Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2015/2016

AL410 - Fondamenti di Algebra Commutativa Prof. S. Gabelli

Esercizi 3 – Successioni esatte

1. Siano M_1, M_2 sottomoduli di M. Mostrare che $M = M_1 \oplus M_2$ se e soltanto se esistono morfismi $\pi_i : M \longrightarrow M_i$ e $\epsilon_i : M_i \longrightarrow M$, i = 1, 2, tali che

$$\pi_i \epsilon_i = i d_{M_i}; \quad \pi_i \epsilon_j = 0, i \neq j; \quad \epsilon_1 \pi_1 + \epsilon_2 \pi_2 = i d_M.$$

- 2. Siano M un A-modulo ed $f \in Hom_A(M, M)$ un endomorfismo di M tale che $f \circ f = f$. Provare che M è isomorfo a $Ker(f) \oplus Im(f)$.
- 3. Siano N_1 ed N_2 sottomoduli di un A-modulo M. Verificare che la seguente successione di A-moduli è esatta:

$$0 \longrightarrow N_1 \cap N_2 \stackrel{\varphi}{\longrightarrow} N_1 \oplus N_2 \stackrel{\psi}{\longrightarrow} N_1 + N_2 \longrightarrow 0,$$
 dove $\varphi(x) = (x, x)$ e $\psi((x, y)) = (x - y)$.

- 4. Determinare una risoluzione libera dell'ideale $M = (X, Y, Z) \subseteq k[X, Y, Z]$.
- 5. Mostrare che una somma diretta di moduli liberi è un modulo libero.
- 6. Sia $A = \mathbb{Z}_p \oplus \mathbb{Z}_q$ con p, q due numeri primi distinti. Mostrare che \mathbb{Z}_p e \mathbb{Z}_q non sono liberi su A, mentre ovviamente A lo è. Quindi \mathbb{Z}_p e \mathbb{Z}_q sono A-moduli proiettivi che non sono liberi.
- 7. Verificare che il funtore controvariante $Hom_A(-, M)$ è esatto a sinistra. Cioè, data una successione esatta di A-moduli,

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$
,

la successione

$$0 \longrightarrow Hom_A(N_3, M) \longrightarrow Hom_A(N_2, M) \longrightarrow Hom_A(N_1, M)$$

è esatta.

- 8. Mostrare che il funtore covariante $Hom_{\mathbb{Z}}(\mathbb{Z}_2,-)$ non è esatto a destra.
- 9. Mostrare che il funtore controvariante $Hom_{\mathbb{Z}}(-,\mathbb{Z})$ non è esatto a destra.
- 10. Mostrare che le seguenti condizioni sono equivalenti per un A-modulo E. Un modulo che soddisfa queste condizioni si chiama iniettivo:
 - (a) Il funtore $Hom_A(-, E)$ è esatto (a destra);
 - (b) Ogni successione esatta

$$0 \longrightarrow E \longrightarrow M \longrightarrow N \longrightarrow 0$$

si spezza;

(c) Dato un morfismo $g:N\longrightarrow E$ ed un morfismo iniettivo $f:N\longrightarrow M,$ esiste un morfismo $h:M\longrightarrow E$ tale che g=hf.