Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a.2017/2018

AL3 - Fondamenti di Algebra Commutativa Prof. S. Gabelli

Esercizi 2 - Omomorfismi di moduli

Nel seguito A è un anello commutativo unitario non nullo.

- 1. Siano M, M' A-moduli e sia N un sottomodulo di M. Mostrare che:
 - (a) L'applicazione

$$\pi: M \longrightarrow \frac{M}{N}; \quad x \to x + N$$

è un omomorfismo di A-moduli e il suo nucleo è N.

(b) Se $\varphi: M \longrightarrow M'$ è un omomorfismo di A-moduli e $N \subseteq Ker(\varphi)$, allora l'applicazione

$$\overline{\varphi}: \frac{M}{N} \longrightarrow M'; \quad x + N \to \varphi(x)$$

è ben definita ed è un omomorfismo di A-moduli.

Inoltre $\varphi = \overline{\varphi}\pi$ e se $\psi : \frac{M}{N} \longrightarrow M'$ è un omomorfismo di A-moduli tale che $\varphi = \psi \pi$, allora $\psi = \overline{\varphi}$.

- 2. Siano H, M, N A-moduli. Dimostrare i seguenti Teoremi di Isomorfismo:
 - (a) Primo Teorema di Omomorfismo: Se $\varphi: M \longrightarrow N$ è un omomorfismo di A-moduli, allora l'applicazione

$$\overline{\varphi}: \frac{M}{Ker(\varphi)} \longrightarrow Im(\varphi); \quad x + Ker(\varphi) \to \varphi(x)$$

è ben definita ed è un isomorfismo di A-moduli.

(b) Secondo Teorema di Omomorfismo: L'applicazione

$$\frac{M}{M \cap N} \longrightarrow \frac{M+N}{N}; \quad x + (M \cap N) \to x + N$$

è un isomorfismo di A-moduli.

(c) Terzo Teorema di Omomorfismo o Teorema del Doppio Quoziente: Se $H \subseteq N \subseteq M$, allora l'applicazione

$$\frac{M/H}{N/H} \longrightarrow \frac{M}{N}$$
; $(x+H) + N/H \to x + N$

è un isomorfismo di A-moduli.

- 3. Sia $\varphi: M \longrightarrow M'$ un omomorfismo di moduli. Mostrare che l'applicazione $N \longrightarrow \varphi(N)$, definita sull'insieme dei sottomoduli di M, induce una corrispondenza biunivoca tra i sottomoduli di $Im(\varphi)$ e i sottomoduli di M contenenti $Ker(\varphi)$.
- 4. Verificare che l'applicazione $Hom_A(A, M) \longrightarrow M$ definita da $\alpha \to \alpha(1)$ è un isomorfismo di A-moduli.
- 5. Sia $\varphi:N\longrightarrow N'$ un omomorfismo di A-moduli. Mostrare che le applicazioni

$$Hom_A(M,N) \longrightarrow Hom_A(M,N'); \quad \alpha \to \varphi \alpha$$

$$Hom_A(N', M) \longrightarrow Hom_A(N, M); \quad \alpha \to \alpha \varphi$$

sono omomorfismi di A-moduli.

- 6. Per ogni A-modulo H, indichiamo con $H^* := Hom_A(H, A)$ il modulo duale di H. Mostrare con un esempio che H^* può essere il modulo nullo anche se H non lo è.
- 7. Mostrare che l'applicazione

$$Hom_A(M, N) \longrightarrow Hom_A(N^*, M^*); \quad \varphi \to \varphi^*,$$

dove

$$\varphi^*: N^* \longrightarrow M^*; \quad \alpha \to \alpha \varphi,$$

è un omomorfismo di A-moduli.

Ideali frazionari di un dominio

Se A è un dominio con campo dei quozienti K, un ideale frazionario di A è un sotto A-modulo I di K tale che $(A:_A I) \neq (0)$.

- (a) Mostrare che:
 - i. I è un ideale frazionario se e soltanto se $I = \frac{1}{d}J$, dove $J \subseteq A$ è un ideale e $d \in A \setminus \{0\}$;
 - ii. Se I è un sotto A-modulo di K finitamente generato, allora I è un ideale frazionario;
 - iii. Ogni sotto A-modulo di un ideale frazionario è un ideale frazionario.
- (b) Siano I, J ideali frazionari di A. Mostrare che:

$$IJ$$
; $I \cap J$; $I + J$; $(I :_K J) = \{x \in K ; xJ \subseteq I\}$

sono ideali frazionari.

(c) Mostrare che, se I è un ideale frazionario di A, allora $(I:_K I)$ è un sottoanello di K contenente A.

Mostrare inoltre con un esempio che $(A :_K I)$ non è necessariamente un anello.

(d) Sia I un ideale frazionario di A. Mostrare che l'applicazione

$$\varphi: (A:_K I) \longrightarrow Hom_A(I,A); \quad x \mapsto \varphi(x),$$

dove

$$\varphi(x): I \longrightarrow A; \quad y \mapsto xy,$$

è un isomorfismo di A-moduli.

Per questo motivo l'ideale frazionario $(A:_KI)$ si chiama anche il duale di I.