Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2017/2018

AL410 - Fondamenti di Algebra Commutativa Prof. S. Gabelli

Esercizi 12 - Valutazioni

Un gruppo abeliano (G, *) è un gruppo (totalmente) ordinato se in esso è definita una relazione \leq di ordine (totale) compatibile con l'operazione, cioè tale che:

$$x < x', y < y' \Rightarrow x * y < x' * y'.$$

Se G è un gruppo additivo ordinato e α è un simbolo, possiamo estendere l'operazione di G e la sua relazione di ordine all'insieme $G \cup \{\alpha\}$ ponendo, per ogni $x \in G$:

$$x < \alpha$$
; $x * \alpha = \alpha * x = \alpha$.

In notazione additiva, si usa porre $\alpha = \infty$, mentre in notazione moltiplicativa si usa $\alpha = 0$.

1. Mostrare che $\mathbb{Z} \times \mathbb{Z}$ è un gruppo totalmente ordinato rispetto all'ordine lexicografico.

Se A è un dominio con campo dei quozienti K, il gruppo moltiplicativo quoziente $\Delta = \frac{K^*}{U(A)}$ si dice il gruppo di divisibilità di A.

 ${\bf 2.}$ Mostrare che il gruppo di divisibilità di un dominio A è un gruppo ordinato rispetto alla relazione

$$xU(A) \le yU(A) \iff xy^{-1} \in A.$$

3. Mostrare che V è un dominio di valutazione se e soltanto se il suo gruppo di divisibilità è un gruppo totalmente ordinato.

Se K è un campo e G è un gruppo additivo ordinato, una applicazione suriettiva $v: K \longrightarrow G \cup \{\infty\}$ si dice una valutazione su K se

$$v(x) = \infty$$
 se e soltanto se $x = 0$;
 $v(xy) = v(x) + v(y)$, per ogni $x, y \in K$;
 $v(x + y) \ge min\{v(x), v(y)\}.$

In notazione moltiplicativa, $v:K\longrightarrow G\cup\{0\}$ è una valutazione se:

$$v(x) = 0$$
 se e soltanto se $x = 0$;
 $v(xy) = v(x)v(y)$, per ogni $x, y \in K$;
 $v(x + y) \le max\{v(x), v(y)\}.$

4. Sia v una valutazione su un campo K, in notazione additiva. Mostrare che l'insieme $A_v := \{x \in K : v(x) \ge 0\}$ è un anello di valutazione con ideale massimale $M_v := \{x \in K : v(x) > 0\}$.

(In notazione moltiplicativa, $A_v := \{x \in K ; v(x) \leq 1\}$ e $M_v := \{x \in K ; v(x) < 1\}$.)

5. Sia (V, M) un anello di valutazione con campo dei quozienti K e gruppo di divisibilità Δ .

Mostrare che l'applicazione $v:V\longrightarrow \Delta\cup\{0\}$ definita da

$$v(0) = 0$$
 e $v(x) = xU(V)$ per $x \in K^*$

è una valutazione su K, in notazione moltiplicativa, il cui anello di valutazione A_v coincide con V.

6. Sia K un campo e $v:K(X)\longrightarrow \mathbb{Z}\cup \{\infty\}$ l'applicazione definita da

$$v(0) = \infty$$
 e $v(f/g) = deg(g) - deg(f)$ per $f \neq 0$.

Mostrare che v è una valutazione discreta, il cui anello associato è $K[X^{-1}]_{(X^{-1})}$.

7. Sia K un campo e $a \in K$. Per ogni $f(X) \in K[X] \setminus \{0\}$, indichiamo con $\mu_a(f)$ la molteplicità di a come radice di f(X), $\mu_a(f) = 0$ se e soltanto se $f(a) \neq 0$.

Sia $v_a:K(X)\longrightarrow \mathbb{Z}\cup \{\infty\}$ l'applicazione definita da

$$v_a(0) = \infty, v_a(f/g) = \mu_a(f) - \mu_a(g) \text{ se } f \neq 0.$$

Mostrare che v_a è una valutazione discreta, il cui anello di valutazione V_a è l'anello delle funzioni razionali definite in a, ovvero

$$V_a = \{ f/g \in K(X) ; g(a) \neq 0 \} = K[X]_{(X-a)}.$$

- 8. Sia K un campo. Mostrare che l'anello delle serie formali K[[X]] è un dominio di valutazione discreta.
- $\mathbf{9.}$ Sia A un dominio a ideali principali. Mostrare che ogni localizzazione di A in un ideale primo non nullo è un dominio di valutazione discreta.
- 10. Sia K un campo e siano v_X, v_Y rispettivamente le valutazioni X-adica e Y-adica su K(X,Y) (ricordare che K[X,Y] è un UFD).

Mostrare che l'applicazione $v:K(X,Y)\longrightarrow \mathbb{Z}\times \mathbb{Z}\cup \{\infty\}$ definita da $v(f/g)=(v_X(f/g),v_Y(f/g))$ è una valutazione su K(X,Y).