Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2017/2018 AL410 - Fondamenti di Algebra Commutativa Prof. S. Gabelli

Esercizi 3 – Moduli liberi e Successioni esatte

- 1. Mostrare che un anello che è finitamente generato come A-modulo è anche finitamente generato come A-algebra. Osservare poi che l'anello dei polinomi A[X] è finitamente generato come A-algebra, ma non come A-modulo.
- 2. Siano B una A-algebra e M un B-modulo. Verificare che
 - (a) M è un A-modulo.
 - (b) Se M è generato da $\{m_{\lambda}\}$ su A e B è generato da $\{b_{\mu}\}$ come A-modulo, allora M è generato da $\{b_{\mu}m_{\lambda}\}$ su A.
 - (c) Se M è finito su B e B è finito su A (come A-modulo) allora M è finito su A.
- 3. Siano B una A-algebra commutativa e C una sottoalgebra di B, $A \subseteq C \subseteq B$. Mostrare che:
 - (a) Se C è generato da $\{c_{\lambda}\}$ come A-modulo e B è generato da $\{b_{\mu}\}$ come C-modulo, allora B è generato da $\{b_{\mu}c_{\lambda}\}$ come A-modulo.
 - (b) Se l'insieme $\{c_{\lambda}\}$ è linearmente indipendente su A e l'insieme $\{b_{\mu}\}$ è linearmente indipendente su C, $\{c_{\mu}b_{\lambda}\}$ è linearmente indipendente su A.
- 4. Mostrare che una somma diretta di moduli liberi è un modulo libero.
- 5. Sia A un anello commutativo unitario. Dimostrare che un insieme di elementi di A è sempre linearmente dipendente su A. Quindi un ideale di A è un A-modulo libero se e soltanto se è principale, generato da un non zero-divisore.
- 6. Sia $G = 2\mathbb{Z}$ il gruppo abeliano dei numeri pari. Mostrare che G è libero e che $\{4,6\}$ è un insieme di generatori per G che non contiene alcuna base di G.

- 7. Mostrare con un esempio che, se M è un A-modulo libero, un insieme di elementi di M linearmente indipendenti su A non si può sempre estendere a una base di M. (Suggerimento: Considerare \mathbb{Z}).
- 8. Mostrare con un esempio che un sottomodulo di un modulo libero non è necessariamente libero. (Suggerimento: Considerare gli ideali di un anello).
- 9. Siano M_1, M_2 sottomoduli di M. Mostrare che $M = M_1 \oplus M_2$ se e soltanto se esistono morfismi $\pi_i : M \longrightarrow M_i$ e $\epsilon_i : M_i \longrightarrow M$, i = 1, 2, tali che

$$\pi_i \epsilon_i = i d_{M_i}; \quad \pi_i \epsilon_j = 0, i \neq j; \quad \epsilon_1 \pi_1 + \epsilon_2 \pi_2 = i d_M.$$

- 10. Siano M un A-modulo ed $f \in Hom_A(M, M)$ un endomorfismo di M tale che $f \circ f = f$. Provare che M è isomorfo a $Ker(f) \oplus Im(f)$.
- 11. Siano N_1 ed N_2 sottomoduli di un A-modulo M. Verificare che la seguente successione di A-moduli è esatta:

$$0 \longrightarrow N_1 \cap N_2 \stackrel{\varphi}{\longrightarrow} N_1 \oplus N_2 \stackrel{\psi}{\longrightarrow} N_1 + N_2 \longrightarrow 0,$$

dove $\varphi(x) = (x, x)$ e $\psi((x, y)) = (x - y)$.

12. Proprietà universale della somma diretta:

Sia $\{M_{\lambda}\}$ una famiglia di A-moduli. Mostrare che, se $\iota_{\lambda}: M_{\lambda} \longrightarrow \bigoplus M_{\lambda}$ è la λ -esima iniezione canonica, allora l'applicazione

$$Hom_A(\bigoplus M_{\lambda}, N) \longrightarrow \prod Hom_A(M_{\lambda}, N); \quad \varphi \to (\varphi \iota_{\lambda})$$

è un A-isomorfismo.

In particolare,

$$Hom_A(M_1 \times \cdots \times M_n, N) \subseteq Hom_A(M_1, N) \times \cdots \times Hom_A(M_n, N).$$