Corso di laurea in Matematica - Anno Accademico 2016/2017 AL210 - Algebra 2 - Tutorato VII

DOCENTE: PROF.SSA STEFANIA GABELLI TUTORI: M.CEPALE, A. GALOPPINI

Esercizio 1. Siano I e J due ideali in un anello commutativo A. Dimostrare che:

- IJ, $I \cap J$, I + J sono ideali di A;
- $IJ \subset I \cap J$;
- Definendo $(I \cup J) := \{ \sum \alpha i + \beta j | \alpha, \beta \in A, i \in I, j \in J \}, \Rightarrow (I \cup J) = I + J;$
- se I + J = A, e A è anche unitario, allora $IJ = I \cap J$.

ESERCIZIO 2. Sia dato l'insieme $R = \left\{ A \in M_2(\mathbb{R}) | A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \right\}.$

- Si dimostri che $(R, +, \cdot)$ con le usuali operazioni di addizione e moltiplicazione è un anello;
- Verificare se R è o meno sottoanello unitario di $M_2(\mathbb{R})$;
- Dire quali ulteriori proprietà soddisfa $(R, +, \cdot)$.

ESERCIZIO 3. Sia $A = M_n(K)$ l'anello delle matrici $n \times n$ a entrate in un campo K. Dimostrare che $\forall M \in A$ si ha che M è invertibile oppure M è zero-divisore.

Esercizio 4. Dimostrare che ogni dominio finito è un campo.

ESERCIZIO 5. Siano $S \neq \emptyset$ un insieme ed $(A, +, \cdot)$ un anello. Si definiscano sull'insieme $A^S := \{f : S \to A : f \text{ applicazione}\}\$ le operazioni di somma e prodotto puntuali:

$$(f+g)(x) := f(x) + g(x)$$
 $(f \cdot g)(x) := f(x)g(x)$

Si dimostri che:

- \bullet $(A^S,+,\cdot)$ con le operazioni sopra definite è un anello;
- \bullet Se A è unitario anche A^S è unitario;
- Se A è commutativo anche A^S è commutativo;
- \bullet Fornire un esempio in cui A è un dominio di integrità ma A^S non lo è.

Esercizio 6. Un anello booleano è un anello unitario A tale che $a^2=a \ \forall a \in A$

- Dire se è vero che se $(A, +, \cdot)$ è un anello unitario, allora $(Idemp(A), +, \cdot)$ è un anello booleano, e in caso contrario fornire un controesempio;
- Si consideri l'operazione \star : $a \star a' = a + a' 2(a \cdot a')$ definita su un anello unitario $(A, +, \cdot)$. Dire se $(Idemp(A), \star, \cdot)$ è un sottoanello di A, e dimostrare che è un anello booleano;
 - Dimostrare che se $(A, +, \cdot)$ è un anello booleano le operazioni + e \star coincidono;
 - Fornire, se esistono:
- un esempio di anello booleano con zerodivisori;
- un esempio di dominio booleano che non sia un campo;
- un esempio di campo booleano.