Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a.2003/2004

AL3 - Fondamenti di Algebra Commutativa Prof. S. Gabelli

Esercizi 1 - Elementi invertibili e zerodivisori

Nel seguito denotiamo con A un anello commutativo unitario.

1. Mostrare che:

- (a) l'unità di A è unica;
- (b) Se $a \in A$ è invertibile, il suo inverso è unico;
- (c) L'insieme $\mathcal{U}(A)$ degli elementi invertibili di A è un gruppo moltiplicativo.
- 2. Mostrare che l'insieme degli elementi invertibili di A e l'insieme degli zero-divisori di A sono disgiunti.
- 3. Un elemento $a \in A$ si dice *idempotente* se $a^2 = a$; si dice *nilpotente* se esiste un intero $n \ge 1$ tale che $a^n = 0$. Sia ora $a \ne 0, 1$; mostrare che:
 - (a) Se a è nilpotente, allora a è uno zero-divisore;
 - (b) Se a è idempotente, allora a è uno zero-divisore;
 - (c) Se a è nilpotente, allora a non è idempotente;
 - (d) Se a è nilpotente, allora ab è nilpotente, per ogni $b \in A$;
 - (e) Se $u \in A$ è invertibile e a è nilpotente, allora u + ab è invertibile, per ogni $b \in A$.

4. Mostrare che:

- (a) L'insieme $\mathcal{N}il(A)$ degli elementi nilpotenti di A è un ideale di A;
- (b) L'insieme $\mathcal{I}demp(A)$ degli elementi idempotenti di A non è necessariamente un sottoanello di A.
- 5. (*) Sia $n \geq 2$ e $n = p_1^{e_1} \dots p_s^{e_s}$ la sua fattorizzazione in numeri primi. Mostrare che $[a]_n \in \mathbb{Z}_n$ è nilpotente se e soltanto se p_i divide a, per $i = 1, \dots, s$.

- 6. (*) Sia $f(X) := a_0 + a_1 X + \cdots + a_n X^n \in A[X]$. Mostrare che:
 - (a) f(X) è invertibile se e soltanto se a_0 è invertibile e a_i è nilpotente per $i \geq 1$.
 - (b) f(X) è nilpotente se e soltanto se a_i è nilpotente per $i \geq 0$.
 - (c) f(X) è uno zero-divisore se soltanto se esiste $a \in A$ tale che af(X) = 0.
- 7. (*) Determinare esplicitamente gli elementi invertibili, nilpotenti ed idempotenti dei seguenti anelli: \mathbb{Z}_8 , \mathbb{Z}_{12} , \mathbb{Z}_{19} , $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathcal{M}_2(\mathbb{Z}_2)$ (l'anello delle matrici 2×2 su \mathbb{Z}_2), $\mathbb{Z}_{12}[X]$, $\mathbb{Z} \times \mathbb{Z}$.
- 8. (*) Mostrare che, se I è finitamente generato e $I=I^2$, allora I=eA con $e=e^2$.