfismi), anche la loro composizione $f \circ g: X \longrightarrow X''$ è un omomorfismo (rispettivamente, isomorfismo).
- (3) Se $f: X \longrightarrow X'$ è un isomorfismo, anche l'applicazione inversa $f^{-1}: X' \longrightarrow X$ è un isomorfismo.

Infatti, se f è biiettiva, è definita la funzione inversa f^{-1} , che è biiettiva. Per vedere che f^{-1} è un omomorfismo, dobbiamo verificare che se * è un'operazione su X e *' è la corrispondente operazione su X', risulta

$$f^{-1}(x' *' y') = f^{-1}(x') * f^{-1}(y')$$

Poiché f è un isomorfismo, esistono (e sono unici) $x, y \in X$ tali che x' = f(x) e y' = f(y) e inoltre f(x * y) = f(x) *' f(y) = x' *' y'. Allora

$$f^{-1}(x'*'y') = f^{-1}(f(x)*'f(y)) = f^{-1}(f(x*y)) = x*y = f^{-1}(x')*f^{-1}(y').$$

Ne segue che la relazione di isomorfismo tra strutture algebriche si comporta come una relazione di equivalenza. Infatti è riflessiva, per (1), simmetrica, per (3), e transitiva, per (2).

Le strutture algebriche si classificano *a meno di isomorfismi*; infatti due strutture algebriche isomorfe hanno le stesse proprietà caratterizzanti e quindi si considerano uguali.

L'insieme Aut(X) degli automorfismi di X è un sottogruppo del gruppo $\mathcal{T}(X)$ delle trasformazioni su X, rispetto alla composizione di funzioni. Infatti:

- (sg0) La composizione di automorfismi è un automorfismo, per (2);
- (sg1) La funzione identica $id_X: X \longrightarrow X; x \mapsto x$ è un automorfismo, per (1);
 - (sg2) Se f è un automorfismo di X, anche f^{-1} lo è, per (3).

Proprietà degli omomorfismi

Siano X, X' strutture algebriche e $f: X \longrightarrow X'$ un omomorfismo. Ovvero, se * è un'operazione su X e *' la corrispondente operazione su X', si ha

$$f(x * y) = f(x) *' f(y)$$
, per ogni $x, y \in X$.

Valgono le seguenti proprietà:

(1) Se $Y \subseteq X$ è un sottoinsieme chiuso rispetto a *, cioè $Y * Y \subseteq Y$, allora f(Y) è un sottoinsieme di X' chiuso rispetto a *', cioè $f(Y) *' f(Y) \subseteq f(Y)$. In altre parole, se Y è un sottosemigruppo di X rispetto a *, allora f(Y) è un sottosemigruppo di X' rispetto a *'.

Infatti, se $y_1, y_2 \in Y$ e Y è chiuso, si ha $y_1 * y_2 \in Y$. Allora

$$f(y_1) *' f(y_2) = f(y_1 * y_2) \subseteq f(Y).$$

(2) Se e è l'elemento neutro di X rispetto a *, f(e) è l'elemento neutro di f(X) rispetto a *'. Inoltre, se X' ha un elemento neutro e' rispetto a *' tale che $e' \in f(X)$, deve risultare f(e) = e'.

Infatti, se e * x = x = x * e, per ogni $x \in X$, deve essere

$$f(e) *' f(x) = f(e * x) = f(x) = f(x * e) = f(x) *' f(e)$$

per ogni $f(x) \in f(X)$.

Inoltre, se $e' \in f(X)$, e' è anche un elemento neutro di f(X). Quindi, per l'unicità dell'elemento neutro in f(X), deve essere f(e) = e'.

(3) Se $x \in X$ è simmetrizzabile rispetto a *, con simmetrico y, allora $f(x) \in f(X)$ è simmetrizzabile in f(X) rispetto a *', con simmetrico f(y).

Infatti, se e è l'elemento neutro di X rispetto a * e si ha x*y = e = y*x, allora f(e) è l'elemento neutro di f(X) rispetto a *' (per (2)) e risulta

$$f(x) *' f(y) = f(e) = f(y) *' f(x).$$

Da queste proprietà segue subito che:

Proposizione 3.6: Se $f: G \longrightarrow G'$ è un omomorfismo di gruppi e H è un sottogruppo di G, f(H) è un sottogruppo di G'. In particolare, Im(f) = f(G) è un sottogruppo di G'.

Inoltre, se e ed e' sono gli elementi neutri di G e G' rispettivamente, si ha f(e) = e' e, in notazione moltiplicativa, $f(g^{-1}) = f(g)^{-1}$, per ogni $g \in G$.

Dimostrazione: f(H) è chiuso per la proprietà (1). Dobbiamo far vedere che $e' \in f(H)$ e $f(h)^{-1} \in f(H)$, per ogni $h \in H$.

Per la proprietà (2), f(e) è l'elemento neutro di f(G). Allora, per ogni $g \in G$, si ha f(g)f(e) = f(g) = f(g)e'. Poiché f(g) è simmetrizzabile in G', cancellando f(g) si ha f(e) = e'. In particolare, poiché $e \in H$, si ha $e' = f(e) \in f(H)$.

Infine, per ogni $g \in G$,

$$e' = f(e) = f(gg^{-1}) = f(g)f(g^{-1}); \quad e' = f(e) = f(g^{-1}g) = f(g^{-1})f(g).$$

Da cui, per l'unicità del simmetrico in G', si ottiene $f(g)^{-1} = f(g^{-1})$. In particolare, poiché per ogni $h \in H$, si ha $h^{-1} \in H$, allora $f(h)^{-1} = f(h^{-1}) \in f(H)$.

La relazione nucleo

Se $f: X \longrightarrow X'$ è un'applicazione di insiemi, la relazione definita su X da

$$x \nu_f y \Leftrightarrow f(x) = f(y)$$

è una relazione di equivalenza su A, chiamata la relazione nucleo associata ad f.

Teorema 3.7: Se $f: X \longrightarrow X'$ è un omomorfismo di strutture algebriche, la relazione nucleo ν_f è compatibile con le operazioni di X.

Dimostrazione: Sia * una operazione su X e sia *' la rispettiva operazione su X. Se f è un omomorfismo e $\nu := \nu_f$, si ha:

$$x \nu x', y \nu y' \Rightarrow f(x) = f(x'), f(y) = f(y') \Rightarrow$$

 $f(x * y) = f(x) *' f(y) = f(x') *' f(y') = f(x' * y') \Rightarrow .$
 $(x * y) \nu (x' * y')$

Per quanto visto nel Teorema 3.4, ad una relazione di equivalenza ρ compatibile su un gruppo G resta associato un sottogruppo normale di G, precisamente il sottogruppo $N=\overline{e}$ formato dagli elementi equivalenti all'elemento neutro $e\in G$. Inoltre le classi di equivalenza di G rispetto a ρ sono precisamente le classi laterali di N. Cioè, in notazione moltiplicativa,

$$g \rho h \Leftrightarrow gN = hN \quad e \quad G/\rho = G/N = \{gN ; g \in G\}.$$

Allora se $f: G \longrightarrow G'$ è un omomorfismo di gruppi, il sottoinsieme

$$N_f = \overline{e} = \{ n \in G ; \ n \nu_f e \} = \{ n \in G ; \ f(n) = f(e) = e' \}$$

è un sottogruppo normale di G.

Questo sottogruppo N_f si chiama il *nucleo* di f e si indica con Ker(f). (La parola inglese Kernel significa Nocciolo.)

Allora

$$Ker(f) = \{ n \in G ; f(n) = e' \}$$

 \mathbf{e}

$$g \nu_f h \Leftrightarrow f(g) = f(h) \Leftrightarrow \overline{g} = g \operatorname{Ker}(f) = h \operatorname{Ker}(f) = \overline{h}$$

 $\Leftrightarrow gh^{-1} \in \operatorname{Ker}(f) \Leftrightarrow f(gh^{-1}) = e'.$

Dunque, per $g \in G$,

$$g \operatorname{Ker}(f) = \{gn \; ; \; n \in \operatorname{Ker}(f)\} = \{h \in G \; , \; h \nu_f g\} = \{h \in G \; , \; f(h) = f(g)\}.$$

е

$$G/\nu_f = G/\operatorname{Ker}(f) = \{g \operatorname{Ker}(f); g \in G\}.$$

Notiamo che $\operatorname{Ker}(f) = G$ se e soltanto se f(g) = e', per ogni $g \in G$, cioè f è l'omomorfismo banale. Da quanto abbiamo appena visto, otteniamo:

Proposizione 3.8: Sia $f: G \longrightarrow G'$ un omomorfismo di gruppi. Allora, se f(g) = g', la controimmagine di g' è $f^{-1}(g') = g \operatorname{Ker}(f)$.

Quindi f è iniettivo se e soltanto se $Ker(f) = \{e\}.$

Vogliamo ora dimostrare che un sottogruppo N di un gruppo G è normale se e soltanto se è il nucleo di qualche omomorfismo di gruppi $f: G \longrightarrow G'$.

Ricordiamo che se ρ è una relazione di equivalenza sull'insieme X, l'applicazione sull'insieme quoziente X/ρ

$$\pi: X \longrightarrow X/\rho; \quad x \mapsto \overline{x}$$

è suriettiva (π si chiama la proiezione canonica).

Proposizione 3.9: Sia (G,*) un gruppo e sia ρ una relazione di equivalenza compatibile su G. Allora G/ρ è un gruppo e la proiezione canonica $\pi: G \longrightarrow G/\rho$ è un omomorfismo suriettivo di gruppi.

Dimostrazione: Abbiamo visto che G/ρ è un gruppo rispetto all'operazione indotta . Per vedere che π è un omomorfismo, basta osservare che, per come sono definite le operazioni indotte su G/ρ , si ha

$$\pi(x * y) = \overline{x * y} = \overline{x} * \overline{y} = \pi(x) * \pi(y).$$

Corollario 3.10: Se G è un gruppo e N è un sottogruppo normale di G, allora G/N è un gruppo e la proiezione canonica

$$\pi: G \longrightarrow G/N \; ; \quad g \mapsto gN$$

è un omomorfismo suriettivo di gruppi il cui nucleo è N.

Dimostrazione: Se N è un sottogruppo normale di un gruppo G, la relazione $\rho = \rho_N$ di congruenza modulo N è compatibile. Allora $G/N = G/\rho$ è un gruppo e la proiezione canonica

$$\pi: G \longrightarrow G/N ; \quad q \mapsto qN$$

è un omomorfismo di gruppi. Inoltre, poiché l'elemento neutro di G/N è la classe eN=N, si ha

$$g \in \text{Ker}(\pi) \quad \Leftrightarrow \quad \pi(g) = gN = N \quad \Leftrightarrow \quad g \in N.$$

Dunque $Ker(\pi) = N$.

Proposizione 3.8: Sia G un gruppo. Un sottoinsieme N di G è un sottogruppo normale se e soltanto se esistono un gruppo G' ed un omomorfismo di gruppi $f: G \longrightarrow G'$ il cui nucleo è Ker(f) = N.

Dimostrazione: Se $f: G \longrightarrow G'$ è un omomorfismo di gruppi, come visto sopra, Ker(f) è un sottogruppo normale di G. Il viceversa segue dal Corollario 3.10.

Teoremi di Omomorfismo

Per le funzioni di insiemi, vale il seguente

Teorema di Decomposizione delle Funzioni: Siano $f: X \longrightarrow X'$ un'applicazione di insiemi e ν_f la relazione nucleo associata ad f. Allora l'applicazione

$$\overline{f}: X/\nu_f \longrightarrow \operatorname{Im}(f) \quad \overline{x} \mapsto f(x)$$

è ben definita e biiettiva. Inoltre, se

$$\pi: X \longrightarrow X/\nu_f \quad x \mapsto \overline{x}$$

è la proiezione canonica, si ha $f = \pi \circ \overline{f}$.

Dimostrazione: È una semplice verifica, ricordando che

$$x \nu_f y \Leftrightarrow f(x) = f(y).$$

Nel caso in cui f sia un omomorfismo di strutture algebriche, Il Teorema di Decomposizione delle Funzioni diventa il così detto Teorema Fondamentale di Omomorfismo.

Teorema Fondamentale di Omomorfismo per i Gruppi: Sia $f: G \longrightarrow G'$ un omomorfismo di gruppi. Allora:

(1) $G/\operatorname{Ker}(f)$ è un gruppo e la proiezione canonica

$$\pi: G \longrightarrow G/\operatorname{Ker}(f); \quad q \mapsto q\operatorname{Ker}(f)$$

è un omomorfismo suriettivo di gruppi;

(2) Im(f) è un gruppo e l'applicazione

$$\overline{f}: G/\operatorname{Ker}(f) \longrightarrow \operatorname{Im}(f) \quad \overline{g}\operatorname{Ker}(f) \mapsto f(g)$$

è un (ben definito) isomorfismo di gruppi.

(3) Risulta $f = \pi \circ \overline{f}$.

Dimostrazione: (1) segue dal Corollario 3.4, perché $\mathrm{Ker}(f)$ è un sottogruppo normale di G.

(2) $\operatorname{Im}(f)$ è un gruppo per la Proposizione 3.1. L'applicazione di insiemi \overline{f} è una (ben definita) funzione biiettiva. Inoltre, poiché f è un omomorfismo,

$$\overline{f}(g\operatorname{Ker}(f)h\operatorname{Ker}(f)) = \overline{f}(gh\operatorname{Ker}(f)) = f(gh) = f(g)f(h) = \overline{f}(g\operatorname{Ker}(f))\overline{f}(h\operatorname{Ker}(f)).$$

(3) segue dal Teorema per le Funzioni.