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Notation and conventions.

Let X be a set and F be a collection of subsets of X. Then the union (resp., the
intersection) of the members of X will be often denoted simply by

⋃
F (resp.,

⋂
F).

Any ring is assumed to be commutative with 1 6= 0. Any ring homomorphism
f : A −→ B sends, by definition, the multiplicative identity of A to that of B.
If A is a ring and a is an ideal of A, we will denote by

√
a := {x ∈ A : xr ∈

a, for some positive integer r} the radical of a. An ideal a is radical if a =
√
a. If

a1, . . ., an ∈ A, we will denote by (a1, . . ., an)A the ideal generated by a1, . . ., an. Set
Spec(A) := {prime ideals of A}, Max(A) := {maximal ideals of A}. We assume the
convention that any prime ideal is a proper ideal. Of course, we have Max(A) ⊆
Spec(A). It is well known that, for any ideal a of A, then

√
a =

⋂
{p ∈ Spec(A) : p ⊇ a}

Let A ⊆ B be a ring extension. Recall that B is finite over A if B is finitely generated
as an A-module. We say that B is of finite type over A if B = A[b1, . . ., br], for some
b1, . . ., br ∈ B. If B is of finite type over A, say B = A[b1, . . ., br] and b1, . . ., br are
integral over A, then B is integral over A.
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1. Hilbert’s Nullstellensatz.

In the following, K is any field, T1, . . ., Tn are indeterminates over K and An
K is

the n-dimensional affine space over K.

(1.1) Definition. If S is any subset of the polynomial ring K[T1, . . ., Tn], the zero
set of S is the following subset

Z(S) := {p ∈ An
K : f(p) = 0, for any f ∈ S}

of An
K. We say that a subset X of An

K is algebraic if X = Z(S), for some S ⊆
K[T1, . . ., Tn].

(1.2) Remark. Take subsets S, S ′ of K[T1, . . ., Tn].

(a) If S ⊆ S ′, then Z(S) ⊇ Z(S ′).
(b) If a is the ideal of K[T1, . . ., Tn] generated by S, then Z(S) = Z(a).
(c) For any ideal a of K[T1, . . ., Tn] we have Z(a) = Z(

√
a).

Part (a) is trivial. (b): since S ⊆ a we have, by part (a), Z(S) ⊇ Z(a). Conversely,
take a point p ∈ Z(S) and a polynomial f ∈ a. By definition, there are polynomials
f1, . . ., fm ∈ K[T1, . . ., Tn], s1, . . ., sn ∈ S such that f =

∑m
i=1 sifi. Since p ∈ Z(S)

we have si(p) = 0, for 1 ≤ i ≤ m, and thus f(p) = 0. (c): by part (a), the inclusion
a ⊆

√
a implies Z(a) ⊇ Z(

√
a). Take now a point p ∈ Z(a) and a polynomial

f ∈
√
a, and let r be a positive integer such that f r ∈ a. Since p ∈ Z(a) we have

(f r)(p) := (f(p))r = 0, that is, f(p) = 0.

We observe now that any algebraic set is the zero set of a finite collection of
polynomials.

(1.3) Remark. Let X be an algebraic subset of An
K . Then there are polynomials

f1, . . ., fm ∈ K[T1, . . ., Tn] such that X = Z({f1, . . ., fm}).
Indeed, by definition X = Z(S) for some subset S of K[T1, . . ., Tn]. On the other

hand, X = Z(a), where a is the ideal of K[T1, . . ., Tn] generated by S, by (1.2b).
Since K[T1, . . ., Tn] is a Noetherian ring, the ideal a is finitely generated, say by
f1, . . ., fm. Thus X = Z({f1, . . ., fm}), again by (1.2b).

(1.4) Definition. Let X be any subset of An
K. Then the following subset

I(X) := {f ∈ K[T1, . . ., Tn] : f(p) = 0, for any p ∈ X}
is an ideal of K[T1, . . ., Tn], called the ideal of X.

(1.5) Remark. Take a subset X ⊆ An
K .

(a) I(X) is a radical ideal of K[T1, . . ., Tn].
(b) If X is algebraic, then X = Z(I(X)).

(a): take a polynomial f ∈
√
I(X) and a positive integer r such that f r ∈ I(X). For

any point p ∈ X we have (f(p))r = 0, that is, f(p) = 0. In other words, f ∈ I(X).
(b): Let a be an ideal of K[T1, . . ., Tn] such that X = Z(a). The obvious inclusion

a ⊆ I(Z(a)) and (1.2a) imply Z(a) ⊇ Z(I(Z(a))). Conversely, take a point p ∈ Z(a)
and a polynomial f ∈ I(Z(a)). By definition, any point of Z(a) is a zero of f and,
in particular, f(p) = 0.

(1.6) Remark. For any ideal a of K[T1, . . ., Tn], then
√
a ⊆ I(Z(a)). The trivial

proof is left to the reader. Note that the inclusion
√
a ⊆ I(Z(a)) may be strict.

Indeed, if n := 1, K := R and a := (T 2 + 1)R[T ], then a is a maximal ideal of R[T ]
and, in particular, it is a radical ideal. Thus a =

√
a ( I(Z(a)) = I(∅) = R[T ].
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The statement of (1.6) is much more precise when K is algebraically closed.

(1.7) Theorem (Hilbert’s Nullstellensatz). If K is an algebraically closed field
and a is an ideal of K[T1, . . ., Tn], then

√
a = I(Z(a)).

First, we give an immediate corollary of Hilbert’s Nullstellensatz.

(1.8) Corollary. Let K be an algebraically closed field and define the map

ψ : {algebraic subsets of An
K} −→ {radical ideals of K[T1, . . ., Tn]}

by setting ψ(X) := I(X). Then ψ is a order reversing bijection.

Proof. Apply (1.5b) and (1.7). �

Before giving a proof of Hilbert’s Nullstellensatz, we now note that this very
famous and powerful statement admits several equivalent forms.

(1.9) Proposition. The following conditions are equivalent.

(i) Hilbert’s Nullstellensatz holds.
(ii) If K is an algebraically closed field, then

Max(K[T1, . . ., Tn]) = {(T1 − a1, . . ., Tn − an)K[T1, . . ., Tn] : a1, . . ., an ∈ K}.
(iii) If K is an algebraically closed field and a is a proper ideal of K[T1, . . ., Tn],

then Z(a) 6= ∅.

Proof. (i) =⇒ (ii). The inclusion ⊇ is an exercise. Let m be a maximal ideal of
K[T1, . . ., Tn]. Being m, in particular, a radical ideal, by statement (i) we have
m = I(Z(m)) and thus Z(m) is nonempty (otherwise m = I(∅) = K[T1, . . ., Tn]).
Take a point (a1, . . ., an) ∈ Z(m). We claim that Ti − ai ∈ m, for 1 ≤ i ≤ n. If
not, there is an index i such that Ti − ai /∈ m and thus m + (Ti − ai)K[T1, . . ., Tn] =
K[T1, . . ., Tn], since m is maximal. It would follow that there are polynomials m ∈
m, f ∈ K[T1, . . ., Tn] such that 1 = m + (Ti − ai)f . Since (a1, . . ., an) ∈ Z(m), we
have 1 = m(a1, . . ., an)+(ai−ai)f(a1, . . ., an) = 0, a contradiction. This proves that
Ti − ai ∈ m, for 1 ≤ i ≤ n, that is, n := (T1 − a1, . . ., Tn − an) ⊆ m. Since n is a
maximal ideal, it follows m = n.

(ii) =⇒ (iii). Take a proper ideal a of K[T1, . . ., Tn] and let m be a maximal ideal
of K[T1, . . ., Tn] containing a. By (ii), there are elements a1, . . ., an ∈ K such that
m = (T1− a1, . . ., Tn− an)K[T1, . . ., Tn] and clearly, by (1.2a), we have (a1, . . ., an) ∈
Z(m) ⊆ Z(a).

(iii) =⇒ (i). Take any ideal a of K[T1, . . ., Tn]. By (1.6), we have to show that
I(Z(a)) ⊆

√
a. Take a nonzero polynomial f ∈ I(Z(a))) and consider the ring

inclusion K[T1, . . ., Tn] ⊆ B := K[T1, . . ., Tn, U ], where U is a new indeterminate
over K. Let b be the ideal of B generated by a and the polynomial Uf − 1. We
claim that the subset Z(b) of An+1

K is empty. We argue by contradiction, and pick
a point p := (a1, . . ., an, α) ∈ Z(b). Since Uf − 1 ∈ b, we have αf(a1, . . ., an) −
1 = 0. Moreover, since a ⊆ b, we have g(a1, . . ., an) = 0, for any g ∈ a, that is,
(a1, . . ., an) ∈ Z(a). Since f ∈ I(Z(a)) it follows f(a1, . . ., an) = 0 and thus the
equality αf(a1, . . ., an) − 1 = 0 implies −1 = 0, a contradiction. This argument
proves that Z(b) = ∅. Thus, applying condition (iii) to the algebraically closed field
K and to the ideal b of the polynomial ring B we have b = B. Pick polynomials
r1, . . ., rh, s ∈ B, f1, . . ., fh ∈ a such that 1 =

∑h
i=1 rifi + s(Uf − 1), and consider

the ring homomorphism φ : B −→ K(T1, . . ., Tn) such that Ti 7→ Ti, for 1 ≤ i ≤ n,
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U 7→ f−1 and k 7→ k, for any k ∈ K. Thus, in particular, φ is the identity on
K[T1, . . ., Tn]. Then we have

1 =
h∑
i=1

φ(ri)φ(fi)+φ(s)(φ(U)φ(f)−1) =
h∑
i=1

φ(ri)fi+φ(s)(f−1f−1) =
h∑
i=1

φ(ri)fi (?).

Moreover we have

φ(ri) := φ(ri(T1, . . ., Tn, U)) = ri(T1, . . ., Tn, f
−1) =

ρi
fmi

for some ρ1, . . ., ρh ∈ K[T1, . . ., Tn] and some mi ∈ N. Thus (?) is equivalent to

1 =
h∑
i=1

ρi
fmi

fi and, if m = max{m1, . . .,mh}, we get, by multiplying both sides

for fm, the equality fm =
h∑
i=1

ρ̃ifi, for some ρ̃1, . . ., ρ̃h ∈ K[T1, . . ., Tn], that is

f ∈
√
a. �

1.1. G-ideals and Hilbert rings: toward a proof of Hilbert’s Nullstellesatz.
We will present a proof of Hilbert’s Nullstellensatz due to Goldman and Krull. It
is based on the notions of independent interest, that of G-ideal and Hilbert ring.
Thus, these notions will be central in the next step of our investigation.

(1.10) Definition. Let A be a ring and let p ∈ Spec(A). We say that p is a G-ideal
of A if p is not the intersection of a family of prime ideals which are strictly bigger
than p.

For example, any maximal ideal of a ring is a G-ideal.

(1.11) Lemma. Let K be a field. Then, the polynomial ring K[T ] has infinitely
many monic and irredicible polynomials. In particular, Spec(K[T ]) is infinite.

Proof. We argue by contradiction. Assume that the set

Σ := {monic and irredicible polynomials of K[T ]}
is finite, say Σ = {f0 := T, f1, . . ., fn}, and set f := 1 + Tf1f2. . .fn. Then f is
monic and deg(f) > deg(fi), for 0 ≤ i ≤ n. It follows that f /∈ Σ, that is, f is
reducible. Since K[T ] is a UFD, f has at least an irreducible factor g, and we can
clearly assume that g is monic. Then g = fi, for some 0 ≤ i ≤ n. Since g divides
both f and Tf1. . .fn, it follows that g divides 1, a contradiction.

To prove the last statement note that, for an f ∈ Σ, fK[T ] is a maximal ideal
of K[T ]. Moreover, if f, g ∈ Σ and fK[T ] = gK[T ], then f = g. The conclusion
follows since Σ is infinite. �

(1.12) Proposition. For any integral domain D, (0) is not a G-ideal of the poly-
nomial ring D[T ].

Proof. First, we prove the following fact.
Claim. If K is a field, then (0) =

⋂
{m : m ∈ Max(K[T ])}. Indeed, by (1.11), if

f ∈ m, for any mMax(K[T ]), then f would admit infinitely many irreducible factors,
against the fact that K[T ] is a UFD.

Now we can prove the proposition. Let K be the quotient field of D, and let m be
a maximal ideal of K[T ]. Then m is generated by an irreducible polynomial f . Since
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K is the quotient field of D, there is a nonzero element d ∈ D such that df ∈ D[T ]
(and clearly df ∈ m). It follows that {m ∩D[T ] : m ∈ Max(K[T ])} is a collection of
nonzero prime ideals of D[T ]. Then, by the Claim,⋂

m∈Max(K[T ])

(m ∩D[T ]) = (
⋂

m∈Max(K[T ])

m) ∩D[T ] = (0).

The proof is now complete. �

(1.13) Definition. An integral domain D is called a G-domain if (0) is a G-ideal
of D.

(1.14) Example. (1) Any field is a G-domain (because (0) is a maximal ideal).
(2) By (1.12), for any integral domain D, the polynomial ring D[T ] is not a

G-domain.

(1.15) Remark. Let A be a ring and p ∈ Spec(A). For any q ∈ Spec(A), with
q ⊇ p, let q denote the prime ideal of the integral domain A/p corresponding to q.
Then

p is a G-ideal of A

m⋂
{q ∈ Spec(A) : q ) p} ) p

m⋂
{q ∈ Spec(A/p)) : q ) p} ) (0)

m
A/p is a G-domain

(1.16) Proposition. Let D be an integral domain and K be the quotient field of
D. Then, the following conditions are equivalent.

(i) D is a G-domain.
(ii) There exists a nonzero element α ∈ D such that K = D[α−1].

(iii) There exists a nonzero element x ∈ K such that K = D[x].
(iv) K is of finite type over D.

Proof. (i) =⇒ (ii). By definition, there is a nonzero element α ∈ D such that α ∈ p,

for any nonzero prime ideal p of D. Fix any element x ∈ K, say x =
a

b
, for some

a, b ∈ D, b 6= 0. Then, clearly

α ∈
⋂
{p ∈ Spec(D) : p 6= (0)} ⊆

⋂
{p ∈ Spec(D) : b ∈ p} =

√
bD,

and thus there is a positive integer r and an element d ∈ D such that αr = bd, that

is, b−1 =
d

αr
. Then, x =

a

b
=
ad

αr
∈ D[α−1].

(iii) =⇒ (i). Suppose there is an element x :=
a

b
(a, b ∈ D, b 6= 0) such that

K = D[x], let p be any nonzero prime ideal of D and let y ∈ p− (0). By definition,

there are suitable d0, . . ., dn ∈ D such that y−1 =
n∑
i=0

di
ai

bi
. The last equality is

equivalent to the following:

y−1bn = d0b
n + d1ab

n−1 + . . .+ dna
n =: z
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and finally bn = yz ∈ p. Since p is a prime ideal, it follows b ∈ p. Thus b ∈
⋂
{p ∈

Spec(D) : p 6= (0)}.
The equivalence of (i) and (iv) is left to the reader as an exercise. �

We recall now the following well known fact.

(1.17) Proposition. Let A be a ring, S be a multiplicative subset of A and let a be
an ideal of A such that a ∩ S = ∅. Then the following statements hold.

(a) The collection of ideals Σ := {b : b is an ideal of A, b ⊇ a, b ∩ S = ∅} has
maximal elements, under inclusion.

(b) Any maximal element of Σ is a prime ideal of A.

(1.18) Lemma. Let A be a ring and let a be an ideal of A. Then
√
a =

⋂
{p : p is a G-ideal of A, p ⊇ a}

Proof. The inclusion ⊆ is trivial. Then, it suffices to show that, if u ∈ A−
√
a, then

there is a G-ideal p of A such that p ⊇ a and u /∈ p. Take an element u ∈ A −
√
a

and consider the multiplicative subset S := {1, un : n ≥ 1} of A. Then S ∩ a = ∅.
By (1.18), there is a prime ideal p of A which is maximal in the family of ideals
Σ := {b : b is an ideal of A, b ⊇ a, b ∩ S = ∅}, partially ordered by inclusion. In
particular, p ⊇ a, p ∩ S = ∅ and thus u /∈ p. Now, let q any prime ideal of A
such that q ) p . By maximality of p, we have q /∈ Σ, and since q clearly contains
a, we infer that S ∩ q 6= ∅. By primality of q it follows u ∈ q. This proves that
u ∈

⋂
{q ∈ Spec(A) : q ) p} − p, that is, p is a G-ideal. The proof is now

complete. �

(1.19) Definition. We say that a ring A is a Hilbert ring if any G-ideal of A is
maximal.

(1.20) Example. For any field K, the polynomial ring K[T ] is a Hilbert ring.
Indeed, the unique non maximal prime ideal of K[T ] is (0), and it is not a G-ideal,
by (1.12).

(1.21) Proposition. Let A be a ring. Then, the following conditions are equivalent.

(i) A is a Hilbert ring.
(ii) For any ideal a of A,

√
a is an intersection of maximal ideals of A.

Proof. (i)=⇒(ii). Apply (1.18).
(ii)=⇒(i). Let p be a non maximal prime ideal of A. By (ii), there is a set Y of

maximal ideals of A such that p =
⋂
{m : m ∈ Y }. Since p is not a maximal ideal,

we must have p ( m, for any m ∈ Y , and thus p is not a G-ideal. �

We recall now the following well-known fact concerning integral dependence.

(1.22) Proposition. Let A ⊆ B an integral extension of integral domains. Then
A is a field if and only if B is a field.

(1.23) Lemma. Let A ⊆ B be an extension of integral domains such that B = A[t],
for some element t ∈ B which is algebraic over A. Then A is a G-domain if and
only if B is a G-domain.

Proof. Let K (resp., L) be the quotient field of A (resp., B). Then it is straightfor-
ward that L = K[t] and clearly L is algebraic over K.
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(⇐=). Suppose that B is a G-domain. By (1.16), there is an element c ∈ B
such that L = B[c−1] = A[t, c−1]. Clearly, c−1 is algebraic over A, and thus we
can pick nonzero polynomials f, g ∈ A[T ] such that f(c−1) = 0 and g(t) = 0. Let

a (resp., b) be the leading coefficient of f (resp., g), and consider the ring Ã :=

A[a−1, b−1]. Then, the elements c−1, t are integral over Ã: indeed, the polynomials

f ′ := a−1f, g′ := b−1g ∈ Ã[T ] are monic and clearly f ′(c−1) = g′(t) = 0. It follows

that the field L = Ã[c−1, t] is integral over Ã. Thus, by (1.22), Ã is a field and, since

clearly Ã is a field between A and the quotient field K of A, we have Ã = K. This
proves that K is of finite type over A, and thus, in view of (1.16), A is a G-domain.

(=⇒). Suppose now that A is a G-domain and, by (1.16), take a nonzero element
a ∈ A such that K = A[a−1]. Then L = K[t] = A[a−1, t] = B[a−1]. Again by (1.16),
B is a G-domain. �

(1.24) Lemma. Let A be a ring and let q be a G-ideal of the polynomial ring A[T ].
Then q ∩ A is a G-ideal of A.

Proof. If p := A ∩ q, then clearly p[T ] ⊆ q. By (1.15) and (1.12), A[T ]/q is a G-
domain and A[T ]/p[T ] ∼= (A/p)[T ] is not a G-domain. It follows that p[T ] ( q.
Consider now the extension of integral domains D := A/p ⊆ E := A[T ]/q (we can
identify D as a subring of E via the ring embedding a+ p 7→ a+ q, for any a ∈ A).
If t := T + q is the class of T modulo the ideal q, then it is immediately seen that
E = A[t]. In view of (1.23) and (1.15), it is enough to show that t is algebraic over
A. Since p[T ] ( q, we can pick a polynomial f ∈ q − p[T ]. Then, the canonical
image f ∈ D[T ] ∼= A[T ]/p[T ] of f is nonzero. We immediately get f(t) = 0. The
proof is now complete. �

(1.25) Lemma. Let A be a ring and let p be a G-ideal of A. Then, there exists a
maximal ideal m of the polynomial ring A[T ] such that m ∩ A = p.

Proof. By definition, the integral domain D := A/p is a G-domain and thus, by
(1.16), the quotient field of of D is D[d−1], for some d ∈ D, d 6= 0. It follows that
the kernel n of the canonical surjective ring homomorphism π : D[T ] −→ D[d−1],
f(T ) 7→ f(d−1) is a maximal ideal of D[T ]. Since the canonical ring homomorphism
ϕ : A[T ] −→ D[T ] is surjective, we infer that m := ϕ−1(n) is a maximal ideal of
A[T ] and clearly m ⊇ p[T ]. It follows m ∩ A ⊇ p[T ] ∩ A = p. Take now an element
x ∈ m ∩ A. By definition, ϕ(x) := x+ p ∈ D ∩ n = (0), that is, x ∈ p. �

(1.26) Theorem. Let A be a ring and let p ∈ Spec(A). Then, the following condi-
tions are equivalent.

(i) p is a G-ideal of A.
(ii) There exists a maximal ideal of the polynomial ring A[T ] such that m∩A = p.

(iii) There exists a G-ideal q of the polynomial ring A[T ] such that q ∩ A = p.

Proof. Apply (1.24) and (1.25). �

Exercise. Let f : A −→ B be a surjective ring homomorphism.

(1) If A is a Hilbert ring, then B is a Hilbert ring.
(2) If q is a prime ideal of B such that f−1(q) is a G-ideal of A, then q is a

G-ideal of B.

(1.27) Proposition. Let A be a ring and T be an indeterminate over A. Then A
is a Hilbert ring if and only if A[T ] is a Hilbert ring. Furthermore, if A is a Hilbert
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ring and q is any maximal ideal of A[T ] and m := A ∩ q, then q is generated by m
and by a polynomial f ∈ A[T ] whose canonical image in (A/m)[T ] is irreducible.

Proof. By the first part of the previous exercise it follows that if A[T ] is a Hilbert
ring, then A is a Hilbert ring. Thus, assume that A is a Hilbert ring and take any
G-ideal q of A[T ]. We have to show that q is a maximal ideal of A[T ]. By (1.24)
and the fact that A is a Hilbert ring, m := q ∩ A is a maximal ideal of A. Consider
the canonical ring homomorphism π : A[T ] −→ K[T ], where K := A/m, and note
that q ⊇ m[T ] = Ker(π). Then, there exists a unique prime ideal q of K[T ] such
that π−1(q) = q. By the second part of the previous exercise and the fact that K[T ]
is a Hilbert ring (see (1.20)), q is a maximal ideal of K[T ], that is, q = fK[T ],
where f ∈ A[T ] and the canonical image f in K[T ] is irreducible. It follows that q
is a maximal ideal of A[T ] (being it the inverse image of a maximal ideal, namely
q, under a surjective ring homomorphism) and moreover q is generated by m and f .
The proof is now complete. �

(1.28) Corollary. Let K be a field and T1, . . ., Tn be indeterminates over K. Then
K[T1, . . ., Tn] is a Hilbert ring.

Proof. It is enough to apply (1.27) and induction, keeping in mind that any field is
a Hilbert ring. �

We can now prove Hilbert’s Nullstellensatz (precisely, the equivalent form (ii) of it
given in (1.9)).

(1.29) Theorem. Let K be an algebraically closed field. Then

Max(K[T1, . . ., Tn]) = {(T1 − a1, . . ., Tn − an)K[T1, . . ., Tn] : a1, . . ., an ∈ K}.

Proof. The inclusion ⊇ is an easy exercise. We prove the converse inclusion by
induction of the number n of the indeterminates over K. If n = 1, the maximal
ideals of the PID K[T ] are principal generated by the monic irreducible polynomials
over K and, since K is algebraically closed, such polynomials are linear. Suppose
n ≥ 1 and assume that

Max(K[T1, . . ., Tn]) = {(T1 − a1, . . ., Tn − an)K[T1, . . ., Tn] : a1, . . ., an ∈ K}.
Let m be a maximal ideal of the polynomial ring K[T1, . . ., Tn, T ]. Since A :=
K[T1, . . ., Tn] is a Hilbert domain, then m ∩ A is a maximal ideal of A, by (1.24).
By inductive assumption, m∩A = (T1− a1, . . ., Tn− an)A, for some a1, . . ., an ∈ K.
Furthermore, by (1.27), m is generated by m∩A and by a polynomial f ∈ A[T ] whose
canonical image in (A/(m ∩ A))[T ] is irreducible. Since clearly A/(m ∩ A) ∼= K is
algebraically closed, a suitable polynomial f can be choosen of the type f := T − a,
for some a ∈ K. The proof is now complete. �

(1.30) Remark. Let K be an algebraically closed field. From the previous version
of Hilbert’s Nullstellensatz it immediately follows that the map

ϕ : An
K −→ Max(K[T1, . . ., Tn])

(a1, . . ., an) 7→ (T1 − a1, . . ., Tn − an)K[T1, . . ., Tn]

is a bijection. We will see soon that this map is a homeomorphism of topolog-
ical spaces too. To do this we need to define natural topologies on An

K and on
Max(K[T1, . . ., Tn]). This motivates the next section.
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2. The Zariski topology on the affine space An
K

As in the previous section, K is a field and T1, . . ., Tn are indeterminates over K.
Through these notes, we assume the usual convention that any topological space is
nonempty. The closure of a subset Y of a topological space X will be denoted, as
usual, by Y .

(2.1) Proposition. The algebraic subsets of An
K are the closed sets for a topology

on An
K. This topology is called the Zariski topology.

Proof. Keeping in mind (1.2b), is sufficient to note that

(1) Z({0}) = An
K , Z({1}) = ∅;

(2) Z(a ∩ b) = Z(a) ∪ Z(b), for any pair of ideals a, b of K[T1, . . ., Tn];
(3) Z(

⋃
i∈I ai) =

⋂
i∈I Z(ai), for any collection of ideals {ai : i ∈ I} ofK[T1, . . ., Tn].

Statement (1) is trivial. In view of (1.2a), it is enough to show that Z(a ∩ b) ⊆
Z(a) ∩ Z(b) and that

⋂
i∈I Z(ai) ⊆ Z(

⋃
i∈I ai).

Take an element p ∈ Z(a∩b). If p /∈ Z(a)∪Z(b), there are polynomials f ∈ a, g ∈ b
such that f(p), g(p) 6= 0. Clearly, the polynomial fg ∈ a ∩ b and fg(p) 6= 0, agaist
the fact that p ∈ Z(a ∩ b).

Take an element p ∈
⋂
i∈I Z(ai), and let f ∈

⋃
i∈I ai. Then, f ∈ aj, for some j ∈ I

and since, in particular, p ∈ Z(aj), we have f(p) = 0. �

(2.2) Remark. Let K be a field.

(a) An
K is a T1 space (that is, any singleton is a closed set). As a matter of fact,

for any p = (a1, . . ., an) ∈ An
K , we have {p} = Z({T1 − a1, . . ., Tn − an}).

(b) A1
K has the cofinite topology. Indeed, let C be a proper closed subset of A1

K .
Then, keeping in mind that K[T ] is a PID, there is a nonzero polynomial
f ∈ K[T ] such that C = Z(fK[T ]) = Z({f}). Thus C is finite since any
nonzero polynomial in one indeterminate over a field has finitely many roots.

(c) The collection of the open sets of An
K of the form Df := An

K −Z({f}), for any
f ∈ K[T1, . . ., Tn], is a basis of the Zariski topology. As a matter of fact, let
Ω ⊆ An

K be an open set and let p ∈ Ω. Since Ω = An
K − V (a) for some ideal

a of K[T1, . . ., Tn], there is a polynomial f ∈ a such that f(p) 6= 0. It follows
p ∈ Df ⊆ Ω.

(2.3) Definition. A topological space is called to be Noetherian if any countable
ascending chain of open sets stabilizes (or, equivalently, if any countable descending
chain of closed sets stabilizes).

(2.4) Remark. Let X be a topological space.

(a) Then is Noetherian if and only if any nonempty collection of closed subsets of
X has a minimal element under inclusion.

(b) If X is Noetherian, then any subspace of X is Noetherian.

The easy proof is left as an exercise.

(2.5) Proposition. Let K be a field. Then An
K is Noetherian, endowed with the

Zariski topology.

Proof. Let

C1 ⊇ C2 ⊇ . . . ⊇ Cn ⊇ . . .
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be a descending chain of closed subsets of An
K . Clearly we get the ascending chain

of radical ideals
I(C1) ⊆ I(C2) ⊆ . . . ⊆ I(Cn) ⊆ . . .

of the Noetherian ring K[T1, . . ., Tn]. Thus this chain stabilizes and thus there is a
positive integer i such that I(Cm) = I(Ci), for any m ≥ i. Finally, by (1.5b) we
have Cm = Ci, for any m ≥ i. �

(2.6) Proposition. Any Noetherian space is compact.

Proof. Assume that X is a Noetherian space and let F be a nonempty collection of
closed subsets of X with the finite intersection property. Let Σ denote the collection
of all the intersections of finite subfamilies of F . By assumption, Σ consists of
nonempty sets. By (2.4a), Σ has a minimal element, say C0, and, since Σ is closed
under finite intersections, C0 is the minimum of Σ. It follows immediately that⋂
{C : C ∈ F} = C0 6= ∅. �

(2.7) Definition. A topological space X is called to be irreducible if it not a finite
union of closed proper subspaces of X (in other words, two nonempty open subsets
of X have nonempty intersection, that is, any nonempty open subset of X is dense
in X).

(2.8) Example. If K is a finite field, then An
K is reducible. Indeed it can be realized

as finite union of singletons and each of them is closed, by (2.2).

We give now a criterion to decide when an algebraic set is irreducible (with the
subspace Zariski topology).

(2.9) Proposition. Let X be a closed subset of An
K. Then X is irreducible if and

only if the ideal I(X) of X is a prime ideal of K[T1, . . ., Tn].

Proof. Assume that X is reducible and take closed proper subsets X1, X2 of X such
that X1∪X2 = X. Keeping in mind (1.5b), for each i = 1, 2, we have I(X) ( I(Xi),
and thus there is an element fi ∈ I(Xi) − I(X). It immediately follows that the
polynomial f := f1f2 ∈ I(X), that is, I(X) is not a prime ideal.

Conversely, suppose that I(X) is not a prime ideal, and take polynomials f, g ∈
K[T1, . . ., Tn] − I(X) such that fg ∈ I(X), and take points p, q ∈ X such that
f(p), g(q) 6= 0. Consider the closed subspaces C := Z({f}), D := Z({g}) of An

K . It
immediately follows that X = (C ∩X)∪ (D ∩X) and that C ∩X,D ∩X are closed
proper subsets of X (since p ∈ X − C, q ∈ X −D). Thus X is reducible. �

(2.10) Corollary. Let K be an algebraically closed field. Then, the map ψ defined
in (1.8) restricts to a order reversing bijection

{Irreducible closed subsets of An
K} −→ Spec(K[T1, . . ., Tn])

Proof. Apply (1.8) and (2.9). �

(2.11) Lemma. Let K be an infinite field and let f ∈ K[T1, . . ., Tn] be a nonzero
polynomial. Then the set An

K − Z({f}) is infinite.

Proof. We can assume that f is not a constant and show the statement by induction
on n. The case n = 1 is trivial, because a nonconstant polynomial in one variable over
a field has only finitely many roots. Suppose now that n ≥ 1 and that An

K −Z({f})
is infinite, for any nonconstant polynomial f ∈ K[T1, . . ., Tn]. Take a nonconstant
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polynomial g ∈ K[T1, . . ., Tn, T ]. We can clearly assume that T appears in the
expression of g, and thus we can write g = φ0 + φ1T + . . . + φrT

r, where r is a
positive integer, φi ∈ K[T1, . . ., Tn], for 1 ≤ i ≤ r and φr 6= 0. By the inductive
assumption, there are infinitely many points p ∈ An

K such that φr(p) 6= 0, thus let
(a1, . . ., an) be one of them. Then

g′(T ) := φ0(a1, . . ., an) + φ1(a1, . . ., an)T + . . .+ φr(a1, . . ., an)T r

is a nonzero polynomial in one variable. Since K is infinite, there are infinitely many
elements α ∈ K such that g′(α) 6= 0, and then An+1

K − Z({g}) is infinite, containing
it {(a1, . . ., an, α) : g′(α) 6= 0}. �

(2.12) Example. Let K be a infinite field. By (2.11), we have I(An
K) = {0}. Thus,

by (2.9), An
K is irreducible.

(2.13) Definition. Let X be a topological space. An irreducible subset of X which
is maximal under inclusion is called an irreducible component of X.

(2.14) Proposition. Let X be a topological space. Then, X is union of its irre-
ducible components. In particular, X has irreducible components.

Proof. Take a point x ∈ X. It suffices to show that there exists an irreducible
component of X containing x. Consider the collection

Σ := {Y ⊆ X : x ∈ Y, Y is irreducible}

of subsets of X, partially orederd by inclusion, and note that Σ is nonempty, because
{x} is irreducible. Let C ⊆ Σ be a chain and let C be the union of the sets in the
chain C. We claim that C is irreducible. Suppose this is false, and take closed
subsets F,G ⊆ X such that C = (F ∩ C) ∪ (G ∩ C) and F ∩ C,G ∩ C ( C. Take
points xF , xG ∈ C such that xF /∈ F, xG /∈ G, and let CF , CG ∈ C be such that
xF ∈ CF , xG ∈ CG. Since C is a chain we can assume that CF ⊆ CG. From the
obvious inclusions CG ⊆ C ⊆ F ∪ G it follows that CG = (F ∩ CG) ∪ (G ∩ CG)
and, moreover, F ∩ CG, G ∩ CG are closed proper subspaces of CG, a contradiction,
because CG ∈ C ⊆ Σ implies that CG is irreducible. Then Zorn’s Lemma implies
that Σ has maximal elements and, clearly, any maximal element is an irreducible
component of X containing x. �

(2.15) Proposition. Let X be a topological space.

(a) If a subset Y of X is irreducible, then Y is irreducible too.
(b) The irreducible components of X are closed.
(c) If X is irreducible and f : X −→ S is a continuous surjective function of

topological spaces, then S is irreducible.

Proof. (a). Since Y is closed in X, then the closed subspaces of Y are closed in
X too. Let C1, C2 be closed subsets of X such that Y = C1 ∪ C2 and note that
Y = (C1 ∩ Y ) ∪ (C2 ∩ Y ). The subsets Ci ∩ Y , i = 1, 2, are closed subspaces of Y
(in the subspace topology), and, since Y is irreducible, we can assume Y = C1 ∩ Y ,
that is Y ⊆ C1. Since C1 is closed in X we have Y ⊆ C1, i.e., Y = C1.

(b). It is a trivial consequence of (a).
(c). The proof is straightforward and it is left to the reader. �

The proof of the following lemma is left to the reader.
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(2.16) Lemma. Let X be a topological space and let F be a finite collection of closed
irreducible subspaces of X such that

⋃
F = X. Then, any irreducible component

of X belongs to F . In particular, X has only finitely many irreducible components.
Furthermore, if the members of F are pairwise incomparable, then F is the family
of all irreducible components of X.

(2.17) Proposition. Let X be a Noetherian space. Then X has only finitely many
irreducible components.

Proof. Suppose that the statement is false. Then, the collection Σ of all the closed
subspaces ofX having infinitely many irreducible components is nonempty and, since
X is Noetherian, Σ has a minimal element, say T . In particular, T is reducible, and
thus there are closed proper subsets of T , say C,D such that T = C ∪D (note that,
since T is closed in X, then C,D are closed in X too). By minimality we have C,D /∈
Σ, and thus they have only finitely many irreducible components. Let E1, . . ., En
(resp., En+1, . . ., Em) be the irreducible components of C (resp., D). Then, T is the
union of the finite collection F := {Ei : 1 ≤ i ≤ m} of closed irreducible subspaces,
and thus (2.16) implies that T has only finitely many irreducible components, a
contradiction, because T ∈ Σ. The proof is now complete. �

(2.18) Remark. Let K be an algebraically closed field, and let p be a prime ideal
of K[T1, . . ., Tn]. Then Z(p) is irreducible. Indeed, by Hilbert’s Nullstellensatz, we
have I(Z(p)) =

√
p = p, and thus the conclusion follows from (2.9). As a particular

case, if f ∈ K[T1, . . ., Tn] is an irreducible polynomial, then the ideal p generated by
f is prime, and thus Z({f}) is irreducible.

The conclusions of the previous remark may fail when K is not algebraically
closed, as the following example shows.

(2.19) Example. Let K be a finite field, consider the irreducible polynomial f :=
T ∈ K[T, U ] and set C := Z({f}). Then clerly C = {(0, a) : a ∈ K} is a finite
union of singletons, and thus it is reducible.

(2.20) Example. Let K be an algebraically closed field and let f ∈ K[T1, . . ., Tn].
Suppose that f = cfn1

1 · · · fnr
r , where fni

i ∈ K[T1, . . ., Tn] is irreducible, for 1 ≤ i ≤ r,
c ∈ K, and fi is not associate with fj, for any i 6= j. Then

Z({f}) = Z({f1}) ∪ . . . ∪ Z({fr})

and, by (2.18), each set Z({fi}) is irreducible. The fact that fi is not associate with
fj, for i 6= j, easily implies that the sets Z({fi}) are pairwise incomparable. Thus,
by (2.16), {Z({fj}) : 1 ≤ i ≤ r} is the collection of all the irreducible components
of Z({f}).

In the general case, i.e., when a closed set X is not the zero set of a unique
polynomial, we need further properties of Noetherian rings to find the irreducible
components of X.

(2.21) Definition. Let A be a ring and let a be a proper ideal of A. We say that a
is irreducible if, given ideals b, c of A such that a = b∩ c, we have necessarily either
a = b or a = c.

Clearly, any prime ideal is irreducible.
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(2.22) Proposition. Let A be a Noetherian ring. Then, any proper ideal of A is a
finite intersection of irreducible ideals of A.

Proof. If the statement is false, the set Σ of all the ideals of A which are not a finite
intersection of irreducible ideals of A is nonempty. Since A is Noetherian, Σ has a
maximal element, say a. Of course, a is reducible, and thus there are ideals b, c ) a
such that a = b ∩ c. By maximality of a, we have b, c /∈ Σ, and thus each of them
is a finite intersection of irreducible ideals of A and, a fortiori, so is a. This is a
contradiction. �

(2.23) Definition. Let A be a ring and let a be a proper ideal of A. We say that
a is primary if, given elements x, y ∈ A such that xy ∈ a, then either x ∈ a or
y ∈
√
a.

Clearly, any prime ideal is primary.
The following remark is easy and we left it to the reader.

(2.24) Remark. Let A be a ring.

(a) If a is a primary ideal of A, then p :=
√
a is a prime ideal of A. We will say

that a is a p-primary ideal.
(b) If a is an ideal of A whose radical is a maximal ideal, then a is primary.
(c) If a, b are p-primary ideals, then a ∩ b is a p-primary ideal.
(d) If a is a p-primary ideal and x ∈ A− a, then

(a :A x) := {a ∈ A : ax ∈ a}

is a p-primary ideal of A.

(2.25) Definition. Let A be a ring and let a be a proper ideal of A.

(a) A primary decomposition of a is a finite collection of primary ideals whose
intersection is a. We say that a is decomposable if a admits a primary
decomposition.

(b) Let P := {q1, . . ., qn} be a primary decomposition of a. We say that P is
irredundant if, for any 1 ≤ i ≤ n, we have

√
q
j
6= √q

i
, for any j 6= i, and

qi +
⋂
j 6=i qj.

Keeping in mind (2.24c) and the fact that we can omit any redundant term, we
infer that any primary decomposition of an ideal can be refined to an irredundant
primary decomposition.

(2.26) Proposition. An irreducible ideal of a Noetherian ring is primary. In par-
ticular, any proper ideal of a Noetherian ring is decomposable.

Proof. Let a be an irreducible ideal of a Noetherian ring A, and take elements
x, y ∈ A such that xy ∈ a. For any positive integer n, consider the ideal

an := {a ∈ A : axn ∈ a}

of A, and note that an ⊆ am, for any n ≤ m. Since A is Noetherian, there exists
a positive integer ν such that aν = am, for any m ≥ ν. Take any element λ ∈
(xνA+ a) ∩ (yA+ a). Then, there are elements α, β ∈ A, i, j ∈ a such that

λ = xνα + i = yβ + j.
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The previous equality implies that xν+1α = −ix + xyβ + jx and, keeping in mind
that xy ∈ a, we get xν+1α ∈ a, that is, α ∈ aν+1 = aν . It follows that xνα ∈ a and
thus λ = xν + i ∈ a. This proves that

a = (xνA+ a) ∩ (yA+ a),

and since a is irreducible we have either a = xνA + a or a = yA + a, that is, either
xν ∈ a or y ∈ A. This shows that a is primary.

The last statement follows from the first one and (2.22). �

(2.27) Example. Let K be an algebraically closed field and let C be a closed
subset of An

K . We can assume that C = Z(a) for some ideal a of K[T1, . . ., Tn].
Since K[T1, . . ., Tn] is a Noetherian ring, the ideal a has a primary decomposition,
say a =

⋂r
i=1 qi. Thus, keeping in mind (1.2c) and the proof of (2.1), we have

C = Z(q1) ∪ . . . ∪ Z(qr) = Z(
√
q1) ∪ . . . ∪ Z(

√
qr).

By (2.18) and (2.24a), any Z(
√
qi) is a closed irreducible subspace of C. Thus, by

(2.16), any irreducible component of C belongs to the family {Z(
√
qi) : 1 ≤ i ≤ n}.

(2.28) Example. An ideal can have distinct irredundant primary decompositions.
For example, let K be a field let T, U be indeterminates over K, and consider the
ideal a := (T 2, TU)K[T, U ]. If

p := TK[T, U ],m := (T, U)K[T, U ], q := (T 2, U)K[T, U ],

then {p,m2}, {p, q} are distinct irredundant primary decompositions of a. The proof
is left to the reader.

Let A be a ring and let a be an ideal of A which admists an irredundant primary
decomposition, say P := {q1, . . ., qn}. We show now that the set {√q1, . . .,

√
qn}

depends only on the ideal a and not on P . Recall the following easy and well-known
fact.

(2.29) Proposition. Let A be a ring, let F be a finite collection of ideals of A and
let p be a prime ideal of A.

(a) If p ⊇
⋂
F , then p ⊇ a, for some a ∈ F

(b) If p =
⋂
F , then p = a, for some a ∈ F .

(2.30) Proposition. Let A be a ring, let a be an ideal of A which admits an irre-
dundant primary decomposition P := {q1, . . ., qn}. Then

{
√
q1, . . .,

√
qn} = Spec(A) ∩ {

√
(a :A x) : x ∈ A}.

Thus, the set of prime ideals Ass(a) := {√q1, . . .,
√
qn} is uniquely determined by a,

and it is called the set of prime ideals associated with a.

Proof. Set pi :=
√
qi, for i = 1, . . ., n, and note that, for any x ∈ A, we have

(a :A x) =
n⋂
i=1

(qi :A x), since a =
n⋂
i=1

qi. Taking radicals and keeping in mind (2.24)

and that, if x ∈ qi, for some i, then (qi :A x) = A, we have
√

(a :A x) =
⋂
x/∈qj

pj. Then,

the inclusion {p1, . . ., pn} ⊇ Spec(A)∩{
√

(a :A x) : x ∈ A} follows immediately from
the previous proposition. Conversely, take a prime ideal pi; since P is irredundant,
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then
⋂
j 6=i

qj * qi, and thus there is an element x ∈ qj, for any j 6= i and x /∈ qi. It

follows
√

(a :A x) =
⋂
x/∈qj

pj = pi. �

(2.31) Definition. Let A be a ring and let a be a proper ideal of A. The minimal
elements, under inclusion, of the set {p ∈ Spec(A) : p ⊇ a} are called minimal
prime ideals over a .

A straightforward application of Zorn’s Lemma implies that there are minimal
prime ideals over any proper ideal of a ring. In particular, there are minimal prime
ideals (i.e., the minimal prime ideals over (0)).

(2.32) Proposition. Let A be a ring and let a be a decomposable ideal of A. Then
the minimal prime ideals of A over a are precisely the minimal elements, under
inclusion, of Ass(a). In particular, there are only finitely many prime ideals over a.

Proof. Clearly, any element of Ass(a) =: {p1, . . ., pn} is a prime ideal of A containing

a. Let p be a minimal prime ideal of A over a. Then p ⊇
√
a =

n⋂
i=1

pi. By (2.29), we

have p ⊇ pi, for some i ∈ {1, . . ., n}, and thus p = pi, by minimality. The conclusion
is now clear. �

(2.33) Remark. Preserve the notation of (2.27). By (2.10), the minimal elements
of Ass(a) = {√qi : 1 ≤ i ≤ r} (i.e., the minimal prime ideals over a, by (2.32))
correspond to the maximal elements of {Z(

√
qi) : 1 ≤ i ≤ r}, that is, to the

irreducible components of Z(a).

3. The Zariski topology on the prime spectrum of a ring.

Let A be a ring and let S be a subset of A. Define

VA(S) := V (S) = {p ∈ Spec(A) : p ⊇ S}.
With a small abuse of notation, for any f ∈ A we will write V (f) to mean V ({f}).
(3.1) Proposition. Let A be a ring. Then, the subsets of Spec(A) of the form
V (S), for any S ⊆ A, form the family of the closed sets for a topology, called the
Zariski topology. Precisely, we have

(a) V (S) = V (SA) = V (
√
SA), for any S ⊆ A (where SA denotes the ideal of

A generated by S).
(b) V ({1}) = ∅ and V ({0}) = Spec(A).
(c) V (

⋃
i∈I Si) =

⋂
i∈I V (Si), for any collection {Si : i ∈ I} of subsets of A.

(d) V (a ∩ b) = V (a) ∪ V (b), for any ideals a, b of A.

The proof of the previous equalities is easy and it is left to the reader.

(3.2) Remark. Let A be a ring.

(a) By (3.1a), any closed subset of Spec(A) is of the form V (a), for some ideal a
of A.

(b) Moreover, again by (3.1a), the canonical map

ϕ : {radical ideals of A} −→ {closed subsets of Spec(A)}
defined by setting ϕ(a) := V (a) is a order reversing bijection.
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(c) For any nonempty subset Y of Spec(A), we have Y = V (
⋂
Y ). As a matter

of fact, for any p ∈ Y we have obviously p ⊆
⋂
Y , that is p ∈ V (

⋂
Y ).

Then, Y ⊆ V (
⋂
Y ) and, since the second set is closed, Y ⊆ V (

⋂
Y ). If

C is any closed subset of Spec(A) containing Y , say C = V (a), for some
ideal a of A, then clearly p ⊇ a, for any p ∈ Y , that is

⋂
Y ⊇ a. It follows

C = V (a) ⊇ V (
⋂
Y ).

(d) By part (c) it follows that, for any p ∈ Spec(A), then {p} = V (p). In
particular, p is a maximal ideal if and only if {p} is closed.

(e) Spec(A) is a T0 space, that is, points of Spec(A) are uniquely determined by

their closure. Indeed, suppose p, q ∈ Spec(A) and that {p} = {q}. By part
(d), this equality is equivalent to V (p) = V (q), that is, p = q.

(f) For any f ∈ A, set DA(f) := D(f) := Spec(A)− V (f). Then, the collection
of sets B := {D(f) : f ∈ A} is a basis for the Zariski topology, and any set
D(f) is called a principal open subset of Spec(A). To see that B is a basis,
take any nonempty open subset Ω of Spec(A) and take a point p ∈ Ω. By
definition, Ω = Spec(A) − V (a), for some ideal a of A, and thus there is an
element f ∈ a− p. It follows immediately that p ∈ D(f) ⊆ Ω.

(g) Any irreducible closed subset of Spec(A) is of the form V (p), for some prime
ideal p of A. Indeed, by part (d) and (2.15), V (p) is irreducible, for any
p ∈ Spec(A). Conversely, let C be an irreducible closed subset of Spec(A)
and let a :=

⋂
C. By part (c) we have C = V (a). Then, it suffices to prove

that a is prime. Take elements a, b ∈ A such that ab ∈ a. Then we have
immediately C = (V (a)∩C)∪ (V (b)∩C). Since the sets V (a)∩C, V (b)∩C
are closed and C is irreducible, we have either C = V (a)∩C or C = V (b)∩C,
that is, either C ⊆ V (a) or C ⊆ V (b). In other words, either a ∈ a or b ∈ a.

Conversely, for any prime ideal p the set V (p) is irreducible, by part (d)
and (2.15a).

(h) By part (g) the irreducible components of Spec(A) are precisely the sets of
the form V (p), where p is any minimal prime ideal of A.

(3.3) Proposition. Let A be a ring. Then, Spec(A) is compact.

Proof. Let A be an open cover of Spec(A). By (3.2f), we can assume that A consists
of principal open subsets of Spec(A), say A = {D(fi) : i ∈ I}. Let a be the ideal
generated by the set {fi : i ∈ I}. Since Spec(A) =

⋃
A, for any maximal ideal m

of A there is some element fi such that fi /∈ m, and thus a * m. It follows that
a = A. Then, there are indexes i1, . . ., in ∈ I and elements a1, . . ., an ∈ A such
that 1 =

∑n
j=1 ajfij . Since any prime ideal p of A is, in particular, a proper ideal,

it cannot happen that fi1 , . . ., fin ∈ p, and thus {D(fij) : 1 ≤ j ≤ n} is a finite
subcover of A. �

(3.4) Corollary. Let A be a ring and a be an ideal of A. Then V (a) is compact.

Proof. It suffices to recall that any closed subspace of a compact space is compact,
and apply (3.3). �

Recall that a continuous map f : X −→ Y of topological space is called to be a
topological embedding if f induces a homeomorphism of X with f(X).

(3.5) Proposition. Let f : A −→ B be a ring homomorphism, and consider the
map f ? : Spec(B) −→ Spec(A) defined by f ?(q) := f−1(q), for any q ∈ Spec(B).



17

(a) For any a ∈ A we have f ?−1(DA(a)) = DB(f(a)). In particular, the map f ?

is continuous and it is called the canonical continuous function induced by
the homomorphism f .

(b) If f is surjective, then f ? is a closed topological embedding inducing a home-
omorphism of Spec(B) and V (Ker(f)). In particular, if n is a maximal
ideal of B, then f ?(n) is a maximal ideal of A. In particular, we have
f ?(Max(B)) = Max(A) ∩ V (Ker(f)).

(c) If S is a multiplicative subset of A, B := AS is the localization of A at S

and f is the canonical map (a 7→ a

1
, for any a ∈ A), then f ? is a topological

embedding and it induces a homeomorphism of Spec(AS) with the subspace
{p ∈ Spec(A) : p ∩ S = ∅} of Spec(A).

Proof. (a). The equality f ?−1(DA(a)) = DB(f(a)) is trivial and thus the last state-
ment follows from (3.2f).

(b). The surjectivity of f implies that f ? is injective and that the equality
f ?(Spec(B)) = V (Ker(f)) holds. Furthermore, for any ideal b of B, we have
f ?(VB(b)) = VA(f−1(b)), and this proves that f ? is closed. For any maximal ideal
n of B, {n} is closed in Spec(B), by (3.2d), and thus f ?({n}) = {f ?(n)} is a closed
point of Spec(A), since f ? is closed, that is, f ?(n) is a maximal ideal of A.

(c). It is well known that f ? is injective and that

f ?(Spec(AS)) = X := {p ∈ Spec(A) : p ∩ S = ∅}.

Thus, it suffices to show that f ? is a homeomorphism of Spec(AS) with X. Recall
that any ideal of AS is the extension of some ideal of A. Thus, any closed set of
Spec(AS) is of the form VAS

(aAS) for some ideal a of A. Thus the conclusion follows
from the equality f ?(VAS

(aAS)) = VA(a) ∩X, whose proof is straightforward. �

(3.6) Remark. Let A be a ring.

(a) In view of (3.5a), for any ideal a of A, the closed subspace V (a) of Spec(A)
is canonically homeomorphic to Spec(A/a), via the closed embedding π? :
Spec(A/a) −→ Spec(A), where π : A −→ A/a is the canonical projection. In
view of (2.15c) and (3.2h), the irreducible components of V (a) are precisely
the sets of the form V (p), where p is any minimal prime ideal over a.

(b) For any f ∈ A, the principal open subset D(f) of Spec(A) is compact. As a
matter of fact, consider the multiplicative subset S := {1, fn : n ≥ 1} of A.
By (3.5c), Spec(AS) is canonically homeomorphic to

{p ∈ Spec(A) : p ∩ S = ∅} = D(f).

Then, it is sufficient to apply (3.3).
(c) Let p be a prime ideal of A and, as usual, let Ap denote the localization of A

at A− p. By (3.5c), Spec(Ap) is canonically homeomorphic to

{q ∈ Spec(A) : q ∩ (A− p) = ∅} = {q ∈ Spec(A) : q ⊆ p}.

In particular, {q ∈ Spec(A) : q ⊆ p} is compact.

The following remark will justify the reason of the name we gave to the topology
which Spec(A) is endowed with. It is strictly related to the Zariski topology on an
affine space, as we will explain now.
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(3.7) Remark. Let K be an algebraically closed field and let X be a closed subset of
An
K . If I(X) is the ideal of X, consider the factor ring Γ(X) := K[T1, . . ., Tn]/I(X),

which is called the coordinate ring of X. We claim that Max(Γ(X)), as a sub-
space of Spec(Γ(X)), is canonically homeomorphic to X. By applying (3.5b) to
the canonical projection π : K[T1, . . ., Tn] −→ Γ(X), we infer that Max(Γ(X)) is

canonically homeomorphic, via π?, to X̃ := Max(K[T1, . . ., Tn]) ∩ I(X). Now, let
p := (a1, . . ., an) ∈ An

K and let mp := (T1 − a1, . . ., Tn − an)K[T1, . . ., Tn] be the
maximal ideal corresponding to p. Then clearly p ∈ X if and only if mp ⊇ I(X). By

Hilbert’s Nullstellensatz, the map ϕ : X −→ X̃, p 7→ mp is a bijection. We claim
that ϕ is a homeomorphism. This follows from (2.2c), (3.2f), from the straightfor-

ward equality ϕ−1(D(f) ∩ X̃) = X ∩Df , for any polynomial f ∈ K[T1, . . ., Tn], and
from the fact that ϕ is bijective.

Note that, in view of (2.12), if X = An
K then ϕ is precisely the map defined in

(1.30).

(3.8) Proposition. Let A be a ring and let p ∈ Spec(A). Then, the following
conditions are equivalent.

(i) p is a minimal prime ideal of A.
(ii) For any x ∈ p there is an element s ∈ A− p such that xs is nilpotent.

Proof. (i)=⇒(ii). If p is minimal then, by (3.6c), the only prime ideal of the local

ring Ap is pAp. If x ∈ p, then the element
x

1
∈ pAp is nilpotent. Take a positive

integer r such that
xr

1
= 0 (in Ap). By definition, there is an element s ∈ A−p such

that sxr = 0. In particular, sx is nilpotent.
(ii)=⇒(i). Take a prime ideal q ⊆ p, and let x ∈ p. By assumption, there is an

element s ∈ A− p such that sx is nilpotent and, in particular, sx ∈ q. Since s /∈ p
we have s /∈ q, and then x ∈ q. �

(3.9) Proposition. Let A be a ring. Then Spec(A) is a T1 space if and only if it
is Hausdorff.

Proof. First, we note that Spec(A) is T1 if and only if any prime ideal of A is
maximal (i.e., dim(A) = 0). Indeed, let p ∈ Spec(A). Then, {p} is closed if and
only if V (p) = {p}, in view of (3.2d), and the last equality is equivalent to state that
p is maximal. Suppose Spec(A) is a T1 space and take distinct prime ideals p, q of A
and take an element x ∈ p− q. Since dim(A) = 0, any prime ideal is both maximal
and minimal. By (3.8), there is an element s ∈ A−p such that xs is nilpotent. Then
D(x) (resp., D(s)) is an open neighborhood of q (resp., p) and D(x) ∩ D(s) = ∅,
since xs is nilpotent.

The converse is trivial, because any Hausdorff space is T1. �

(3.10) Proposition. If A is a Noetherian ring, then Spec(A) is a Noetherian space.

Proof. Let C1 ⊇ C2 ⊇ . . . ⊇ Cn ⊇ . . . be a descending chain of closed subspaces of
Spec(A), say Ci = V (ai), where ai is some ideal of A, for any i ≥ 1. By (3.2b) we
can assume that any ai is a radical ideal. It follows that a1 ⊆ a2 ⊆ . . . ⊆ an ⊆ . . .
is an ascending chain of ideals of the Noetherian ring A. Thus, there is a positive
integer m such that an = am, for any n ≥ m. In other words, Cn = Cm, for any
n ≥ m. �



19

It is not true, in general, that a ring A is Noetherian provided that Spec(A) is
Noetherian.

(3.11) Example. Let K be a field and let T := {Ti : i ∈ N} be an infinite
and coutable collection of indeterminates over K. Consider the polynomial ring
A := K[T ] and its ideal a := ({T 2

i : i ∈ N})A. By (3.6a), Spec(A/a) is canonically
homeomorphic to V (a) and clearly V (a) = {m}, where m is the maximal ideal
of A generated by T . Thus, V (a) is Noetherian, being it finite, but A/a is non
Noetherian. The proof is left to the reader.

Now we will show that, for any ring A, there exist a non Noetherian ring A′ such
that Spec(A) and Spec(A′) are homeomorphic. In order to do this, we will present
now a new ring construction.

Let A be a ring and let M be a A-module. Let A(+)M denote the set A ×M
equipped with the ring structure defined by setting

(a,m)+(b, n) := (a+b,m+n), (a,m)(b, n) := (ab, an+bm) for all a, b ∈ A,m, n ∈M.

A(+)M is called the idealization of M , with respect to A.

(3.12) Remark. We list in the following some straightforward properties ofA(+)M ,
the first one will help the reader to understand the reason for this terminology.

(a) A is isomorphic to a subring of A(+)M , via the ring embedding A −→
A(+)M , a 7→ (a, 0), and the module M is canonically identified with the
ideal (0)×M of A(+)M .

(b) If M 6= (0), then A(+)M is not reduced, being any (non zero) element of
(0)×M nilpotent (of index 2).

(c) If M is not finitely generated, then A(+)M is not Noetherian. Indeed, if
A(+)M is Noetherian, then in particular the ideal (0)×M is finitely gener-
ated, say by (0,m1), . . ., (0,mh), and this easily implies that m1, . . .,mh is a
finite set of generators of M as a A-module.

(3.13) Proposition. Let A be a ring and M be an A-module. Let π : A(+)M −→ A
denote the projection onto A ((a,m) 7→ a, for any (a,m) ∈ A(+)M). Then the
canonical map π? : Spec(A) −→ Spec(A(+)M) is a homeomorphism. In particular,

Spec(A(+)M) = {p×M : p ∈ Spec(A)}.

Proof. Since π is a surjective ring homomorphism, π? is a closed embedding, by
(3.5b), and π?(Spec(A)) = V (Ker(π)) = V ((0)×M). Then it is enough to note that
V ((0)×M) = Spec(A(+)M), in view of (3.12b). The last statement is now obvious,
because, by definition, π?(p) = p×M , for any p ∈ Spec(A). �

(3.14) Example. Let A be a ring and M be a non finitely generated module
(for example, a direct sum of infinitely many copies of A). Then A(+)M is non
Noetherian, by (3.12c), and Spec(A) and Spec(A(+)M) are homeomorphic, by the
previous proposition.

4. Fiber products

That of fiber products is a powerful tool for presenting interesting examples and
counterexamples in Commutative Ring Theory. Thus in the following we sketch
some relevant properties of rings, and their spectra, arising as fiber products.
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(4.1) Definition. Let f : A −→ C, g : B −→ C be ring homomorphisms. Then,
the subring

D := f ×C g := {(a, b) ∈ A×B : f(a) = g(b)}
of A×B is called the fiber product of f and g. In the following, we will denote by
p : D −→ A (resp., q : D −→ B) the restriction to D of the projection of A × B
into A (resp., into B).

(4.2) Example. Let π : B −→ C be a ring homomorphism, and let A be a subring
of C. Consider the subring D := π−1(A) and let i : A −→ C be the inclusion.
Then D is canonically isomorphic to i ×C π. Indeed, it is easy to see that the ring
homomorphism D −→ i ×C π, d 7→ (π(d), d) for any d ∈ D, is well defined and
bijective. For example, the subring Z + TQ[T ] of the polynomial ring Q[T ] is of
this type. Indeed, in this case, B := Q[T ], C := Q, π : Q[T ] −→ Q is the ring
homomorphism sending a polynomial f in its constant term, and A := Z. Thus
Z + TQ[T ] = π−1(Z).

First, we will provide a precise description of the prime spectrum of a fiber product
f ×C g, under the assumption that one of the ring homomorphisms is surjective.

(4.3) Proposition. We preserve the notation given in (4.1), and assume that g is
surjective. Then p is surjective and it induces a closed embedding p? : Spec(A) −→
Spec(D) whose image is VD((0)×Ker(g)).

Proof. It is straightforward. Indeed, take an element a ∈ A. Since g is surjective,
there is an element b ∈ B such that g(b) = f(a). Thus (a, b) ∈ D and p(a, b) = a.
The last statement follows immediately from (3.5b) and from the equality Ker(p) =
(0)×Ker(g). �

(4.4) Lemma. We preserve the notation of (4.1) and fix an element b ∈ Ker(g).
Then (0, b) ∈ Ker(p) ⊆ D and the canonical ring homomorphism λ : D(0,b) −→ Bb,
(x, y)

(0, b)n
7→ y

bn
, is a well defined isomorphism.

Proof. By definition, the image of an element of the form (0, b)n via the ring homo-

morphism Λ : D −→ Bb, (x, y) 7→ y

1
, is invertible in Bb (Λ((0, b)n) =

bn

1
). Then λ is

well defined and it is a ring homomorphism, since it is induced by Λ (in view of the

universal property of localizations). Take now (x, y) ∈ D, n ≥ 1 such that
y

bn
= 0

in Bb. Then, there is a natural number m such that bmy = 0. It follows

(x, y)

(0, b)n
=

(x, y)(0, b)m

(0, b)n+m
= 0 in D(0,b).

This proves that λ is injective. Now, take any element
y

bn
∈ Bb. Clearly, by ∈ Ker(g)

and thus (0, by) ∈ D. It follows immediately that λ(
(0, by)

(0, b)n+1
) =

y

bn
. The proof is

now complete. �

(4.5) Lemma. We preserve the notation of (4.1) and fix an element b ∈ Ker(g).
Then, the restriction of q? : Spec(B) −→ Spec(D) to the open set DB(b) of Spec(B)
is a homeomorphism of DB(b) with DD((0, b)).
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Proof. Let µ : D −→ D(0,b), η : B −→ Bb be the localization maps, and let λ :
D(0,b) −→ Bb be the isomorphism given in (4.4). Keeping in mind (3.6b), the maps
µ? : Spec(D(0,b)) −→ DD((0, b)), η? : Spec(Bb) −→ DB(b) are homeomorphisms.
Moreover, λ? is a homeomorphism since λ is an isomorphism. Since η ◦ q = λ ◦ µ, it
immediately follows that

DD((0, b)) = µ?(Spec(D(0,b))) = µ?(λ?(Spec(Bb))) = q?(η?(Spec(Bb))) = q?(DB(b)).

Finally, for any prime ideal q ∈ DB(b), we have q?(q) = µ?(λ?(η?−1(q))), and thus
q?|DB(b) is a homeomorphism of DB(b) with DD((0, b)). �

(4.6) Lemma. Let A be a ring and let a be an ideal of A. If Ω ⊆ Spec(A)− V (a)
is an open set, then Ω =

⋃
s∈S D(s), for some S ⊆ a.

Proof. Let p ∈ Ω. Since Ω is open, by (3.2f), there is an element x ∈ A such that
p ∈ D(x) ⊆ Ω. Moreover, by assumption there is an element y ∈ a−p. Thus xy ∈ a
and p ∈ D(xy) ⊆ Ω. �

(4.7) Proposition. We preserve the notation of (4.1). Then the canonical contin-
uous map q? : Spec(B) −→ Spec(D) induces, by restriction, a homeomorphism of
Spec(B)− V (Ker(g)) with Spec(D)− V (Ker(p)).

Proof. Clearly, q?(Spec(B)− V (Ker(g))) ⊆ Spec(D)− V (Ker(p)). Let h be a prime
ideal of Spec(D) − V (Ker(p)). Since Ker(p) = (0) × Ker(g), there is an element
b ∈ Ker(g) such that (0, b) /∈ h. By definition, the fiber q?−1({h}) is contained in the
open set DB(b) and thus it consists of one point, by (4.5). Thus q?|Spec(B)−V (Ker(g))

is bijective and, by (4.5) and (4.6), it is open. The proof is now complete. �

(4.8) Corollary. We preserve the notation of (4.1) and assume that f is surjective.
Then the following properties hold.

(a) Spec(D) = p?(Spec(A)) ∪ q?(Spec(B)− V (Ker(g)).
(b) Max(D) = p?(Max(A)) ∪ q?(Max(B)− V (Ker(g)).
(c) D is local if and only if A is local and Ker(g) is contained in the Jacobson

radical of B.

Proof. Exercise. �

Let S, T be topological spaces and let S t T := (S × {0}) ∪ (T × {1}) denote the
disjoint union of S and T . With a small abuse of notation, we will identify S, T with
subsets of S t T . Thus, a natural topology on S t T is that whose open sets are
the subsets Ω of S t T such that Ω ∩ S (resp., Ω ∩ T ) is open in S (resp., in T ). In
particular, S, T are clopen subspaces of StT . Now, let α : C −→ T be a continuous
function, where C is a closed subspace of S. Let E be the equivalence relation on
S t T generated by identifying c with α(c), for any c ∈ C. Then we will denote by
S ∪α T the quotient space of S t T , with respect to the equivalence relation E .

We recall now the following basic sufficient condition for a function of topological
spaces to be continuous.

(4.9) Proposition. Let f : X −→ Y be a function of topological spaces and let A
be an open cover of X. If the restriction f |A is continuous, for any A ∈ A, then f
is continuous.

Let f : X −→ Y be a continuous function of topological spaces. Recall that f is
called to be a quotient map if the topology of Y is the finest topology which makes
f a continuous function. We will use the fundamental property of quotient spaces.
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(4.10) Proposition. Let f : X −→ Y a continuous surjective function of topological
spaces and let Kf be the equivalence relation induced by f . Then the following
conditions are equivalent.

(i) The canonical map f? : X/Kf −→ Y is a homeomorphism.
(ii) f is a quotient map.

(4.11) Theorem. [6, (1.4) Theorem] We preserve the notation of (4.1) and assume
that g is surjective. Thus, we can identify Spec(C) with the closed subset V (Ker(g))
of Spec(B) (by (3.5b)). Then, Spec(D) is canonically homeomorphic to Spec(A)∪f?
Spec(B).

Proof. Set b := Ker(g), X := Spec(A), Y := Spec(B), Z := Spec(C) and T := XtY ,
endowed with its natural topology (see the discussion above). Let σ : T −→ Z be
the natural map defined by

σ(p) :=

{
p?(p) if p ∈ X
q?(p) if q ∈ Y

By considering the open cover A := {X, Y } of T and applying (4.9), it follows that
σ is continuous. Moreover, by (4.8a), σ is surjective. By definition, the equivalence
relation Kσ on T induced by σ is is that which is generated by identifying the prime
ideals of C (they correspond to the points of the closed subspace VB(b) of Y ) with
their images under f ? (the straighforward verification is left to the reader). By
(4.10), the conclusion will follow if we prove that σ is a quotient map. Let T be a
topology on Z making σ a continuous map and let Ω ⊆ Z be open, with respect to
the topology T . It is sufficient to show that Ω is open, with respect to the Zariski
topology. By definition, σ−1(Ω) is open in T , that is, σ−1(Ω) ∩X = p?−1(Ω) (resp.,
σ−1(Ω) ∩ Y = q?−1(Ω)) is open in X (resp., in Y ). Take a prime ideal p ∈ Ω. First,
assume that p /∈ VD((0)×b). By (4.7), there exists a unique prime ideal p′ ∈ Y −V (b)
such that q?(p′) = p. Since p′ is an element of the open set q?−1(Ω) ∩ (Y − VB(b)),
there is an element b ∈ b such that p′ ∈ DB(b) ⊆ q?−1(Ω) ∩ (Y − VB(b)), by (4.6).
Then, in view of (4.5), we have p = q?(p′) ∈ q?(DB(b)) = DD((0, b)) ⊆ Ω.

Suppose now that p ∈ VD((0) × b) ∩ Ω and, by (4.3), let p′ be the unique prime
ideal of A such that p?(p′) = p. Since p?−1(Ω) is an open neighborhood of p′, there
is an element a ∈ A such that p′ ∈ D(a) ⊆ p?−1(Ω). Since g is surjective, take an
element b ∈ B such that g(b) = f(a). We are going to show the following claim.

Claim: V (b) ∩D(b) ⊆ q?−1(Ω).
As a matter of fact, take a prime ideal h ∈ V (b) ∩ D(b). Since h ∈ V (b) there

is a unique prime ideal h′ of C such that g?(h′) = h, by (3.5b). Since h ∈ D(b),
f(a) = g(b) /∈ h′, that is, f ?(h′) ∈ D(a) ⊆ p?−1(Ω). Thus, the equality g ◦ q = f ◦ p
implies q?(h) = p?(f ?(h′)) ∈ Ω. This proves the claim.

Let c be an ideal of B such that V (c) = Y −q?−1(Ω). By the claim, we have V (b)∩
D(b)∩ V (c) = ∅. Clearly, this implies that the ideals bBb, cBb of Bb are comaximal.
Thus, by the Chinese remainder Theorem, the canonical ring homomorphism ψ :

Bb −→ (Bb/bBb) × (Bb/cBb) is surjective. Choose an element
x

bn
∈ ψ−1({(1, 0)}),

that is,
x

bn
− 1 ∈ bBb and

x

bn
∈ c. Take an element c ∈ c and a natural number m

such that
x

bn
=

c

bm
. It follows that

c− bm

bm
=

β

br
, for some β ∈ b and some r ∈ N.
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The last equality implies that there are natural numbers t, u such that btc− bu ∈ b,
and we can assume, without loss of generality, that u ≥ 1. Then

0 = g(btc)− g(bu) = g(btc)− f(au),

that is (au, btc) ∈ D. We claim that p ∈ DD((au, btc)) ⊆ Ω. We have p(au, btc) =
au /∈ p′, since p′ ∈ D(a), and thus (au, btc) /∈ p?(p′) = p. Finally, take any prime
ideal q ∈ DD((au, btc)). If q ∈ VD((0)× b), take the unique prime ideal q′ ∈ X such
that p?(q′) = q. Then au = p(au, btc) /∈ q′, that is a /∈ q′. Thus q′ ∈ D(a) ⊆ p?−1(Ω)
and q = p?(q′) ∈ Ω. If q ∈ Spec(D) − V ((0) × b), let q′ ∈ Spec(B) − V (b) be such
that q?(q′) = q. Thus btc = q(au, btc) /∈ q′, since q ∈ DD((au, btc)). In particular
c /∈ q′ and thus q′ ∈ Y − V (c) = q?−1(Ω). Then, q ∈ Ω. �

5. Eakin-Nagata’s Theorem

Let A ⊆ B be a ring extension. As it is well known, if A is Noetherian and B is
of finite type over A, then B is Noetherian. Indeed, if B := A[b1, . . ., bn], for some
b1, . . ., bn ∈ B, then B is a homomorphic image of the Noetherian polynomial ring
A[T1, . . ., Tn] (via the ring homomorhism A[T1, . . ., Tn] −→ B, f 7→ f(b1, . . ., bn)).
If A ⊆ B is a finite extension, it is, in particular, of finite type, and thus B is
Noetherian provided that A is Noetherian. In general, if B is a Noetherian A-
module, then A is a Noetherian ring, being it a Noetherian A-submodule of B. But,
if B is a Noetherian ring it is not necessarily true that A is a Noetherian ring. For
example, if {Ti : i ∈ I} is an infinite collection of indeterminates over a field K,
then the polynomial ring A := K[{Ti : i ∈ I}] is a non Noetherian domain, but the
quotient field of A is Noetherian.

Eakin-Nagata’s Theorem states that, under the assumption that the ring extension
A ⊆ B is finite, then A is a Noetherian ring provided that B is a Noetherian
ring. There are several proofs of this nontrivial result. We will provide that due to
Formanek.

First we recall some easy basic facts.

(5.1) Remark. Let A be a ring.

(a) If M is a A-module and N is a submodule of M , then M is Noetherian (resp.,
Artin) if and only if N and M/N are Noetherian (resp., Artin). Moreover, if
N and M/N are finitely generated, then M is finitely generated.

(b) If M1, . . .,Mn is a finite collection of Noetherian A-modules, then the direct
product M := M1 × . . . ×Mn is Noetherian. As a matter of fact, it suffices
to prove the statement for n := 2, and then use induction. If M := M1×M2,
then M1 is isomorphic to the submodule N := M1 × (0) of M . Moreover,
M/N is clearly isomorphic to M2. Then, the statement follows from part (a).

(c) If A is a Noetherian ring and M is a finitely generated A-module, then M
is Noetherian. Indeed, if {m1, . . .,mr} is a set of generators of M , there is
a unique surjective A-linear map f : Ar −→ M such that ei 7→ mi, where
{e1, . . ., er} is the canonical basis of the free module Ar. Then it is enough
to note that Ar is a Noetherian A-module, by part (b).

If A is a ring and M is a A-module, then AnnA(M) := {a ∈ A : aM = (0)} is
an ideal of A, called the annihilator of M . The module M is called to be faithful if
AnnA(M) = (0).
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(5.2) Remark. Let A be a ring and, let M be an A-module and set a := AnnA(M).
For any ideal b ⊆ a of A, then M can be endowed with a natural structure of A/b-
module, via the scalar multiplication defined by (a+b)·m := am, for any a+b ∈ A/a,
m ∈M .

(a) Clearly, for any subset N of M , N is a A-submodule of M if and only if N
is a A/b-submodule of M . This implies that M is Noetherian (resp., Artin)
as a A-module if and only if it is Noetherian (resp., Artin) as a A/b-module.

(b) By definition, M is a faithful A/a-module.

(5.3) Proposition. If A is a ring and there is a Noetherian and faithful A-module,
then A is a Noetherian ring.

Proof. Let M be a Noetherian and faithful A-module, and let {m1, . . .,mr} be a
finite set of generators of M . Consider the A-linear map f : A −→ M r defined
by f(a) := (am1, . . ., amr), for any a ∈ A. Since, for any a ∈ A, the equalities
am1 = . . . = amr = 0 imply aM = 0, it follows that f is injective, since M is
faithful. Thus A can be identified with a A-submodule of the Noetherian module
M r, and thus A is Noetherian as a A-module, that is, A is a Noetherian ring. �

(5.4) Lemma. Let A be a ring and let X be a finitely generated faithful A-module
such that the A-module X/aX is Noetherian, for any nonzero ideal a of A. Then X
is Noetherian.

Proof. Consider the collection

Σ := {N ⊆ X : N is a submodule of X and X/N is faithful}
of submodules of X, partially ordered by inclusion, and note that it is nonempty,
since (0) ∈ Σ. Let C ⊆ Σ be a chain and note that N :=

⋃
C is a submodule of X.

Take an element a ∈ AnnA(X/N) and let {x1, . . ., xr} be a finite set of generators
of X. This is equivalent to state that axi ∈ N , for 1 ≤ i ≤ r. Since C is a chain,
there is an element N ′ ∈ C such that axi ∈ N ′, for 1 ≤ i ≤ r. It follows that
a ∈ AnnA(X/N ′) and thus a = 0, since N ′ ∈ Σ. This proves that X/N is faithful,
that is, N ∈ Σ. By Zorn’s Lemma, there is a maximal element M ∈ Σ. Since X/M
is a faithful A-module, if it is Noetherian, then A is a Noetherian ring, by (5.3), and
thus X is a Noetherian module, by (5.1c). Thus the conclusion follows if we show
that Y := X/M is Noetherian. For any nonzero ideal a of A the A-module Y/aY
is a quotient of X/aX, and thus, by assumption, it is Noetherian. Moreover if Z is
a nonzero submodule of Y , then Z = P/M for some submodule P of X such that
M ( P . Thus Y/Z = X/P is not faithful, since M is maximal in Σ. Thus, keeping
in mind the assumptions, Y has the following properties:

(1) Y is finitely generated (it is a quotient of X);
(2) Y/aY is Noetherian, for any nonzero ideal a of A;
(3) Y/Z is not faithful, for any nonzero submodule Z of Y .

Fix now any nonzero submodule Z of Y . By (3), the A-module Y/Z is not faithful,
and thus there exists a nonzero element a ∈ A such that a(Y/Z) = (0), that is,
aY ⊆ Z. Thus the factor module Z/aY is a submodule of the Noetherian module
Y/aY (property (2)), and hence Z/aY is finitely generated. Keeping in mind that aY
is finitely generated, being it Y (property (1)), it follows that Z is finitely generated,
in view of (5.1a). This proves that any submodule of Y is finitely generated, that
is, Y is Noetherian. �
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The statement of the following remark can be easily verified.

(5.5) Remark. Let (X,≤) be a partially ordered set. Then the following conditions
are equivalent.

(a) (X,≤) satisfies the ascending chain condition.
(b) Any nonempty subset of X has a maximal element.

(5.6) Theorem ([8]). Let A be a ring and let M be a finitely generated faithful
A-module such that the collection {aM : a ideal of A} of submodules of M satisfies
the ascending chain condition. Then, M is Noetherian.

Proof. By contradiction, suppose that M is non Noetherian. Then, the collection

Σ := {aM : a ideal of A and M/aM is non Noetherian}
of submodules of M is nonempty and, by (5.5), it has a maximal element a0M , for
some ideal a0 of A. Since a0M ∈ Σ, the A-module X∗ := M/a0M is non Noetherian.
If A∗ := A/AnnA(X∗) then, by (5.2), X∗ is a faithful and non Noetherian A∗-module.
If i is any nonzero ideal of A∗, then i = a∗/AnnA(X∗), for some ideal a∗ of A such that
a∗ ) AnnA(X∗) ⊇ a0. It easily follows that a∗M ) a0M . Since a0M is maximal in Σ,
then M/a∗M is a Noetherian A-module. Since AnnA(X∗) ⊆ AnnA(M/a∗M), then,
in view of (5.2), M/a∗M is a Noetherian A∗-module and clearly X∗/iX∗ ∼= M/a∗M .
This contradicts the statement of (5.4). �

(5.7) Theorem (Eakin-Nagata). Let A ⊆ B be a finite ring extension and assume
that B is a Noetherian ring. Then, A is a Noetherian ring.

Proof. By the conventions stated at the beginning, A and B have the same mul-
tiplicative identity, and then B is a faithful A-module. The collection of ideals
{aB : a ideal of A} of B satisfies the ascending chain condition, since B is Noether-
ian. By (5.6), B is a Noetherian A-module, and thus A is a Noetherian ring, by
(5.3) (or from the fact that it is a A-submodule of the Noetherian module B). �

Let f : A −→ B be a ring homomorphism. Clearly, B is a A-module, via the
natural scalar multiplication defined by a · b := f(a)b, for any a ∈ A, b ∈ B. We say
that f is finite (resp., of finite type, integral) if the ring extension f(A) ⊆ B is finite
(resp., of finite type, integral). By well known properties on integral dependence, f
is finite if and only if it is integral and of finite type.

The proof of the following straightforward lemma is left to the reader.

(5.8) Lemma. We preserve the notation of (4.1) and assume that g is surjective.
If f is finite (resp., of finite type, integral), then q is finite (resp., of finite type,
integral).

(5.9) Proposition. [6, Proposition (1.8)] We preserve the notation of (4.1) and
assume that g is surjective. Then, the following conditions are equivalent.

(i) D is a Noetherian ring and q is finite.
(ii) A,B are Noetherian rings and f is finite.

Proof. (i)=⇒(ii). Keeping in mind (4.3), A = p(D) and q(D) are Noetherian rings,
being homomorphic images of the Noetherian ring D. Since the ring extension
q(D) ⊆ B is finite, then B is a Noetherian ring. By assumption, B is finitely
generated as q(D)-module, say by b1, . . ., bn. We claim that C is generated by
g(b1), . . ., g(bn), as a f(A)-module. Indeed let c ∈ C and, since g is surjective,
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let b ∈ B such that g(b) = c. Take elements (x1, y1), . . ., (xn, yn) ∈ D such that

b =
n∑
i=1

q(xi, yi)bi =
n∑
i=1

yibi. Then c =
n∑
i=1

g(yi)g(bi) =
n∑
i=1

f(xi)g(bi).

(ii)=⇒(ii). Since A is a Noetherian ring and p : D −→ A is surjective, then
A is Noetherian as a D-module, too. Morover, C is a Noetherian ring, being it
the homomorphic image of the Noetherian ring B, via g. By (5.8), q is finite and
thus, in view of Eakin-Nagata’s Theorem, q(D) is a Noetherian ring and, clearly,
a Noetherian D-module. The ideal Ker(g) of q(D) is a D-submodule of q(D), and
thus Ker(g) is a Noetherian D-module and clearly it is isomorphic to (0)×Ker(g) =
Ker(p). Since A is isomorphic to D/Ker(p) and it is a Noetherian D-module (being
A a Noetherian ring), the conclusion follows from (5.1a). �

(5.10) Corollary. Let π : B −→ C be a surjective ring homomorphism, let A be a
subring of C and let D := π−1(A). The following conditions are equivalent.

(i) D is a Noetherian ring and the ring extension D ⊆ B is finite.
(ii) A,B are Noetherian rings and the ring extension A ⊆ C is finite.

Proof. Apply (5.9) to the ring construction (4.2). The easy details are left to the
reader. �

(5.11) Corollary. Let A ⊆ B be a ring extension and let T be an indeterminate
over B. Then, the ring A + TB[T ] is Noetherian if and only if A is a Noetherian
ring and the ring extension A ⊆ B is finite.

Proof. If D := A+TB[T ] is a Noetherian ring, that so is A being it a homomorphic
image of D. Now, let a be the ideal of D generated by the set {bT : b ∈ B}. Since
D is Noetherian, then a is finitely generated, say by f1, . . ., fn ∈ a. Set, for any
1 ≤ i ≤ n, fi(T ) := biT + gi(T )T 2, for some bi ∈ B and gi(T ) ∈ B[T ]. Then an easy
computation proves that B is generated by b1, . . ., bn as an A-module.

Conversely, assume that A is Noetherian and that A ⊆ B is finite. Then B[T ]
is Noetherian, by Hilbert’s basis Theorem. Now the conclusion follows from (5.10),
keeping in mind that A + TB[T ] = π−1(A), where π : B[T ] −→ B is the surjective
ring homomorphism defined by π(f) := f(0), for any f ∈ B[T ]. �

6. The Krull intersection Theorem

Now we state and prove a very famous theorem which will be useful in the follow-
ing.

(6.1) Theorem (Krull intersection Theorem). Let A be a Noetherian ring, a be an
ideal of A and M be a finitely generated A-module. Then

a(
⋂
n≥1

anM) =
⋂
n≥1

anM

Proof. By (5.1c), M is a Noetherian A-module. Set N :=
⋂
n≥1 a

nM . The collection
Σ of all the submodules S of M such that S ∩N = aN is nonempty, since aN ∈ Σ,
and thus Σ admits a maximal element C, by noetherianity. We are going to show
the following claim.

Claim. If x ∈ a, there is a positive integer ν such that xνM ⊆ C.
For any i ≥ 1, consider the following A-submodule

Ni := {m ∈M : xim ∈ C}
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of M . By noetherianity, the ascending chain N1 ⊆ N2 ⊆ . . . of submodules of M is
eventually constant. Take a positive integer ν such that Nν = Nn, for any n ≥ ν,
and note that (C+xνM)∩N ⊇ aN . Conversely, take an element y ∈ (C+xνM)∩N ,
and let c ∈ C,m ∈ M be such that y = c + xνm. It follows xy − xc = xν+1m and,
since xy ∈ aN ⊆ C, we have xν+1m ∈ C, that is, m ∈ Nν+1 = Nν . In other words,
xνm ∈ C and thus y ∈ C ∩N = aN . This proves that (C + xνM) ∩N = aN , i.e.,
C + xνM ∈ Σ and, since C is maximal in Σ, we infer that xνM ⊆ C. The proof of
claim is complete.

Keeping in mind that a is finitely generated, the claim implies that there exists a
positive integer k such that N ⊆ akM ⊆ C, and thus aN = N ∩ C = N . �

The following fact is well-known and we recall it for the reader convenience.

(6.2) Theorem (Nakayama’s Lemma). Let A be a ring, M be a finitely generated
A-module and let a be an ideal of A which is contained in the Jacobson radical of A.
If aM = M , then M = (0).

(6.3) Corollary. Let A be a ring, M be a finitely generated A-module and let a be an
ideal of A which is contained in the Jacobson radical of A. If N is an A-submodule
of M and M = aM +N , then M = N .

Proof. Apply (6.2) to the finitely generated A-module M/N . �

(6.4) Corollary. Let A be a Noetherian ring, M be a finitely generated A-module
and let a be an ideal of A contained in the Jacobson radical of A. Then⋂

n≥1

anM = (0).

Proof. By (5.1c), the submodule N :=
⋂
n≥1 a

nM of M is finitely generated and, by
the Krull intersection Theorem, aN = N . By Nakayama’s Lemma, N = (0). �

(6.5) Corollary. Let A be a Noetherian ring and let a be an ideal of A which is
contained in the Jacobson radical of A. Then

⋂
n≥1 a

n = (0).

Proof. Apply (6.4) to M := A. �

7. The Principal ideal Theorem

The next important result deals with the height of a prime ideal of a Noetherian
ring which is minimal over a principal ideal. We will see that such a prime ideal
must have height ≤ 1.

We start with some easy remarks.

(7.1) Remark. Let A be a local ring with maximal ideal m and residue field K,
let M be a finitely generated A-module, and let X := M/mM . By (5.2), X is
both an A-module and a A/m-module, that is a K-vector space. Since M is finitely
generated, it follows that X is, in particular, a finitely generated K-vector space,
that is, it is both Noetherian and Artin as a K-vector space. Thus, by (5.2a), and
furthermore X is both Noetherian and Artin as a A-module.

(7.2) Lemma. Let A be a local ring with finitely generated maximal ideal m and
residue field K. Then, for any positive integer r, mr/mr+1 is both an Noetherian
and a Artin A-module.
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Proof. Consider the finitely generated M := mr and note that M/mM = mr/mr+1.
Then it suffices to apply (7.1). �

(7.3) Proposition. Any Noetherian ring with a unique prime ideal is an Artin ring.

Proof. Let A be a Noetherian ring and m be its unique prime ideal (hence, m is the
nilradical of A). Since m is finitely generated, there is a smallest positive integer k
such that mk = (0). If k = 1 the A is a field and thus we have nothing to prove.
Assume that k ≥ 2. Since, for any positive integer r, mr is a A-submodule of mr−1

and the factor module mr−1/mr is an Artin A-module (by (7.2)), it is easily proved by
induction that m,m2, . . .,mk are Artin A-modules, keeping in mind (5.1a). Moreover,
the field A/m is an Artin A-module (by (7.1)). Then, A is an Artin A-module, that
is, an Artin ring, again by (5.1a). �

More generally, it is possible to show that a ring is an Artin ring if and only if it
is Noetherian and zero-dimensional.

The proof of the following lemma is an easy exercise.

(7.4) Lemma. Let D be an integral domain and let q be a prime ideal of D. Then,
the ideal q(n) := (qnDq) ∩D is of D is q-primary, for any positive integer n.

(7.5) Theorem (Principal Ideal Theorem). Let A be a Noetherian ring, a ∈ A and
let q ∈ Spec(A) be minimal over aA. Then ht(q) ≤ 1.

Proof. We argue by contradiction, and assume there are prime ideals p0, p1 of A
such that p0 ( p1 ( q. Consider the local domain D := Aq/p0Aq and note that, by
(3.6a,c), Spec(D) is homeomorphic to the subspace {h ∈ Spec(A) : p0 ⊆ h ⊆ q} of
Spec(A). Moreover the maximal ideal m of D (which corresponds to q) is minimal
over the principal ideal xD, where x is the canonical image of a in D, and there
is a nonzero prime ideal p of D (corresponding to p1) such that x /∈ p. Since m is
minimal over x, (3.6a) implies that the Noetherian factor ring D/xD has a unique
prime ideal (corresponding to m), and thus D/xD is an Artin ring, by (7.3). For

any positive integer t, let p(t) denote the canonical image of p(t) in D/xD. Since

p(1) ⊇ p(2) ⊇ . . . and D/xD is Artin, there is a positive integer ν such that p(t) = p(ν),
for any t ≥ ν, that is, p(t) + xD = p(ν) + xD. Take an integer t ≥ ν and an element
v ∈ p(ν). Thus there are elements w ∈ p(t), d ∈ D such that v = w + xd. It follows
xd ∈ p(ν)+p(t) = p(ν). Since x /∈ p and p(ν) is p-primary (by (7.4)), it follows d ∈ p(ν).
This proves that p(ν) = p(t) + xp(ν) and, by (6.3), we have p(ν) = p(t). By applying
(6.5) to the Noetherian local domain Dp and its maximal ideal pDp, we infer that⋂
t≥1 p

tDp = (0) and, a fortiori,

(0) =
⋂
t≥1

ptDp ∩D =
⋂
t≥1

p(t) = p(ν).

Since pν ⊆ p(ν), by primality it follows p = (0), a contradiction. �

(7.6) Corollary. Let A be a Noetherian ring and let p, q ∈ Spec(A) be such that
p ( q. If the set {h ∈ Spec(A) : p ( h ( q} is nonempty, then it is infinite.

Proof. Consider the Noetherian domain D := A/p. By (3.6a), it suffices to prove
that if there is a nonzero prime ideal h of D such that h1 ( q′ := q/p, then there
are infinitely many prime ideals of D with the same property. By contradiction,
assume that X := {p ∈ Spec(D) : (0) 6= p ( q′} = {h1, . . ., hn} and note that,
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clearly
⋃n
i=1 hi ⊆ q′. If the equality

⋃n
i=1 hi = q′ holds, by the prime avoidance

theorem, q′ ⊆ hk, for some 1 ≤ k ≤ n, against the fact that hk ∈ X. Hence we have⋃n
i=1 hi ( q′. Take an element x ∈ q′ −

⋃n
i=1 hi and take a (nonzero) prime ideal

p ∈ Spec(D) minimal over xD and such that p ⊆ q′. By the principal ideal theorem
we have ht(p) ≤ 1 and, since ht(q′) ≥ 2, it follows p ( q′. By definition, p ∈ X, a
contradiction, since each prime ideal of X does not contain x. �

(7.7) Remark. It is easy to note that the Principal Ideal Theorem and (7.6) fail
in the non Noetherian setting. For example, let V be a two-dimensional valuation
domain. As it is well known, the set of all ideals of a valuation domain is totally
ordered by inclusion, and thus Spec(V ) = {(0), p,m}, with (0) ( p ( m. Thus, for
any element x ∈ m− p, m is minimal over xV and ht(V ) ≥ 2. Furthermore, there is
a unique prime ideal (namely, p) between (0) and m.

Furthermore note that Spec(V ) is a Noetherian space, but there are no Noetherian
rings A such that Spec(A) is homeomorphic to Spec(V ), in view of (7.6). Indeed,
in general, if f : Spec(A1) −→ Spec(A2) is a homeomorphism, then f is order
preserving (that is, for any h1, h2 ∈ Spec(A1), then h1 ⊆ h2 if and only if f(h1) ⊆
f(h2)). The easy proof of this statement is left to the reader.

8. Valuation domains and fiber products

Now we provide a technique for constructing valuation rings, based on fiber prod-
ucts.

We leave the straightforward proof of this easy lemma to the reader.

(8.1) Lemma. Let A ⊆ B be a ring extension and assume that A and B share a
common ideal containing a regular element of B. Then A and B have the same total
ring of quotients.

(8.2) Proposition. [6, Theorem 2.4] Let V be a local domain with residue field K,
π : V −→ K be the canonical projection, and let D be a subring of K whose quotient
field is K. Then π−1(D) is a valuation domain if and only if V,D are valuation
domains.

Proof. Set E := π−1(D). First, note that the maximal ideal m = Ker(π) of V is
clearly a common ideal of V and E. If m = (0), then V is a field and E and D are
isomorphic. Thus, in this case, the statement is trivial. Assume now that m 6= (0).
By (8.1), V and E have the same quotient field, say L. Thus, if E is a valuation
domain, then so is V (any overring of a valuation domain is a valuation domain).
Moreover, if x ∈ K − D and v ∈ V is such that π(v) = x, then v /∈ E. Thus,
since E is a valuation domain and v is in the quotient field of E, then v−1 ∈ E and
π(v−1) ∈ D is the inverse of x in D.

Conversely, assume that D and V are valuation domains and take an element
x ∈ L − E. If x /∈ V , then x−1 ∈ m ⊆ E, since V is a valuation domain of L. If
x ∈ V then x is a unit of V (otherwise x ∈ m ⊆ E, a contradiction). Since x ∈ V −E,
then π(x) ∈ K −D and, since D is a valuation domain of K, (π(x))−1 ∈ D. From
π(x)π(x−1) = 1, we infer π(x−1) = (π(x))−1 ∈ D, and finally x−1 ∈ E. �

(8.3) Proposition. Let V be a valuation domain with residue field K, let π : V −→
K be the canonical projection, and let D be any nonzero subring of K. If W is a
valuation domain of the quotient field of V such that of π−1(D) ⊆ W ⊆ V , then
π(W ) is a valuation domain of K containing D and W = π−1(π(W )).
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Proof. Clearly, π(W ) is a ring containing D. The statement is trivial if V is a field.
Thus assume that the maximal ideal m of V is nonzero. It follows that π−1(D),W, V
have the same quotient field, in view of (8.1). Take a nonzero element k ∈ K and an
element v ∈ V such that π(v) = k. If k /∈ π(W ), then v /∈ W . Since V,W have the
same quotient field and W is a valuation domain, it follows that v−1 ∈ W . Then,
1 = π(v−1)π(v) = π(v−1)k, that is, k−1 = π(v−1) ∈ W . This proves that π(W ) is
a valuation domain of K. Finally, it is obvious that W ⊆ π−1(π(W )). Conversely,
take an element x ∈ π−1(π(W )), and let w ∈ W be such that π(x) = π(w). It
follows x− w ∈ m ⊆ π−1(D) ⊆ W , and thus x ∈ W . �

(8.4) Example. Consider the valuation domain V := Q[T ](T ) and let π : V −→ Q
be the canonical projection. Then, by (8.2), the ring π−1(Z(p)) = Z(p) + TQ[T ](T )

is a valuation domain of Q(T ). It is easy to verify that dim(Z(p) + TQ[T ](T )) = 2.
This can be also seen as a particular case of the following result.

(8.5) Proposition. [6, Proposition 2.1] Let V be a local ring with maximal ideal m
and residue field K, and let π : V −→ K be the canonical projection. Let D be a
subring of K and set E := π−1(D). The following properties hold.

(a) Any prime ideal of E is comparable with m.
(b) If V,D are finite dimensional, then E is finite dimensional and we have

dim(E) = dim(V ) + dim(D).

Proof. Clearly, m = Ker(π) is a common ideal of V and E. Let i : E −→ V be
the inclusion map. Keeping in mind (4.3), (4.7) and (4.2), it follows that VE(m) is
homeomorphic to Spec(D), via (π|E)?, and that Spec(E)− VE(m) is homeomorphic
to Spec(V )− VV (m) = {h ∈ Spec(V ) : h ( m}, via i?. This proves part (a).

(b). Let (0) ( p1 ( . . . ( pm be prime ideals of D and h0 ( h1 ( . . . ( hn = m
be prime ideals of V such that dim(D) = n, dim(V ) = m. Note that hi = hi ∩ E,
for any 1 ≤ i ≤ n, since hi ⊆ m ⊆ E. Then,

h0 ( h1 ( . . . ( hn = m = π−1((0)) ( qn+1 := π−1(p1) ( . . . ( qn+m := π−1(pm)

is a chain of prime ideals of E of length n+m, that is dim(E) ≤ n+m. Conversely,
let q0 ( q1 ( . . . ( qr be a chain of prime ideals of E. By part (a), any prime
ideal of this chain is comparable with m. If qr ⊆ m, then, by the discussion above,
q0 ( q1 ( . . . ( qr is a chain of prime ideals of V , and thus r ≤ n ≤ n + m. If
q0 ⊇ m, then there are prime ideals p0 ( p1 ( . . . ( pr of D such that qi = π−1(pi),
for 0 ≤ i ≤ r, and thus r ≤ m ≤ n + m. Otherwise, we have qi ( m ⊆ qi+1, for
some index 0 ≤ i ≤ r. It follows that q0 ( . . . ( qi is a chain of prime ideals of V ,
and thus i ≤ n, and that tha chain qi+1 ( . . . ( qr corresponds to a chain of prime
ideals of D of length r − i, that is r − i ≤ m. Hence, r ≤ n+m. �

9. Ultrafilters

We will see in the following that there is a very powerful tool for describing the
prime spectrum of several classes of rings. This tool is the notion of ultrafilter.

(9.1) Definition. Let X be a set.

(a) A nonempty collection F of nonempty subsets of X is called to be a filter on
X if the following properties are verified:
• F ∩G ∈ F , for any F,G ∈ F ;
• if F ∈ F and F ⊆ Y ⊆ X, then Y ∈ F .
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(b) A maximal element in the collection of all filters on X, partially ordered by
⊆, is called to be an ultrafilter on X.

(9.2) Example. (a) If X is a set, then {X} is a filter on X. Moreover, for any
filter F on X, we have X ∈ F .

(b) Recall that if X is a topological space and x ∈ X, a subset Y of X is called
a neighborhood of x if there is an open subset U of X such that x ∈ U ⊆ Y .
Then, clearly, the collection I (x) of the neighborhoods of x is a filter on X.

(c) Now let X be any set and let x ∈ X. Then, the collection

Ux := {Y ⊆ X : x ∈ Y }
is an ultrafilter on X, called the trivial ultrafilter generated by x. It is obvious
that Ux is a filter on X. If there is a filter F on X such that Ux ( F , then
we can pick a set F ∈ F−Ux. This implies x /∈ F , that is, X−F ∈ Ux ⊆ F .
It follows ∅ = F ∩ (X − F ) ∈ F , a contradiction (by definition, any filter
does not contain ∅).

Recall that a nonempty collection F of subsets of a set X has the finite intersection
property if, for any finite subcollection G of F , we have

⋂
G 6= ∅.

(9.3) Remark. Let X be a set.

(a) By definition, any filter on X has the finite intersection property.
(b) Let F be a collection of subsets of X with the finite intersection property.

Then, it is immediately seen that the collection of sets

F (F) := {A ⊆ X : A ⊇
n⋂
i=1

Fi, for some F1, . . ., Fn ∈ F}

is a filter on X and F ⊆ F (F).

(9.4) Proposition (Ultrafilter Lemma, Tarski, 1930). Let X be a set and F be
a collection of subsets of X with the finite intersection property. Then there is an
ultrafilter U on X such that F ⊆ U . In particular, any filter on X can be extended
to an ultrafilter on X.

Proof. By (9.3b), the collection Σ := {F : F is a filter on X,F ⊇ F}, partially
ordered by inclusion, is nonempty. Moreover, by definition, the union of a chain of
filters is a filter. Thus, any chain in Σ has an upper bound. The conclusion follows
by Zorn’s Lemma. The last statement follows from (9.3a). �

(9.5) Proposition. Let X be a set and let U be a collection of subsets of X. Then,
the following conditions are equivalent.

(i) U is an ultrafilter on X.
(ii) U is a filter on X and, if Y, Z ⊆ X satisfy Y ∪Z ∈ U , then either Y ∈ U

or Z ∈ U .
(iii) U is a filter on X and, for any subset Y of X, then either Y ∈ U or

X − Y ∈ U .

Proof. (i)=⇒(ii). Take Y, Z ⊆ X such that Y ∪Z ∈ U and Y /∈ U . Then, for every
U ∈ U we have Z ∩U 6= ∅ (otherwise, U ⊆ X −Z and thus Y ⊇ U ∩ (Y ∪Z) ∈ U ;
it would follow Y ∈ U , a contradiction). This proves that the collection U ∪ {Z}
has the finite intersection property and thus, in view of (9.4), there is an ultrafilter
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V on X such that U ∪ {Z} ⊆ V and, since U is an ultrafilter, it follows V =
U ∪ {X} = U , that is, Z ∈ U .

(ii)=⇒(iii). Take any subset Y of X and note that, since X belongs to any filter
on X, Y ∪ (X − Y ) ∈ U . Apply (ii) to get the conclusion.

(iii)=⇒(i). Suppose there exists a filter F on X such that U ( F , and take a
set F ∈ F −U . By (iii), the set X −F ∈ U ⊆ F and thus ∅ = F ∩ (X −F ) ∈ F ,
a contradiction. �

(9.6) Corollary. Any ultrafilter on a finite set is trivial.

Proof. Set X := {x1, . . ., xn} and let U be an ultrafilter on X. Since

X = {x1} ∪ . . . ∪ {xn} ∈ U ,

condition (ii) of (9.5) implies that {xi} ∈ U , for some 1 ≤ i ≤ n. It immediately
follows that U ⊆ Uxi and, since U is an ultrafilter, U = Uxi . �

(9.7) Proposition. Any infinite set admits nontrivial ultrafilters.

Proof. Let X be an infinite set and let F the collection of all the subsets Y of X
such that X − Y is finite. Since X is infinite, F has the finite intersection property,
and thus, in view of (9.4), there is an ultrafilter U on X such that F ⊆ U . For any
x ∈ X we have X −{x} ∈ F ⊆ U , and since ∅ /∈ U , it follows that {x} /∈ U . This
proves that U is nontrivial. �

9.1. The Stone-Cech compactification of a discrete space. Let X be a topo-
logical space. Recall that a compactification of X is a compact space Y together with
a topological embedding ι : X −→ Y such that ι(X) is dense in Y . Now we will use
ultrafilters to give a very important example of compactification of a discrete space.
We start by fixing some notation: for any set X let βX be the collection of all the
ultrafilters on X and, for any subset Y of X, let Y ] := {U ∈ βX : Y ∈ U }. Since
the collection B := {Y ] : Y ⊆ X} clearly covers the set βX and (Y ∩Z)] = Y ] ∩Z],
it immediately follows that B is a basis of open sets for a (unique) topology on βX.
We will call it the Stone-Cech topology.

(9.8) Proposition. Let X be a set.

(a) For any Y ⊆ X we have βX − Y ] = (X − Y )]. In particular, the basic open
set Y ] is clopen in βX.

(b) βX is a compact and Hausdorff space.

Proof. (a). The equality βX − Y ] = (X − Y )] holds since exactly one of the sets
Y,X − Y belongs to an ultrafilter, in view of (9.5).

(b). First, we show that βX is a Hausdorff space. Take distinct ultrafilters U ,V
on X, and take a set Y ∈ U −V . Again by (9.5), X−Y ∈ V , and thus Y ], (X−Y )]

are disjoint open neighborhoods of U ,V , respectively.
We show now that βX is compact. Let A be an open cover of βX. By the

definition of the Stone-Cech topology, we can assume, without loss of generality,
that A consists of basic open sets, that is A := {Y ] : Y ∈ F}, where F is a
collection of subsets of X. By contradiction, assume that A does not admit any
finite subcover, and let F ′ := {X − Y : Y ∈ F}. Take finitely many members

Y1, . . ., Yn ∈ F . By assumtion,
⋃n
i=1 Y

]
i ( βX, and thus there exists an ultrafilter

U on X such that Yi /∈ U , for any i = 1, . . ., n. By (9.5) and by definition, we have⋂n
i=1(X − Yi) ∈ U and, a fortiori,

⋂n
i=1(X − Yi) 6= ∅. This argument shows that F ′
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has the finite intersection property and hence, in view of (9.4), there is an ultrafilter
V such that F ′ ⊆ V . In particular, we have X − Y /∈ V , and equivalently Y /∈ V ,
for any Y ∈ F , against the fact that A is an open cover of βX. The proof is now
complete. �

(9.9) Proposition. Let X be a set, endowed with the discrete topology, and let
ι : X −→ βX be the function defined by ι(x) := Ux, for any x ∈ X, where Ux is the
trivial ultrafilter generated by x. Then, βX and ι provide a compactification of X,
called the Stone-Cech compactification.

Proof. It remains to show that ι is a topological embedding and that ι(X) is dense in
βX. The map ι is obviously injective and continuous. Moreover, the straightforward
equality ι(Y ) = Y ] ∩ ι(X), which holds for any subset Y of X, shows that ι is a
topological embedding. Finally, take any nonempty open subset Ω of βX. In order to
prove that Ω∩ι(X) 6= ∅ it suffices to assume that Ω = Y ], for some nonempty subset
Y of X. Clearly, for any y ∈ Y , the trivial ultrafilter Uy belongs to Ω ∩ ι(X). �

We recall here the following easy fact for the reader convenience.

(9.10) Lemma. Let X be a T4 space, U ⊆ X be open and x ∈ U . Then, there is
an open set V such that x ∈ V and V ⊆ U .

Proof. The sets {x} and X − U are closed and disjoint. By assumption, there are
disjoint open sets V,Ω of X such that x ∈ V and X − U ⊆ Ω. It follows that
V ⊆ X − Ω ⊆ U . �

(9.11) Theorem (Universal property of the Stone-Cech compactification). Let X
be a discrete space and let ι be the topological embedding defined in (9.9). Then,
for any compact and Hausdorff space K and any function f : X −→ K, there is a

unique continuous function f̂ : βX −→ K such that f = f̂ ◦ ι.

Proof. First, we will show the following claims.
Claim 1. Take an ultrafilter U on X and set C(U ) :=

⋂
{f(Y ) : Y ∈ U }. If U

is an open subset of K and U ∩ C(U ) 6= ∅, then f−1(U) ∈ U .
As a matter of fact, take an element k ∈ U ∩ C(U ). This implies that, for any

Y ∈ U , we have U ∩ f(Y ) 6= ∅ and, equivalently, Y ∩ f−1(U) 6= ∅. Thus, keeping in
mind (9.5), we easily infer that f−1(U) ∈ U .

Claim 2. For any ultrafilter U on X, the set C(U ) consists of a unique point.
Indeed, take sets Y1, . . ., Yn ∈ U and note that T :=

⋂n
i=1 Yi 6= ∅, since T ∈ U .

Then ∅ 6= f(T ) ⊆
⋂n
i=1 f(Yi). This proves that the collection {f(Y ) : Y ∈ U } is a

collection of closed sets of the compact space K, with the finite intersection property.
It follows that C(U ) 6= ∅. Now assume that x, y ∈ C(U ) and that x 6= y. Since K
is a Hausdorff space, there are disjoint open sets U, V ⊆ K such that x ∈ U, y ∈ V .
By Claim 1 we have f−1(U), f−1(V ) ∈ U , and thus ∅ = f−1(U) ∩ f−1(V ) ∈ U , a
contradiction.

Now, let f̂ : βX −→ K be the function such that, for any U ∈ βX, f̂(U ) is

the unique element of the set C(U ). We show that f̂ is continuous by proving that
it is continuous at any point of βX. Take any ultrafilter U on X and any open

neighborhood U of f̂(U ). Since K is normal, being it compact and Hausdorff, we

can take an open neighborhood V of f̂(U ) such that V ⊆ U , in view of (9.10).
Since clearly V ∩ C(U ) 6= ∅, we have f−1(V ) ∈ U , by Claim 1, that is, (f−1(V ))]
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is an open neighborhood of U . Take any ultrafilter V ∈ (f−1(V ))]. By definition,

f̂(V ) ∈
⋂
{f(Y ) : Y ∈ V } ⊆ f(f−1(V )) ⊆ V ⊆ U . This proves that f̂ is continuous.

The fact that f = f̂ ◦ ι follows immediately by Claim 2 and the fact that, for any
x ∈ X, then clearly f(x) ∈

⋂
{f(Y ) : x ∈ Y } =: C(Ux). Finally, if g : βX −→ K is

a continuous function such that g ◦ ι = f , then f̂ |ι(X) = g|ι(X). From the fact that

ι(X) is dense in βX and that K is a Hausdorff space it follows that f̂ = g. �

9.2. The prime spectrum of a product of fields. Now we will give an interesting
application of the Stone-Cech compactification for describing the prime spectrum of
any product of fields.

(9.12) Remark. Let {Kx : x ∈ X} be a nonempty collection of fields, where X is
any index set, and consider the ring A :=

∏
x∈X Kx. By definition, an element of A

is a function f : X −→
⋃
x∈X Kx such that f(x) ∈ Kx, for any x ∈ X.

(a) For any x ∈ X, mx := {f ∈ A : f(x) = 0} is a maximal ideal of A, because it
is the kernel of the surjective ring homomorphism px : A −→ Kx, f 7→ f(x).

(b) Note that if X is finite, then any prime ideal of A is of the form mx, for
x ∈ X. As a matter of fact, let p any prime ideal of A and, for any x ∈ X,
let fx ∈ A be defined by

fx(y) :=

{
1 if y 6= x

0 if y = x
.

Since X is finite, the product
∏

x∈X fx is defined and belongs to A and clearly∏
x∈X fx = 0 ∈ p. Since p is prime, fx ∈ p, for some x ∈ X. Moreover, for

any f ∈ mx we have f = ffx ∈ p. Thus mx ⊆ p and, since mx is maximal,
the equality holds.

(c) If X is infinite, the prime spectrum of A is much more complicated. This
intuition comes from the following easy observation. Let a :=

⊕
x∈X Kx be

the direct sum of the collection {Kx : x ∈ X}, that is,

a := {f ∈ A : {x ∈ X : f(x) 6= 0} is finite}.

It is immediately seen that a is an ideal of A and, since X is infinite, it is a
proper ideal (1 /∈ a). Then, there is a maximal ideal m of A such that a ⊆ m.
But clearly, for any x ∈ X, it happens that m 6= mx since, if fx is the function
defined in part (b), then 1− fx ∈ a−mx.

(9.13) Lemma. Let A be a ring such that any element of A can be written as the
product of an invertible element of A and an idempotent of A. Then A is zero-
dimensional.

Proof. Let p be a prime ideal of A. We will show that A/p is a field. For any
a ∈ A, let a ∈ A/p denote the class of a modulo p. Suppose that a 6= 0 and take an
invertible element u ∈ A and a idempotent e ∈ A such that a = ue. Thus a = ue
and, since the unique idempotents of an integral domain are 0, 1, we must have e = 1
(otherwise a = 0). It follows a = u, that is, a is invertible in A/p. �

(9.14) Proposition. Any product of fields is zero-dimensional.
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Proof. Let {Kx : x ∈ X} be a nonempty collection of fields and let A :=
∏

x∈X Kx.
For any f ∈ A define the elements u, e ∈ A by setting

u(x) :=

{
f(x) if f(x) 6= 0

1 if f(x) = 0
e(x) :=

{
1 if f(x) 6= 0

0 if f(x) = 0.

Clearly, u is an invertible element of A, e is an idempotent and f = ue. The
conclusion follows from (9.13). �

Let {Kx : x ∈ X} be a nonempty collection of fields and let A :=
∏

x∈X Kx.
In view of (9.12a), there is a natural injective map λ : X −→ Spec(A) defined by
λ(x) := mx, for any x ∈ X. By (3.9) and (9.14), Spec(A) is a compact and Hausdorff
space. Thus, in light of the universal property of the Stone-Cech compactification,

there exists a unique continuous function λ̂ : βX −→ Spec(A) such that λ̂ ◦ ι = λ,
where ι : X −→ βX is the canonical topological embedding (now X is endowed with
the discrete topology). In the next crucial result we are going to describe the map

λ̂ and to show that it is a homeomorphism.

(9.15) Theorem. Let {Kx : x ∈ X} be a nonempty collection of fields and let
A :=

∏
x∈X Kx. For any ultrafilter U on X let

pU := {f ∈ A : {x ∈ X : f(x) = 0} ∈ U }.

(a) Then pU is a prime ideal of A.
(b) Let λ : X −→ Spec(A) be the map defined in the above discussion (λ(x) :=

mx, for any x ∈ X), and let ι : X −→ βX be the canonical topological em-

bedding. Then the unique continuous function λ̂ : βX −→ Spec(A) such that

λ̂◦ι = λ, induced by the unversal property of the Stone-Cech compactification,

is defined by λ̂(U ) := pU , for any U ∈ βX, and it is a homeomorphism.

Proof. For any f ∈ A, set Zf := {x ∈ X : f(x) = 0}.
(a). For any f, g ∈ pU and any a ∈ A we clearly have Zf ∩ Zg ⊆ Zf±g and

Zf ⊆ Zaf . Since Zf , Zg ∈ U , we have Zf ∩ Zg ∈ U and thus Zf±g, Zaf ∈ U , that
is, f ± g, af ∈ pU . Moreover Z1 = ∅ /∈ U . This proves that pU is a proper ideal of
A. Take now elements f, g ∈ A such that fg ∈ pU . Thus Zf ∪ Zg = Zfg ∈ U and,
by (9.5), either Zf ∈ U or Zg ∈ U . In other words, either f ∈ pU or g ∈ pU . Thus
pU is a prime ideal of A.

(b). Let U be an ultrafilter on X and, as in the proof of the universal property of

the Stone-Cech compactification, let C(U ) :=
⋂
{λ(U) : U ∈ U }. Keeping in mind

(3.2c) we have

C(U ) =
⋂
U∈U

{mx : x ∈ U} =
⋂
U∈U

V (
⋂
x∈U

mx) =
⋂
U∈U

V ({f ∈ A : f |U = 0}).

Fix a set U ∈ U and note that a function f ∈ A is such that f |U = 0 if and
only if U ⊆ Zf and thus it follows Zf ∈ U , that is f ∈ pU . This proves that
pU ∈ C(U ). By Claim 1 of the proof of the universal property of the Stone-Cech

compactification, it follows that the unique continuous function λ̂ : βX −→ Spec(A)

such that λ̂ ◦ ι = λ is defined by setting λ̂(U ) := pU , for any U ∈ βX. We claim

that λ̂ is injective. Take distinct ultrafilters U ,V on X, fix a set U ∈ U − V and
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consider the function f ∈ A such that

f(x) :=

{
0 if x ∈ U
1 if x ∈ X − U.

Then U = Zf ∈ U − V , that is, f ∈ pU − pV . In order to see that λ̂ is surjective,
take any prime ideal p of A and let G := {Zf : f ∈ p}. Take elements f1, . . ., fn ∈ p
and, in light of the proof of (9.14), take invertible elements u1, . . ., un ∈ A and
idempotents e1, . . ., en ∈ A such that fi = uiei, for 1 ≤ i ≤ n. Clearly, since p is a
prime ideal, ei ∈ p, for 1 ≤ i ≤ n. If

⋂n
i=1 Zfi = ∅, for any x ∈ X there is an index

i ∈ {1, . . ., n} such that fi(x) 6= 0 and, a fortiori, ei(x) 6= 0. Since ei = e2
i , we infer

that ei(x) = 1. It follows that
∏n

i=1(1 − ei) = 0 ∈ p, and thus 1 − ei ∈ p, for some
1 ≤ i ≤ n. Thus we have 1 = (1 − ei) + ei ∈ p, a contradiction. This argument
shows that G has the finite intersection property, and hence G can be extended to
an ultrafilter U on X, by (9.4). By definition, we have p ⊆ pU and, by (9.14),

p = pU . Finally, λ̂ is closed, being it a continuous function from a compact space
into a Hausdorff space (by (9.8) and (3.9)). The conclusion is now clear. �

10. The constructible topology on the prime spectrum of a ring.

Let A be a ring. As we saw in (3.2e), the prime spectrum Spec(A) of A, endowed
with the Zariski topology, is always a T0 space but it is Hausdorff if and only if A
is zero-dimensional, by (3.9). In the following, we are going to define and study a
new topology on Spec(A), introduced by A. Grothendieck, which refines the Zariski
topology and makes Spec(A) a compact and Hausdorff space.

(10.1) Definition. [10, (7.2.11)] If A is any ring, the constructible topology on
Spec(A) is the coarsest topology for which the open and compact subspaces of Spec(A)
(when equipped with the Zariski topology) are clopen sets. We will denote by Spec(A)cons

the set Spec(A), endowed with the constructible topology.

(10.2) Remark. Let A be a ring.

(a) In view of (3.2f), the open and compact subspaces of Spec(A) are precisely
the subsets of the form

⋃n
i=1D(fi), where f1, . . ., fn ∈ A and n ≥ 1, and they

form a basis B of open sets of the Zariski topology. Since, by definition, any
member of B is, in particular, open in Spec(A)cons, the Zariski topology is
coarser than the constructible topology.

(b) By definition, a subbasis of open sets for Spec(A)cons is

S := B ∪ {Spec(A)− Ω : Ω ∈ B},
and thus the collection of all finite intersections of members of S forms a basis
of open sets for the constructible topology. Such finite intersections are sets
of the form Λ :=

⋂n
i=1(Spec(A)− V (ai))∩

⋂m
j=1 V (bj), where the ideals ai, bj

are finitely generated. In other words, Λ = (Spec(A)− V (a)) ∪ V (b), where
a = a1 · · · an and b = b1 + . . .+ bn (note that a and b are finitely generated).
If a := (a1, . . ., ar)A, then Λ =

⋃r
h=1D(ai) ∩ V (b). Since, by definition, any

set of the form D(a)∩V (i), where a ∈ A and i is a finitely generated ideal of
A, is open in Spec(A)cons, it finally follows that a basis of open sets for the
constructible topology is

Bcons := {D(a) ∩ V (i) : a ∈ A, i finitely generated ideal of A}.
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Note that any set in Bcons is clopen in Spec(A)cons.
(c) Spec(A)cons is a Hausdorff space. Indeed, if p, q are distinct prime ideals of

A, take an element f ∈ p − q. By definition, V (f), D(f) are disjoint open
neighborhoods of p, q, respectively, in Spec(A)cons.

(d) Spec(A)cons is totally disconnected. Indeed, if C is any subset of Spec(A)
and p, q ∈ C are distinct prime ideals, take an element f ∈ p − q. Then, by
definition, Ω1 := D(f) ∩ C,Ω2 := V (f) ∩ C are nonempty, disjoint and open
subspaces of C (with the subspace topology induced by that of Spec(A)cons)
and C = Ω1 ∩ Ω2. Thus C is not connected.

By using just the definition, it is hard to provide an easy description of the closed
subsets, with respect to the constructible topology. We will do this by using ultra-
filters.

(10.3) Lemma. Let A be a ring and Y be a nonempty subset of Spec(A). The
following properties hold.

(a) Let U be an ultrafilter on Y . Then,

YU := {a ∈ A : V (a) ∩ Y ∈ U }
is a prime ideal of A, called the ultrafilter limit point of Y (with respect to
the ultrafilter U ).

(b) For any prime ideal p ∈ Y , let κp denote the residue field of A at p (that
is, κp is the quotient field of A/p or, equivalently, the residue field of the

local ring Ap). Consider the ring AY :=
∏
p∈Y

κp and let λ : A −→ AY be

the canonical ring homomorphism (i.e., for any a ∈ A, then λ(a) ∈ AY is
the function defined by λ(a)(p) := a + p ∈ A/p ⊆ κp, for any p ∈ Y . If
λ? : Spec(AY ) −→ Spec(A) is the canonical map induced by λ, then

λ?(Spec(AY )) = {YU : U ultrafilter on Y }.

Proof. Clearly, it is sufficient to prove part (b). By (9.15), we have

Spec(AY ) = {pU : U ultrafilter on Y },
where pU := {f ∈ AY : Zf ∈ U } and Zf := {p ∈ Y : f(p) = 0}. Now, for every
a ∈ A,

Zλ(a) := {p ∈ Y : λ(a)(p) = 0} = {p ∈ Y : a+ p = 0 in A/p} = V (a) ∩ Y.
It follows immediately that, for any ultrafilter U on Y , λ−1(pU ) = YU . The con-
clusion is now clear. �

(10.4) Example. Let A be a ring.

(a) If Y is a subset of Spec(A), p ∈ Y and Up is the trivial ultrafilter on Y
generated by p, then p = YUp .

(b) If A = Z, Y := Max(A) and U is any nontrivial ultrafilter on Y , then
YU = (0). Indeed, if n ∈ Z and V (n) ∩ Y ∈ U , then V (n) ∩ Y is infinite,
since U is nontrivial, and thus n = 0 (any nonzero integer has only finitely
many prime factors).

(10.5) Definition. Let A be a ring and let Y ⊆ Spec(A). We say that Y is
ultrafilter closed if YU ∈ Y , for any ultrafilter U on Y .
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(10.6) Example. Let A be a ring.

(a) For any ideal a of A, then V (a) is ultrafilter closed. Indeed, let U be an
ultrafilter on Y := V (a) and let a ∈ a. Then V (a) ∩ Y = Y ∈ U , that is,
a ∈ YU . This proves that, a ⊆ YU , i.e., YU ∈ Y .

(b) For any element f ∈ A, then D(f) is ultrafilter closed. Indeed, if U is an
ultrafilter on Y := D(f), then f /∈ YU (otherwise, ∅ = V (f) ∩ Y ∈ U ,
contradiction), that is, YU ∈ Y .

(c) If A := Z and Y := Max(A), then Y is not ultrafilter closed, by (10.4b).

The proof of the following result is straightforward and it is left to the reader as
an exercise.

(10.7) Lemma. Let A be a ring, X ⊆ Spec(A) and U be an ultrafilter on X.

(a) If U ∈ U , then U |U := {V ⊆ U : V ∈ U } is an ultrafilter on U and the
equality of prime ideals XU = UU |U holds.

(b) If X ⊆ Y ⊆ Spec(A), then U Y := {T ⊆ Y : T ∩X ∈ U } is an ultrafilter on
Y and XU = YU Y .

(10.8) Proposition ([7] and [3, Remark 2.7(3)]). Let A be a ring. Then the ultra-
filter closed subsets of Spec(A) form the collection of the closed sets for a (unique)
topology on Spec(A). We will call such a topology the ultrafilter topology.

Proof. Clearly, ∅ and Spec(A) are ultrafilter closed.
Now, suppose that Y, Z ⊆ Spec(A) are ultrafilter closed and let U be an ultrafilter

on Y ∪ Z. By definition, T := Y ∪ Z ∈ U and thus, by (9.5), we can assume,
without loss of generality, that Y ∈ U . By (10.7a), U |Y is an ultrafilter on Y and
TU = YU |Y , and YU |Y ∈ Y ⊆ T since Y is ultrafilter closed. Thus T is ultrafilter
closed.

Let G be a nonempty collection of ultrafilter closed subsets of Spec(A), let X :=⋂
G and let U be an ultrafilter on X. By (10.7b), for any Y ∈ G, U Y is an ultrafilter

on Y and XU = YU Y ∈ Y , since Y is ultrafilter closed. It follows XU ∈
⋂
G =: X,

proving that X is ultrafilter clsoed. �

We recall now the following useful and basic fact about General Topology.

(10.9) Remark. Let X be a set and let T ,U be topologies on X, such that (X, T )
is compact, (X,U) is Hausdorff and U is coarser than T . Then, T = U . Indeed, any
continuous function from a compact space to a Hausdorff space is closed, and thus
the identity (X, T ) −→ (X,U), which is continuous since U is coarser than T , is a
closed map, i.e., it is a homeomorphism. In other words, U = T .

(10.10) Theorem ([7, Theorem 8] and [3, Corollary 2.17]). Let A be a ring. Then
the constructible topology and the ultrafilter topology on Spec(A) are the same topol-
ogy.

Proof. Let Ω an open and compact subspace of Spec(A), with respect to the Zariski
topology. As we saw in (10.2a), Ω =

⋃n
i=1(D(fi)), for some f1, . . ., fn ∈ A, and thus

Spec(A) − Ω =
⋂n
i=1 V (fi) = V (a) where a = (f1, . . ., fn)A. In view of (10.6) and

of the fact that the ultrafilter topology is a topology (see (10.8)), it follows that
Ω, Spec(A) − Ω are ultrafilter closed, that is, that Ω is clopen, with respect to the
ultrafilter topology. Then, by definition, the ultrafilter topology is finer than the
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constructible topology. By (10.2c) and (10.9), the conclusion will follow from the
following claim.

Claim. Spec(A) is compact, with respect to the ultrafilter topology.
Let G be a nonempty collection of ultrafilter closed subsets of X := Spec(A) and

assume that G has the finite intersection property. By (9.4) we can extend G to an
ultrafilter U on X. We claim that the ultrafilter limit point XU belongs to

⋂
G. To

prove this, take any set Y ∈ G and note that Y ∈ U , since U extends G. Then, by
(10.7), U |Y is an ultrafilter on Y and XU = YU |Y ∈ Y , since Y is ultrafilter closed.
The proof is now complete. �

From the previous theorem and the claim in its proof the following corollary
immediately follows.

(10.11) Corollary. Let A be a ring. Then Spec(A)cons is compact.

(10.12) Corollary. Let A be a ring. Then the constructible topology is equal to the
Zariski topology on Spec(A) if and only if A is zero-dimensional.

Proof. Note that A is zero-dimensional if and only if the Zariski topology on Spec(A)
is compact and Hausdorff, by (3.3) and (3.9). Apply (10.9) and (10.11) to get the
conclusion. �

(10.13) Proposition. Let f : A −→ B be a ring homomorphism. Then the canon-
ical map f ? : Spec(B) −→ Spec(A) is continuous and closed, when Spec(A) and
Spec(B) are endowed with the constructible topology.

Proof. Since, by (10.2c) and (10.11), Spec(A)cons, Spec(B)cons are compact and Haus-
dorff spaces, it suffices to show that f ? : Spec(B)cons −→ Spec(A)cons is con-
tinuous. Let Ω be an open and compact subspace of Spec(A), with the Zariski
topology, say Ω =

⋃n
i=1D(ai), for some a1, . . ., an ∈ A. In view of (3.5a), we

have f ?−1(Ω) =
n⋃
i=1

D(f(ai)) is open and compact (with respect to the Zariski

topology) and Spec(B) − f ?−1(Ω) = V (f(a1), . . ., f(an)). By definition, we in-
fer that both f ?−1(Ω) and Spec(B) − f ?−1(Ω) are open in Spec(B)cons. Hence
f ? : Spec(B)cons −→ Spec(A)cons is continuous, by (10.2b). �

In the following Y
c

will denote the closure of a subset Y ⊆ Spec(A), with respect
to the constructible topology.

(10.14) Proposition ([3, Proposition 2.13]). Let A be a ring and let Y ⊆ Spec(A).
Then,

Y
c

= {YU : U ultrafilter on Y }.

Proof. By (10.3b) and (10.13), the set Y ′ := {YU : U ultrafilter on Y } is closed
in Spec(A)cons. Furthermore, by (10.4a), Y ⊆ Y ′. Take now any closed subset
C ⊆ Spec(A)cons such that Y ⊆ C and take an ultrafilter limit point YU of Y , for
some ultrafilter U on Y . By (10.7b), U C is an ultrafilter on C and YU = CU C . By
(10.10), C is ultrafilter closed and thus YU ∈ C. The conclusion is now clear. �

(10.15) Corollary. Let A be a ring and let Y ⊆ Spec(A). Then, the following
conditions are equivalent.

(i) Y is closed in Spec(A)cons.
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(ii) There is a ring homomorphism f : A −→ B, for some ring B, such that
Y = f ?(Spec(B)).

Proof. (ii)=⇒(i) follows from the fact that f ? : Spec(B)cons −→ Spec(A)cons is a
closed map (see (10.13)).

(i)=⇒(ii). Apply (10.14) and (10.3b). �

Recall that a subset of a topological space X is called to be locally closed if it is
intersection of an open subset and a closed subset of X. Following Chevalley, we say
that a subset of a topological space is constructible if it is a finite union of locally
closed subsets. The following remark will justify the terminology choosen for the
constructible topology.

(10.16) Remark. Let A be a ring. In (10.2b) we observed that a basis of clopen
subsets for the constructible topology of Spec(A) is

Bcons := {D(a) ∩ V (i) : a ∈ A, i finitely generated ideal of A}.

(a) Any clopen subset of Spec(A)cons is constructible, with respect to the Zariski
topology. As a matter of fact, a clopen Ω of Spec(A)cons is a union of a
suitable subfamily of Bcons, being it open and it is compact, because it is
closed in the compact space Spec(A)cons (see (10.11)). It follows that Ω is
a finite union of members of Bcons. Thus the conclusion follows by noting
that Bcons consists of locally closed subspaces of Spec(A) (with the Zariski
topology).

(b) If Spec(A), with the Zariski topology, is a Noetherian space, then the con-
structible subsets of Spec(A) are precisely the clopen subsets of Spec(A)cons.
Indeed, for any ideal a ofA, the open subset Ω := Spec(A)−V (a) of Spec(A) is
compact, by noetherianity, and thus Ω =

⋃n
i=1 D(fi), for some f1, . . ., fn ∈ A.

It follows V (a) = V (f1, . . ., fn). Hence, a locally closed subset of Spec(A) is
of the form Γ := V (a) ∩ (Spec(A)− V (b)), for some finitely generated ideals
a, b of A. In view of (10.2b), Γ is clopen, with respect to the constructible
topology. Finally, it is enough to note that a finite union of clopen subsets
of a topological space is clopen.

11. Spectral spaces.

(11.1) Definition ([12]). A topological space is spectral if it is homeomorphic to
the prime spectrum of a ring, endowed with the Zariski topology.

By (3.2f), the collection B := {D(f) : f ∈ A} of all principal open subsets of
the prime spectrum of a ring A is a basis for the Zariski topology, consisting of
compact subspaces, by (3.6b). Note that B is closed under finite intersections, since
we have D(f) ∩ D(g) = D(fg), for any f, g ∈ A. Thus, any spectral space has
a basis of open and compact subspaces which is closed under finite intersections.
Moreover, in view of (3.3), a spectral space is compact. Finally, given a ring A
and an irreducible closed subset C of Spec(A), there is a unique prime ideal p of

A such that C = V (p) = {p}, in view of (3.2d,e,g). We infer that any irreducible
closed subspace of a spectral space X is the closure of a unique point x ∈ X (the
topological spaces satisfying this condition are called sober spaces). In particular, a
spectral space is T0.
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Thus, any spectral space is compact, sober and has a basis of open and compact
subspaces which is closed under finite intersections. In his thesis, M. Hochster
showed much more.

(11.2) Theorem ([12, Proposition 4]). For a topological space X the following
conditions are equivalent.

(i) X is a spectral space.
(ii) X is compact, sober and has a basis of open and compact subspaces which

is closed under finite intersections.

The proof of the nontrivial part of this theorem ((ii)=⇒(i)) is hard and requires
several difficult techniques which seem not so close to the goals of this course. For
this reason we will not present the proof of (ii)=⇒(i).

We now classify Hausdorff spectral spaces.

(11.3) Corollary. Let X be a Hausdorff space. Then, the following conditions are
equivalent.

(i) X is a spectral space.
(ii) X is compact and it admits a basis consisting of clopen subsets.

Proof. (i)=⇒(ii). It is sufficient to note that an open and compact subspace of a
Hausdorff space is clopen and apply the remarks above or the trivial part of (11.2).

(ii)=⇒(i). Since X is compact, a clopen subspace of X is compact too. Thus X
has a basis of open and compact subspaces closed under finite intersections, namely
the collection of all clopen subspaces of X (note that the intersection of finitely many
clopen sets is clopen). Moreover X is clearly sober since the irreducible subspaces
of a Hausdorff space are the singletons. Then, it is sufficient to apply (11.2). �

(11.4) Lemma. Let X be a compact and Hausdorff space, and let x ∈ X. Then⋂
{C : C is clopen in X and x ∈ C}

is a connected subspace of X.

Proof. We argue by contradiction, and take nonempty disjoint closed subspaces Γ,∆
of Q :=

⋂
{C : C is clopen in X and x ∈ C}, with respect to the subspace topology,

such that Q = Γ∪∆. Note that Γ,∆ are closed in X, since Q is closed in X. Since
X is a T4 space, being it compact and Hausdorff, there are open and disjoint subsets
U, V of X such that U ⊇ Γ and V ⊇ ∆. Consider now the collection

G := {C : C is clopen in X and x ∈ C} ∪ {X − (U ∪ V )}

of closed sets of X. Since X − (U ∪ V ) ⊆ X − Q, we have
⋂
G = ∅ and thus, by

compactness, G has not the finite intersection property. Hence, there are finitely

many clopen subspaces C1, . . ., Cn of X such that x ∈
n⋂
i=1

Ci and satisfying

n⋂
i=1

Ci ∩ (X − (U ∪ V )) = ∅,
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that is, x ∈ Q ⊆ C :=
n⋂
i=1

Ci ⊆ U ∪ V . Assume, without loss of generality, that

x ∈ U . We have immediately

U ∩ C ⊆ U ∪ C = U ∩ C ∩ (U ∪ V ) = U ∩ C.
This proves that U ∩ C is a clopen set of X and, since clearly x ∈ U ∩ C, we have
Q ⊆ U ∩C. Thus ∆ ⊆ V ∩Q ⊆ V ∩ (U ∩C) ⊆ V ∩U and, since ∆ 6= ∅, we deduce
V ∩ U 6= ∅, a contradiction. �

(11.5) Proposition. Let X be a compact Hausdorff and totally disconnected space.
Then X has a basis of clopen sets. In particular, X is a spectral space.

Proof. Let Ω be an open subset of X and let x ∈ Ω. Consider the collection

G := {C : C is clopen in X and x ∈ C} ∪ {X − Ω}
of closed subsets of X. Since X is totally disconnected and⋂

{C : C is clopen in X and x ∈ C}

is connected, in view of (11.4), we infer that

{x} =
⋂
{C : C is clopen in X and x ∈ C}.

Thus
⋂
G = ∅ and, by compactness, there are finitely many clopen subsets C1, . . ., Cn

of X such that x ∈ C :=
⋂n
i=1Ci ⊆ Ω. From the fact that C is clopen the conclusion

immediately follows. The last statement is a consequence of (11.3). �

The next goal is to find explicitly a ring whose prime spectrum is homeomorphic
to a given compact Hausdorff totally disconnected space.

(11.6) Theorem. Let X be a topological space and let A(X) be the ring of all
continuous functions X −→ F2, where F2 is equipped with the discrete topology. The
following properties hold.

(a) A(X) is zero-dimensional.
(b) For any x ∈ X, consider the maximal ideal mx := {f ∈ A(X) : f(x) = 0}

of A(X) (mx is the kernel of the canonical surjective ring homomorphism
A(X) −→ F2, f 7→ f(x)). Then, the map τ : X −→ Spec(A(X)), x 7→ mx is
continuous.

(c) If X is compact, then τ is surjective.
(d) If X is compact, Hausdorff and totally disconnected, then τ is a homeomor-

phism.

Proof. Since any element of A(X) is idempotent, statement (a) follows immediately
from (9.13).

(b). Take any function f ∈ A(X). Then clearly τ−1(D(f)) = f−1({1}) is open,
since f is continuous. This proves that τ is continuous.

(c). Take any prime ideal p of A(X) and let F := {f−1({0}) : f ∈ p}. If
⋂
F = ∅,

then {f−1({1}) : f ∈ p} is an open cover of X. By compactness, there are finitely
many f1, . . ., fn ∈ p such that X =

⋃n
i=1 f

−1({1}). It follows immediately that∏n
i=1(1− fi) = 0 ∈ p and, by primality, 1− fi ∈ p, for some 1 ≤ i ≤ n. Then 1 ∈ p,

a contradiction.
(d) Take distinct points x, y ∈ X. Since X is, in particular, a T1 space, then

X − {y} is an open neighborhood of x. Since X is compact, Hausdorff and totally
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disconnected, there is a clopen set C of X such that x ∈ C ⊆ X − {y}, by (11.5).
It follows that the function f : X −→ F2 such that

f(z) :=

{
0 if z ∈ C
1 if z ∈ X − C

is, by definition, continuous, that is, f ∈ A(X). Moreover f ∈ mx − my. This
proves that τ is bijective. The fact that τ is a homeomorphism is an immediate
consequence of the previous parts, of the fact that X is, in particular, compact, and
that Spec(A(X)) is Hausdorff, by part (a) and (3.9). �

In the following definition, we essentially extend the notion of the constructible
topology to any topological space.

(11.7) Definition ([12]). Let X be a topological space. The patch topology on X
is the coarsest topology for which the open and compact subspaces of X are clopen
sets. We shall denote by Xpatch the set X equipped with the patch topology.

By definition, if X := Spec(A), then the patch topology and the constructible
topology are equal.

(11.8) Remark. Let X be a T0 space with a basis of open and compact subspaces.
Then, Xpatch is a Hausdorff space and the patch topology is finer than the given
topology on X. As a matter of fact, take x, y ∈ X and x 6= y. By assumption, there
is an open and compact subspace U of X such that x ∈ U and y /∈ U . By definition,
U,X −U are clopen disjoint neighborhoods of x, y, respectively. The last statement
follows by definition.

(11.9) Lemma. Let X be a spectral space and let f : Spec(A) −→ X be a home-
omorphism. Then, f : Spec(A)cons −→ Xpatch is a homeomorphism. In particular,
Xpatch is a compact space.

Proof. By definition, a subbasis of open sets for Xpatch is

Spatch := {Ω, X − Ω : Ω open and compact in X}.
Since f is a homeomorphism, f−1(Ω) is open and compact in Spec(A), for any open
and compact subspace Ω of X, and thus f−1(Ω) is clopen in Spec(A)cons. This
proves that f−1(U) is open in Spec(A)cons, for any U ∈ Spatch, that is, the map
f : Spec(A)cons −→ Xpatch is continuous. Moreover, f : Spec(A)cons −→ Xpatch

is bijective and closed, since Spec(A)cons is compact (see (10.11)) and Xpatch is
Hausdorff, by (11.8). Thus f : Spec(A)cons −→ Xpatch is a homeomorphism. �

Surprisingly, compactness of certain topological spaces, equipped with the patch
topology, is crucial to show if such spaces are spectral, as the following result proves.

(11.10) Theorem ([12, Corollary to Proposition 7]). For a topological space X, the
following conditions are equivalent.

(i) X is a spectral space.
(ii) X is T0, has a basis of open and compact subspaces and Xpatch is compact.

Proof. (i)=⇒(ii). Apply the trivial part of (11.2) and (11.9).
(ii)=⇒(i). Let B be the collection of all open and compact subspaces of X. By

assumption, B is a basis of X. By definition, B is a collection of clopen sets in the
compact space Xpatch. Thus, in particular, an intersection of finitely many members
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of B is closed in Xpatch and thus it is compact both in the compact space Xpatch

and in X since, by (11.8), the topology of X is coarser than the patch topology.
This proves that B is closed under finite intersection. Moreover, X is compact, since
Xpatch is compact. Now let C be an irreducible closed subspace of X and let

G := {U ∩ C : U open and compact in X and U ∩ C 6= ∅}

Since the patch topology is finer than the given topology on X, then G is a collection
of closed subsets of Xpatch. Moreover, since C is irreducible, then G has the finite
intersection property. Since Xpatch is compact, there is a point x0 ∈

⋂
G, and clearly

{x0} ⊆ C. Conversely, take a poin x ∈ C and let V be an open neighborhood of x.
By assumption, there is an open and compact subspace U of X such that x ∈ U ⊆ V .
Then U ∩C 6= ∅, that is, U ∩C ∈ G, and thus x0 ∈ U ∩C, in particular. This proves
that C = {x0}. The conclusion follows from (11.2). �

(11.11) Corollary. Let X be a spectral space and let Ω1, . . .,Ωn be open and compact
subspaces of X. Then

⋂n
i=1 Ωi is (open) and compact. Thus the basis of all open

and compact subspaces of X is closed under finite intersections.

Proof. Each Ωi is clopen in Xpatch and thus Ω :=
⋂n
i=1 Ωi is closed in Xpatch, in

particular, and thus it is compact in the compact space Xpatch (in view of 11.10).
Since, by (11.8), the patch topology on X is finer than the given spectral topology
of X, it follows that Ω is compact in X. �

In the applications it may be not so easy to discuss compactness of Xpatch, thus we
will provide now a more direct and powerfur criterion for deciding when a topological
space X is spectral, based on ultrafilters.

Take any set X and fix a nonempty collection S of subsets of X. For any ultrafilter
U on X and any subset Y of X, set

Y (U ) := YS(U ) := {x ∈ X : [∀S ∈ S, (x ∈ S ⇐⇒ S ∩ Y ∈ U )]}.

The set Y (U ) is called the ultrafilter limit set of Y , with respect to U . Since S will
be always fixed, we will not mention it in the terminology.

(11.12) Example ([3, Example 2.1(2)]). Let A be a ring, X := Spec(A) and
S := {D(f) : f ∈ A} be the collection of principal open subsets of X. Take any
subset Y of X and any ultrafilter U on Y and consider the ultrafilter limit point

YU := {x ∈ A : V (x) ∩ Y ∈ U }

of Y , with respect to U (see (10.3)). Then, by definition YS(U ) = {YU }.

(11.13) Theorem ([3, Corollary 3.3]). Let X be a topological space. Then, the
following conditions are equivalent.

(i) X is a spectral space.
(ii) X is a T0 space and has a subbasis S of open sets such that, for any ultrafilter

U on X, the ultrafilter limit set XS(U ) is nonempty.

Proof. (i)=⇒(ii). Since X is a spectral space, the collection S of all open and
compact subspaces of X is a basis of X (in particular, a subbasis), by the trivial
part of (11.2). For any ultrafilter U on X set

U ∗ := {X − S : S ∈ S −U } ∪ (S ∩U ).
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By (9.5), U ∗ ⊆ U and thus it has the finite intersection property. Moreover, by
definition, U ∗ consists of clopen sets of Xpatch. Since, in view of (11.10), Xpatch

is compact, there is a point x ∈
⋂

U ∗. We claim that x ∈ XS(U ). To prove
this, fix a set S ∈ S. If x ∈ S and S − X ∈ U , then X − S ∈ U ∗ and thus
x ∈ X − S, a contradiction. Thus x ∈ S implies S ∈ U . The converse is trivial,
since S ∩U ⊆ U ∗.

(ii)=⇒(i). By definition, the collection of sets B := {
⋂
U : U ⊆ S,U finite} is a

basis of open sets for X.
Claim 1. B consists of compact subspaces of X.
As a matter of fact, the generic element of B is of the form B :=

⋂n
i=1 Σi, for some

Σ1, . . .,Σn ∈ S. By the Alexander subbasis Theorem it suffices to prove that any
open cover of B consisting of sets of S admits a finite subcover. Take a subcollection
V of S such that B ⊆

⋃
V and assume that V has not finite subcovers. Then the

collection of sets {B−V : V ∈ V} has the finite intersection property and, by (9.4),
it can be extended to an ultrafilter U on X. By assumption, there is an element
x0 ∈ XS(U ). Choose any set V ∈ V and note that from B−V ⊆ B and B−V ∈ U
it follows B ∈ U and, a fortiori, Σ1, . . .,Σn ∈ U . Since Σ1, . . .,Σn ∈ S, x0 ∈ XS(U )
implies x0 ∈

⋂n
i=1 Σi =: B. Furthermore, since V ⊆ S and B − V ∈ U , for any

V ∈ V , x0 ∈ XS(U ) implies x0 /∈ V , for any V ∈ V . This contradicts the inclusion
B ⊆

⋃
V . The proof of Claim 1 is now complete.

Claim 2. Xpatch is compact.
Recall that a subbasis of open sets for the patch topology on X is, by definition,

the collection

Spatch := {Ω, X − Ω : Ω open and compact in X}.
Again by the Alexander subbasis theorem, it suffices to prove that if H is a subcol-
lection of Spatch and an (open) cover of X, then H has a finite subcover. Suppose
this is not the case. As before, the collection G := {X −H : H ∈ H} has the finite
intersection property and can be extended to an ultrafilter U on X. By assump-
tion, there are a point x0 ∈ XS(U ) and a set H0 ∈ H such that x0 ∈ H0. Since
H ⊆ Spatch, there is an open and compact subspace Ω of X such that either H0 = Ω
or H0 = X − Ω. Since Ω is open and compact and B is a basis of X, there are
finitely many sets B1, . . ., Bn ∈ B such that Ω =

⋃n
i=1 Bi. If H0 = Ω, take an index

i such that x0 ∈ Bi and, since Bi ∈ S, take finitely many S1, . . ., Sm ∈ S such that
Bi =

⋂m
j=1 Sj. The fact that x0 ∈ Sj, for 1 ≤ j ≤ m, and that x0 ∈ XS(U ) imply

that Sj ∈ U , for 1 ≤ j ≤ m, and thus H0 ∈ U , since Bi =
⋂m
j=1 Sj ∈ U and

Bi ⊆ H0. On the other hand, from H0 ∈ H and G ⊆ U it follows X −H0 ∈ U , and
thus ∅ ∈ U , a contradiction.

Suppose now that H0 = X − Ω =
⋂n
i=1(X − Bi). Since x0 ∈ H0 and each Bi is

a finite intersection of members of S, for any i ∈ {1, . . ., n} there is a set Ti ∈ S
such that x0 ∈ X − Ti ⊆ X − Bi. Since x0 ∈ XS(U ), we have X − Ti ∈ U and, a
fortiori, X − Bi ∈ U , for 1 ≤ i ≤ n. Thus H0 =

⋂n
i=1(X − Bi) ∈ U and this leads

to a contradiction, as before.
Now the conclusion is an immediate consequence of Claim 1, Claim 2 and (11.10).

�

(11.14) Example ([3, Proposition 3.5]). Let A,B rings such that A is a subring of
B, and let R(B|A) be the set of the subrings C of B such that A is a subring of C.
Consider the natural topology on R(B|A) whose subbasic open sets are the sets of
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the type U(x) := {C ∈ R(B|A) : x ∈ C}. Then R(B|A) is spectral. As a matter of
fact, we first observe that X := R(B|A) is a T0 space. This is obvious, because if
C,D ∈ X and x ∈ C −D then C ∈ U(x) and D /∈ U(x). Take now any ultrafilter
U on X and set

AU := {x ∈ B : U(x) ∈ U }.
We claim that AU ∈ X. Indeed, 0 ∈ AU , since U(0) = X ∈ U and, if x, y ∈ AU ,
then U(x) ∩ U(y) ∈ U , by definition. Since clearly U(x) ∩ U(y) ⊆ U(x − y),
U(x) ∩ U(y) ⊆ U(xy), we have, a fortiori, U(x − y), U(xy) ∈ U and, in other
words, x − y, xy ∈ AU . Thus, AU is a subring of B. Finally, U(a) = X, for any
a ∈ A, and thus A ⊆ AU . This proves that AU ∈ X. Moreover, by definition, if
S := {U(x) : x ∈ B}, then AU ∈ XS(U ). Thus the conclusion follows from (11.13).

(11.15) Example. Let K be a field, D be any subring of K and let Zar(K|D) be
the set of all valuation rings V of K (i.e., K is the quotient field of V ) such that
D is a subring of V . In the particular case D := (0) Zar(K|D) will be denoted by
Zar(K) and it consists of all valuation domains of K. Clearly, Zar(K|D) is a subset
of R(K|D) and thus it can take the subspace topology induced by the topology
on R(K|D) defined in (11.14). Such a topology on Zar(K|D) is called the Zariski
topology and clearly a subbasis of open sets of Zar(K|D) consists of the sets of the
form BK(x) := B(x) := Zar(K|D[x]), for x ∈ K. The set Zar(K|D), equipped
with the Zariski topology, is usually called the Riemann-Zariski space of K over D.
Being it a subspace of the T0 space R(K|D), the space Z := Zar(K|D) is T0. Take
any ultrafilter U on Z and define AU := {x ∈ K : B(x) ∈ U }. The same argument
given in (11.14) proves that AU ∈ R(K|D). Furthermore, we claim that AU is a
valuation domain of K. To do this, take any nonzero element x ∈ K and assume
that x /∈ AU . By definition, B(x) /∈ U and thus Z−B(x) ∈ U . Since the elements
of Z are, in particular, valuation domains we have Z − B(x) ⊆ B(x−1) and thus
B(x−1) ∈ U , meaning that x−1 ∈ AU . This shows that AU ∈ Z and, by definition,
for any x ∈ K, AU ∈ B(x) if and only if B(x) ∈ U . This proves that AU ∈ ZS(U ),
where S := {B(x) : x ∈ K}. By (11.13), Zar(K|D) is a spectral space.

12. A ring whose prime spectrum is homeomorphic to Zar(K|D).

This section is motivated by the last example of the previous one: in (11.15) we
showed that, for any field K and any subring D of K, the Riemann-Zariski space
Zar(K|D), endowed with the Zariski topology, is a spectral space. The proof we
gave is based on the ultrafilter criterion (11.13) and thus it is not constructive. Our
aim is to give now a constructive proof of (11.15): we will find a ring B, namely
a Bézout domain, such that Spec(B) is homeomorphic to Zar(K|D). First, we will
need some tool on valuation theory.

(12.1) Definition. For any local ring A, let mA denote the maximal ideal of A.
If A,B are local rings, we say that B dominates A, and we write A ≤d B, if A is

a subring of B and mA = A ∩mB (i.e., mA ⊆ mB).

(12.2) Proposition. Let L be a field and let

LL := L := {D : D is a local subring of L}.
The following properties hold.

(a) ≤d is a partial order on L.
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(b) Suppose that V is a maximal element of (L,≤d). If A is a subring of K such
that V ⊆ A and there exixts a prime ideal of A lying over the maximal ideal
of V , then A = V .

(c) For any A ∈ L there is a maximal element B ∈ L, under ≤d, such that
A ≤d B.

(d) Valuation domains of L are precisely the maximal elements of (L,≤d).

Proof. Part (a) is straightforward.
(b) Let m be the maximal ideal of V and let p be a prime ideal of A such that

p ∩ V = m. Then Ap ∈ L, since Ap is local and contains V , and moreover

pAp ∩ V = pAp ∩ A ∩ V = p ∩ V = m.

It follows V ≤D Ap and, by maximality of V , V = A = Ap.
(c) Restrict the partial order ≤d to the nonempty set LA := {B ∈ L : A ≤d B},

And consider a chain C := {Bi : i ∈ I} ⊆ LA, with respect to ≤d. For any i ∈ I,
let mi be the maximal ideal of Bi, and set B :=

⋃
i∈I Bi,m :=

⋃
i∈I mi. Thus B is a

ring, since it is the union of a chain of subrings of L and m is an additive subgroup
of L, being it the union of a chain of additive subgroups of L. Take elements m ∈ m,
b ∈ B, take indexes i, j ∈ I such that m ∈ mi and b ∈ Bj. If Bi ≤d Bj, then
m ∈ mi ⊆ mj. It follows bm ∈ mj ⊆ m. If Bj ≤d Bi, then b ∈ Bj ⊆ Bi, and thus
bm ∈ mi ⊆ m. This proves that m is an ideal of B, and clearly m 6= B. Take a non
invertible element x ∈ B and an index i ∈ I such that x ∈ Bi. A fortiori, x is not
invertible in Bi, and thus x ∈ mi ⊆ m, since Bi is local. This proves that m is the
set of all non invertible elements of B, that is, that B is a local ring and B ∈ L.
By definition Bi ≤d B, for each i ∈ I, that is, B is an upper bound for the chain C.
Then the conclusion follows by Zorn’s Lemma.

(d). Suppose that V is a maximal element of (L,≤d), and take an element x ∈
L − V . Then V [x] is a subring of L and properly contains V . If m is the maximal
ideal of V and the ideal m[x] of V [x] is proper, then there is a maximal ideal n of V [x]
such that m[x] ⊆ n, and this implies m ⊆ m[x]∩ V ⊆ n∩ V ( V , that is, n lies over
m. By part (b) it follows V = V [x], a contradiction. This proves that m[x] = V [x]
and then 1 = m0+m1x+. . .+mhx

h, for some m0, . . .,mh ∈ m. The element 1−m0 is
clearly invertible in V . If λ := (1−m0)−1, then 1 = λm1x+. . .+λmhx

h. By dividing
both sides of the previous equality for xh we get (x−1)h = λm1(x−1)h−1 + . . .+λmh.
This proves that x−1 is integral over V , that is, V ⊆ V [x−1] is an integral extension.
By the lying over Theorem, there is a prime ideal of V [x−1] lying over m. Then, by
part (b), V = V [x−1], that is, x−1 ∈ V . This proves that V is a valuation domain
of L.

Conversely, assume that V is a valuation domain of L. Thus, in particular, V ∈ L.
Take a local ring A ∈ L such that V ≤d A and assume, by contradiction, that A 6= V ,
that is, V ( A. Take an element x ∈ A − V and note that, since V is a valuation
domain, x−1 ∈ mV . Moreover we have mV ⊆ mA, since V ≤d A, and thus x−1 ∈ mA.
Since x ∈ A, it follows 1 ∈ mA, a contradiction. The proof is now complete. �

(12.3) Corollary. Let A be a subring of a field L and let p ∈ Spec(A). Then Ap is
dominated by some valuation domain of L.

Proof. It is enough to apply parts (c) and (d) of (12.2). �
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(12.4) Remark. Let K ⊆ L be a field extension and let W be a valuation domain
of L. Then it is easily seen that W ∩K is a valuation domain of K. Furthermore,
W dominates W ∩K.

(12.5) Corollary. Let K ⊆ L be a field extension and let V be a valuation domain
of K. Then there is a valuation domain W of L such that W ∩ K = V . Such a
valuation domain W is called an extension of V to L.

Proof. By (12.2c,d), V is dominated by some valuation domain W of L. Keeping
in mind that mV ⊆ mW , it easily follows that the valuation domain W ∩ K of K
dominates V . Since both V and W ∩K are valuation domains of K, then (12.2d)
implies V = W ∩K. �

Let A be an integral domain with quotient field L. Then the canonical map
δ : Zar(L|A) −→ Spec(A) defined by δ(V ) := mV ∩ A, where mV is the maximal
ideal of V , is called the domination map of A.

(12.6) Proposition ([1, Lemma 2.1 and Proposition 2.2]). Let A be an integral
domain with quotient field L. The following properties hold.

(a) The domination map δ : Zar(L|A) −→ Spec(A) is continuous and surjective.
(b) If A is a Prüfer domain, then δ is a homeomorphism.

Proof. (a). Let p be a prime ideal of A. By (12.3), the local overring Ap of A is
dominated by some valuation domain V , i.e., Ap ⊆ V and mV ∩Ap = pAp. It follows
immediately δ(V ) := mV ∩ A = p. This proves that δ is surjective. Now, consider
a principal open set D(a) of Spec(A), for a fixed element a ∈ A. If V ∈ Zar(L|A),
then clearly δ(V ) := mV ∩ A ∈ D(a) if and only if a−1 ∈ V . This proves that
δ−1(D(a)) = B(a−1) and thus, by (3.2f), δ is continuous.

(b). Assume that A is a Prüfer domain, and let V,W ∈ Zar(L|A) such that
δ(V ) = δ(W ) =: p. It follows immediately that Ap is dominated by both V and W .
Since A is a Prüfer domain, Ap is a valuation domain, and thus it is maximal under
domination, by (12.2d). It follows Ap = V = W , proving that δ is injective. Finally,
we show that δ is open. By definition, a basis of open sets for Zar(L|A) consists
of finite intersections of sets of the type B(x), where x ∈ L. Since we know that
δ is injective, it suffices to prove that δ(B(x)) is open in Spec(A), for any x ∈ L.
We claim that δ(B(x)) = Spec(A) − V (a), where a := {a ∈ A : ax ∈ A}. As
a matter of fact, let p ∈ Spec(A). If p ∈ δ(B(x)), we have Ap ∈ B(x), since Ap

is the unique point of the space Zar(L|A) which is mapped to p by δ, being A a

Prüfer domain. It follows x =
a

s
, for some a ∈ A, s ∈ A − p, and thus s ∈ a − p.

Thus a * p. The previous implications can be easily reversed, and thus the equality
δ(B(x)) = Spec(A)− V (a) is proved. �

The following notion will be crucial to provide a representatio of a Riemann-Zariski
space as a spectrum of a ring.

(12.7) Definition ([11]). Let K be a field and let T be an indeterminate over K. A
subring H of K(T ) is called to be an K-Halter-Koch ring if the following properties
are satisfied:

(a) T, T−1 ∈ H;

(b) for any nonzero polynomial f ∈ K[T ], then
f(0)

f
∈ H (i.e., f(0) ∈ fH).
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(12.8) Remark. Let K be a field and let T be an indeterminate over K. The
following properties immediately follow from the definition.

(a) If H is a K-Halter-Koch ring and H ′ is a subring of K(T ) such that H ⊆ H ′,
then H ′ is a K-Halter-Koch ring.

(b) If H is a nonempty collection of K-Halter-Koch rings, then
⋂
H is a K-

Halter-Koch ring.

We now investigate about some fundamental properties of K-Halter-Koch rings.

(12.9) Theorem ([11, Theorem 2.2]). Let K be a field, let T be an indeterminate
over K and let H ⊆ K(T ) be a K-Halter-Koch ring. The following properties hold.

(a) The quotient field of H is K(T ).
(b) If f := f0 +f1T + . . .+fnT

n ∈ K[T ], then the equality fH = f0H+ . . .+fnH
of H-submodules of K(T ) holds.

(c) H is a Bézout domain.

Proof. (a). It is sufficient to show that K[T ] is contained in the quotient field of H.
In order to prove this, take a polynomial f ∈ K[T ] and set Ff := 1+Tf ∈ K[T ]. By

condition (b) of the definition, we have h :=
1

1 + Tf
=
Ff (0)

Ff
∈ H. It follows that

f =
1− h
Th

is an element of the quotient field of H, keeping in mind that T ∈ H, by

definition.
(b). The fact that T ∈ H easily implies fH ⊆ f0H + . . . + fnH. Conversely, it

is sufficient to show, by induction, that fi ∈ fH, for any 0 ≤ i ≤ n. By part (b) of

definition we have f0 =
f(0)

f
∈ H, that is, f0 ∈ fH. Assume now that 0 < h ≤ n

and that fj ∈ fH, for any 0 ≤ j < h, and set g := fh+fh+1T + . . .+fnT
n−h ∈ K[T ].

Clearly we have

g = T−h(f −
h−1∑
j=0

fjT
j) ∈ fH

since T−h ∈ H, by definition, and fj ∈ fH, for 0 ≤ j ≤ h − 1. Thus we have
gH ⊆ fH. Again by part (b) of the definition, fh = g(0) ∈ gH ⊆ fH. Now the
statement follows by induction.

(c). Take two rational functions α, β ∈ H. It suffices to show that (α, β)H is

principal. Take polynomials f, g, h ∈ K[T ], where h 6= 0, such that α :=
f

h
, β :=

g

h
. If n is a natural number greater than the degree of f , then part (b) easily

implies (f, g)H = (f + T ng)H, and thus (α, β)H = (α + T nβ)H. The proof is now
complete. �

(12.10) Example. Let K be a field, T be an indeterminate over K, and let V
be a valuation domain of K. Let v denote any valuation on K determining the
ring V . For any nonzero polynomial f := f0 + f1T + . . . + fnT

n ∈ K[T ] define
v′(f) := inf{v(f0), v(f1), . . ., v(fn)}. It is easily seen that v′ extends to a valuation

vg of K(T ) defined by setting vg(
f

h
) := v′(f)−v′(h), for any f, h ∈ K[T ] with h 6= 0.

The valuation domain of vg is called the Gaussian extension of V to K(T ) and it is
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usually denoted by V (T ). It clear that V (T ) ∩K = V , i.e, V (T ) is an extension of
V to K(T ).

(a) Let m be the maximal ideal of V . Then V (T ) = V [T ]m[T ]. As a matter of fact,
for any polinomial f := f0 + . . . + fnT

n ∈ V [T ] − m[T ] we have v(fi) ≥ 0,
for 0 ≤ i ≤ n, since f ∈ V [T ], and moreover v(fj) = 0 for some j, since
f /∈ m[T ]. It follows vg(f) = 0, that is, f is invertible in V (T ), and thus
V [T ]m[T ] ⊆ V (T ). Take now a rational function

α :=
f0 + f1T + . . .+ fnT

n

h0 + h1T + . . .+ hmTm
∈ V (T ),

where f := f0 + f1T + . . .+ fnT
n, h := h0 + h1T + . . .+ hmT

m ∈ K[T ], and
thus, by definition, inf{v(fi) : 0 ≤ i ≤ n} ≥ inf{v(hj) : 0 ≤ j ≤ m} =: v(hl).

It immeditaly follows that
fi
hl
,
hj
hl
∈ V , for 0 ≤ i ≤ n and 0 ≤ j ≤ m, and

thus
f

hl
∈ V [T ],

h

hl
∈ V [T ]−m[T ], and this proves that α ∈ V [T ]m[T ].

(b) We prove now that V (T ) is a K-Halter-Koch ring. Clearly we have vg(T ) =
vg(T

−1) = v(1) = 0, and thus T, T−1 ∈ V (T ). Moreover, for any nonzero
polynomial f := f0 + f1T + . . .+ fnT

n ∈ K[T ], we have

vg(
f(0)

f
) := v(f0)− inf{v(f0), v(f1), . . ., v(fn)} ≥ 0,

that is,
f(0)

f
∈ V (T ). The conclusion is now clear.

(12.11) Example. Let K be a field, T be an indeterminate over K and let Y be a
nonempty subset of Zar(K). In view of (12.8b) and (12.10b), HY :=

⋂
V ∈Y V (T ) is

a K-Halter-Koch ring.

(12.12) Remark. Let K ⊆ L be a field extension. In view of (12.4) and (12.5), we
can define a natural surjection π : Zar(L) −→ Zar(K) by setting π(W ) := W ∩K,
for any W ∈ Zar(L). Then π is continuous, since clearly π−1(BK(x)) = BL(x), for
any x ∈ K.

(12.13) Proposition ([4, Proposition 3.1]). Let K be a field, T be an indetermi-
nate over K and π : Zar(K(T )) −→ Zar(K) be the continuous surjection defined in
(12.12). Then the restriction of π to Z0 := {V (T ) : V ∈ Zar(K)} is a homeomor-
phism of Z0 with Zar(K).

Proof. The restriction ϕ : Z0 −→ Zar(K) is clearly a continuous bijection since, for
any V ∈ Zar(K), ϕ(V (T )) = V . We have to show that ϕ is open. In order to
prove this, keeping in mind that ϕ is bijective, it is sufficient to verify that, for any
0 6= α ∈ K(T ), ϕ(Z0 ∩B(α)) is open in Zar(K). Set

α :=
a0 + a1T + . . .+ arT

r

b0 + b1T + . . .+ bsT s
,

where ai, bj ∈ K for 0 ≤ i ≤ r, 0 ≤ j ≤ s. Fix a valuation ring V (T ) ∈ Z0, for
some V ∈ Zar(K), let v be a valuation defining v and vg the corresponding valuation
defining V (T ). Then V (T ) ∈ B(α) if and only if vg(α) ≥ 0, that is, if and only if

(?) inf{v(ai) : 0 ≤ i ≤ r} ≥ inf{v(bj) : 0 ≤ j ≤ s}.



51

Now let M := {(i, j) : 0 ≤ i ≤ r, 0 ≤ j ≤ s, aj, bj 6= 0} and, for any (i, j) ∈M , set

Fij := {ai
bj
,
aλ
ai
,
bµ
bj

: 0 ≤ λ ≤ r, 0 ≤ µ ≤ s}.

Then (?) easily implies that ϕ(Z0 ∩ B(α)) =
⋃

(i,j)∈M(
⋂
x∈Fij

B(x)). The proof is

now complete. �

(12.14) Proposition ([4, Proposition 3.3]). Let K be a field, T be an indetermi-
nate over K, and let H be a K-Halter-Koch ring. Then Zar(K(T )|H) consists of
Gaussian extensions of valuation domains of K. Precisely, if W ∈ Zar(K(T )|H)
and V := W ∩K, then W = V (T ).

Proof. Let w be a valuation on K(T ) defining W . By definition, v := w|K is a
valuation on K defining V . Fix a nonzero polynomial f := f0 + f1T + . . .+ frT

r ∈
K[T ]. Since H ⊆ W , then W is a K-Halter-Koch ring, by (12.8a). Since T, T−1 ∈ W
we have w(T ) = 0. Thus

w(f) ≥ inf{w(fi) : 0 ≤ i ≤ r} = inf{v(fi) : 0 ≤ i ≤ r} =: vg(f)

On the other hand, by (12.9b), fH = f0H + . . . + frH, and thus fi ∈ fH, for 0 ≤
i ≤ r. Take elements hi ∈ H such that fi = fhi, for 0 ≤ i ≤ r. Thus w(hi) ≥ 0, for
any 0 ≤ i ≤ r, since H ⊆ W . It follows that v(fi) = w(fi) = w(f) + w(hi) ≥ w(f),
for 0 ≤ i ≤ r, and thus vg(f) ≥ w(f). This proves that w|K[T ] = vg|K[T ], that is,
w = vg. The conclusion is now clear. �

(12.15) Corollary. Let K be a field, T be an indeterminate over K and let H be a
subring of K(T ). Then, the following conditions are equivalent.

(i) H is a K-Halter-Koch ring.
(ii) H is integrally closed and Zar(K(T )|H) consists of Gaussian extensions of

valuation domains of K.

Proof. (i)=⇒(ii). Apply (12.9c) and (12.14), keeping in mind that any Bézout do-
main is integrally closed, being it a Prüfer domain, in particular.

(ii)=⇒(i). By assumption, H is the intersection of a collection of Gaussian exten-
sions of valuation domains of K. Then, it suffices to apply (12.11). �

(12.16) Theorem ([4, Corollary 3.6]). Let K be a field, D be a subring of K and T

be an indeterminate over K. If H :=
⋂

V ∈Zar(K|D)

V (T ), then the following properties

hold.

(a) The canonical map η : Zar(K(T )|H) −→ Zar(K|D), W 7→ W ∩ K, is a
homeomorphism.

(b) The canonical map σ : Zar(K|D) −→ Spec(H), V 7→ mV (T ) ∩H, is a home-
omorphism.

Proof. (a). As in (12.13), let Z0 := {V (T ) : V ∈ Zar(K)}. In view of (12.14), we
have Zar(K(T )|H) = {V (T ) : V ∈ Zar(K|D)} ⊆ Z0. Thus η is the restriction to
Zar(K(T )|H) of the homeomorphism ϕ : Z0 −→ Zar(K) presented in (12.13). The
conclusion immediately follows by noting that ϕ(Zar(K(T )|H)) = Zar(K|D).

(b). Let δ : Zar(K(T )|H) −→ Spec(H) be the domination map. Clearly we have
σ = δ ◦ η−1. Being H a K-Halter-Koch ring (12.11), H is a Bézout domain (see
(12.9c)) and, a fortiori, a Prüfer domain. Thus δ is a homeomorphism, by (12.6b).
Then it suffices to apply part (a). �
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13. The order induced by a topology.

(13.1) Definition. Let (X, T ) be a topological space. Then the preorder ≤T (which
will be denoted by ≤ when there is no danger of confusion) on X defined by setting

x ≤ y :⇐⇒ y ∈ {x}
is called the preorder induced by the topology of X. Note that ≤ is a partial order
on X if and only if X is a T0 space.

(13.2) Example. Let X be a topological space.

(a) If X is a T1 space, then the partial order ≤ is trivial, by definition.
(b) If A is a ring and p, q ∈ X := Spec(A), endowed with the Zariski topology,

then p ≤ q if and only if p ⊆ q, by (3.2d).
(c) If A is a subring of B and C,D ∈ X := R(B|A), with the topology defined

in (11.14), then C ≤ D if and only if D ⊆ C. Indeed, if D ∈ {C} and d ∈ D,
then U(d) is an open neighborhood of D and thus C ∈ U(d), i.e., d ∈ C.
Conversely, assume that D ⊆ C and take an open neighborhood of D. By
definition, there are finitely many elements x1, . . ., xn ∈ B such that D ∈⋂n
i=1 U(xi) ⊆ U . It follows, x1, . . ., xn ∈ D ⊆ C, i.e., C ∈

⋂n
i=1 U(xi) ⊆ U .

This proves that D ∈ {C}.
(13.3) Definition. Let (X,�) be a partially ordered set. We say that a topology T
on X is order-compatible with �, or that � and T are order compatible, provided
that the preorder ≤T induced by T is an order (i.e., X is T0) and it coincides with
�.

We will provide a classification of all partial orders on a set X which are order-
compatible with some spectral topology on X. First, we will characterize all topolo-
gies which are order-compactible with a fixed partial order.

If (X,�) is a partially ordered set and x ∈ X, the set x+ := {y ∈ X : x � y} is
called specialization of x.

(13.4) Proposition. Let (X,�) be a partially ordered set and let T be a topology
on X. Then, the following conditions are equivalent.

(i) T is order-compatible with �.
(ii) The following properties are satisfied:

(a) For any x ∈ X, the set x+ is closed in (X, T ).
(b) If C is a closed subset of (X, T ) and x ∈ C, then x+ ⊆ C.

Proof. Let ≤ denote the order induced by T .
(i)=⇒(ii). Fix a point x ∈ X and and element y ∈ X−x+. By assumption, ≤ and

� are the same order, and thus y /∈ {x}. Take any open set Ωy of (X, T ) such that
y ∈ Ωy and x /∈ Ωy. Then clearly y ∈ Ωy ⊆ X−x+. It follows X−x+ =

⋃
y∈X−x+ Ωy,

that is, X − x+ is open. This proves statement (a). Take now a closed subset C of
(X, T ) and elements x ∈ C, y ∈ x+. Since � is the order induced by the topology

T , we infer y ∈ {x} ⊆ C, and thus y ∈ C. Thus statement (b) is proved.
(ii)=⇒(i). Assume (ii) and that x � y, that is y ∈ x+. For any closed subset C of

(X, T ) such that x ∈ C we have, by statement (b), x+ ⊆ C and, a fortiori, y ∈ C.

This shows that y ∈ {x}, that is x ≤ y. Conversely, assume that y ∈ {x}. Since, by

statement (a), x+ is a closed subset of (X, T ) and x ∈ x+, it follows {x} ⊆ x+ and,
a fortiori, y ∈ x+, that is, x � y. The proof is now complete. �
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(13.5) Example. Let (X,�) be a partially ordered set.

(a) Consider the topology Tl on X for which the collection {x+ : x ∈ X} is a
subbasis for the closed sets. Then, Tl is the coarsest topology on X which
is order-compatible with �. As a matter of fact, take a closed subset C of
(X, Tl). By definition, C =

⋂
i∈I Di whereDi =

⋃ni

j=1 y
+
ij , for suitable elements

yij ∈ X. Thus, if x ∈ C, for any i ∈ I there is an index j(i) ∈ {1, . . ., nj} such
that x ∈ y+

ij(i), i.e., yij(i) � x. It immediately follows that x+ ⊆ C. By (13.4),

Tl is order-compatible with �. By statement (a) of (13.4), any topology on
X which is order compatible with � is finer that Tl.

(b) It is easy to verify that the collection of subsets

{C ⊆ X : for any x ∈ C, x+ ⊆ C}
of X is the family of closed sets for a topology on X, and we will denote such
a topology by TL. Clearly, for any x ∈ X and any y ∈ x+, we have y+ ⊆ x+,
that is, x+ is closed in (X, TL). Thus, by (13.4), TL is order compatible with
� and clearly any topology on X which is order-compatible with � is coarser
than TL.

(c) Let T be any topology on X which is order compatible with �. Then, for
any x, y ∈ X,

y ∈ {x} ⇐⇒ x ≤T y ⇐⇒ x � y ⇐⇒ y ∈ x+,

that is {x} = x+.
(d) If X is finite and and C := {x1, . . ., xn} ⊆ X is closed, with respect to TL,

we have xi
+ ⊆ C, for any 1 ≤ i ≤ n. It follows C =

⋃n
i=1 xi

+, that is, C is
closed, with respect to Tl. It follows that Tl = TL, that is, there is a unique
topology on X which is order-compatible with �.

(13.6) Proposition. Let X be a finite T0 space. Then X is spectral.

Proof. Clearly any subset of X is compact. Moreover Xpatch is compact, being it
finite. Thus the conclusion follows from (11.10). �

(13.7) Corollary. Let (X,�) be a finite partially ordered set. Then there is a
unique spectral topology on X which is order-compatible with �.

Proof. By (13.5d) TL is the unique topology on X which is order compatible with
� and, by definition, (X, TL) is T0. Then it suffices to apply (13.6). �

(13.8) Proposition ([12, Proposition 14]). Let (X,�) be a partially ordered set.
Then, there is at most one Noetherian spectral topology on X which is order com-
patible with �.

Proof. Let T , T ′ be Noetherian spectral topologies on X which are order-compatible
with �, and let C be a closed subset of (X, T ). Since (X, T ) is Noetherian, C is
union of only finitely many irreducible components, say C1, . . ., Cn, in view of (2.17),
and they are clearly closed in (X, T ). Since the topology T is spectral, for each

1 ≤ i ≤ n there is a point xi ∈ Ci such that Ci = {xi} (any spectral space is sober).
Thus, since T , T ′ are order-compatible with � and applying (13.5c), Ci = xi

+ is the
closure of {xi} also with respect to the topology T ′. Thus C is closed in (X, T ′),
being it finite union of closed sets. The converse part is done by exchanging the role
of T and T ′. �
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(13.9) Proposition. Let X, Y be Noetherian spectral spaces. Let X, Y be endowed
by their natural structures of partially ordered sets induced by the topologies. If
f : X −→ Y is an order-isomorphism (i.e., f is bijective and both f, f−1 are order
preserving), then f is a homeomorphism.

Proof. Let C be a closed subset of Y . Keeping in mind the proof of (13.8), there are
elements c1, . . ., cn ∈ C such that C =

⋃n
i=1 ci

+. Keeping in mind that f is an order-

isomorphism and (13.5c), it follows that f−1(C) =
⋃n
i=1 f

−1(ci)
+

=
⋃n
i=1 {f−1(ci)},

and thus f is continuous. Apply the same argument to f−1 to show that f−1 is
continuous. �

The problem of finding explicitly a ring whose prime spectrum is order isomorphic
(and then homeomorphic, by 13.9) to a given finite partially ordered set was solved
by Lewis in 1973. In the following we will present an easy example which will put
in evidence the crucial role of fiber products for producing such constructions. We
start from an easy remark.

(13.10) Remark. Let K be any field, let T be an indeterminate over K and, for
any λ ∈ K let pλ := (T − λ)K[T ]. Given pairwise distinct elements α1, . . ., αn ∈ K,
consider the multiplicative subset S := K[T ]−

⋃n
i=1 pαi

and let A := K[T ]S. Keeping
in mind the Prime avoidance Lemma and applying properties of localization, we infer
that Spec(A) is homeomorphic and order isomorphic to {(0), pαi

: 1 ≤ i ≤ n}. Thus
A has precisely n maximal ideals, namely mi := pαi

A, for 1 ≤ i ≤ n. Furthermore,
we easily infer that A/mi

∼= K, for 1 ≤ i ≤ n (an isomorphim is induced by the
extension to A of the canonical ring homomorphism K[T ] −→ K, f 7→ f(αi)).

(13.11) Example. Consider the finite X := {a, b, c, d, e, f}, partially orderd by an
order � whose Hasse diagram diagram is

a b c

d e

f

By (13.5d) and (13.7), the unique topology TL which is order compatible with the
given partial order is spectral. We will find a ring D such that Spec(D) is order
isomorphic (X,�) (and, a fortiori, Spec(D) is homeomorphic to X, endowed with
the unique topology inducing �, by (13.9). Take a field K, an indeterminate T over
K, distinct elements α, β ∈ K and consider the multiplicative subset

S := K[T ]− ((T − α)K[T ] ∪ (T − β)K[T ])

of K[T ]. By (13.10), the prime spectrum of the ring B := K[T ]S is order isomorphic
to the subset {d, e, f} of X, and the residue fields of the two maximal ideals mα,mβ

of B are isomorphic to K. Now choose K := L(U), where L is any field and U is
an indeterminate over L. Consider pairwise distinct elements λ1, λ2, λ3 ∈ L and set
A := L[U ]Σ, where

Σ := L[U ]−
3⋃
i=1

((U − λi)L[U ]),
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and note that A ⊆ K. Again by (13.10), Spec(A) is order isomorphic to the subset
{a, b, c, e} of X. By the Chinese Remainder Theorem, the canonical ring homomor-
phism π : B −→ (B/mα)× (B/mβ) = K×K is surjective. Since K×A is a subring
of K ×K, we can consider the ring D := π−1(K ×A). By applying (4.2) and (4.11)
it follows that Spec(D) is order isomorphic to X.

(13.12) Proposition. Let X be a spectral space and let

O := {X − Ω : Ω open and compact in X} ∪ {X}.
Then there is a (unique) topology on X for which O is a basis of open sets. This
topology is called the inverse topology (with respect to the given spectral topology)
on X. We will denote by X inv the set X, endowed with the inverse topology. More-

over, if Y ⊆ X, we will denote by Y
i

the closure of Y , with respect to the inverse
topology.

Proof. It suffices to note that O is closed under finite intersection. As a matter of
fact, if Ω,Ω′ are open and compact in X, then Ω∪Ω′ is open and compact too, and
thus (X − Ω) ∩ (X − Ω′) = X − (Ω ∪ Ω′) ∈ O. �

The following result justifies the choice of the terminology.

(13.13) Proposition. Let X be a spectral space. The following properties hold.

(a) X inv is a T0 space.
(b) If x, y ∈ X, ≤ is the order induced by the topology of X and ≤i is the order

induced by the inverse topology, then

x ≤ y ⇐⇒ y ≤i x.

Proof. (a). Take distinct points x, y ∈ X. Since X is spectral, it is T0, and thus
there is an open set U of X such that x ∈ U , y /∈ U . Moreover, since X has a basis
of open and compact subspaces (being it spectral), there is an open and compact
subspace of X such that x ∈ Ω ⊆ U . Since y /∈ U , then y /∈ Ω, a fortiori. Thus
V := X−Ω is, by definition, an open neighborhood of y, with respect to the inverse
topology, and x /∈ V . It follows that X inv is a T0 space.

(b). Assume x ≤ y and let U be an open neighborhood of x, with respect to
the inverse topology. By definition, there is an open and compact subspace Ω of
X such that x ∈ X − Ω ⊆ U . Since x ≤ y and X − Ω is closed in X, it follows

y ∈ {x} ⊆ X − Ω ⊆ U . It follows x ∈ {y}
i
. Conversely, assume that y ≤i x and

let V be an open neighborhood of y, with respect to the given spectral topology of
X. Since X is spectral, there is an open and compact subspace Ω of X such that
y ∈ Ω ⊆ V . By definition, the set Ω is closed in X inv and, keeping in mind that

y ≤i x, we have x ∈ {y}
i
⊆ Ω ⊆ V , that is, y ∈ {x}. �

(13.14) Theorem (Hochster duality [12, Proposition 8]). Let X be a spectral space.
Then, the following properties hold.

(a) The collection

O := {X − Ω : Ω open and compact in X} ∪ {X}
is a basis of open and compact subspaces of X inv.

(b) X inv is a spectral space and the patch topology of X inv is equal to the patch
topology of X.
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(c) (X inv)
inv

is X.

Proof. (a). The inverse topology on X is coarser than the patch topology of X,
since, by definition, the members of O are clopen in Xpatch. Since X is spectral,
then Xpatch is compact, by (11.10) and thus the members of O are compact in Xpatch,
being them, in particular, closed in Xpatch. A fortiori, they are compact as subspaces
of X.

(b) Let V be an open and compact subspace of X inv. Being it open, V is a union
of a subcollection of O. By compactness, we can assume that such a subcollection
is finite. Thus V =

⋃n
i=1(X −Ωi), for some open and compact subspaces Ω1, . . .,Ωn

of X. Since X is spectral,
⋂n
i=1 Ωi is compact in X, in view of (11.11), and thus

V =
⋃n
i=1(X − Ωi) = X −

⋂n
i=1 Ωi ∈ O. It follows that O is precisely the set of all

open and compact subspaces of X inv.
Now, let B be the basis of open and compact subspaces of X, and let T be a

topology on X. Since B := {X−U : U ∈ O}, B is a collection of clopen sets for T if
and only if O is a collection of clopen sets for T . It follows that the patch topology
of X and the patch topology on X inv are the same topology. Keeping in mind part
(a) and (11.10), it follows that X inv is spectral.

(c). By the proof of part (b), O consists precisely of the open and compact
subspaces of X inv. By definition, a basis of open sets for the inverse topology of
X inv is given by the complements of the members of O, that is, such a basis is
precisely B. The proof is now complete. �

14. Topology and irredundant intersections.

(14.1) Definition ([14]). Let D be a set and let A,C be subsets of D such that
A ( C. If X is a fixed collection of subsets of D and F ⊆ D, set

V(F ) := {B ∈ X : F ⊆ B} U(F ) := X − V(F )

and, with a small abuse of notation, set V(d) := V({d}),U(d) := U({d}), for any
d ∈ D.

We say that X is C-representation of A if A =
⋂
B∈X B ∩ C. Moreover, we will

say that a C-representation X is spectral if X is a spectral space and the collection
of sets {U(d) : d ∈ D} is a subbasis of open and compact subspaces of X. When X is
a C-representation of A and C := D, we will simply say that X is a representation
of A.

(14.2) Remark. Preserve the notation of (14.1) and let X be a topological space,
whose points are subsets of D, such that {U(d) : d ∈ D} is a subbasis of open sets
for X. Then, the order induced by the topology is the inclusion ⊆.

As a matter of fact, let G,H ∈ X and assume that G ≤ H, i.e., H ∈ {G}. Then
g ∈ G is equivalent to G ∈ V(g) and, since V(g) is, by definition, closed in X, it

follows H ∈ {G} ⊆ V(g) and, in particular, g ∈ H. This proves that G ⊆ H.
Conversely, assume that G ⊆ H and let Ω be an open neighborhood of H. By

definition, there is a finite subset F of D such that H ∈
⋂
f∈F U(f) ⊆ Ω. Since

G ⊆ H, we infer that G ∈
⋂
f∈F U(f). It follows G ∈ Ω, and thus H ∈ {G}.

(14.3) Proposition ([14, Lemma 3.2]). We preserve the notation of (14.1) and
assume that X is a spectral C-representation of A. Then X contains a minimal
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closed C-representation of A (i.e., a closed subset of X that is minimal, under
inclusion, among closed C-representations of A).

Proof. Let Σ be the collection of all closed (in X) C-representations of A, partially
ordered by inclusion ⊇. The set Σ is clearly nonempty, since X ∈ Σ. Let C ⊆ Σ be a
chain and let Y :=

⋂
C. Then Y is clearly closed in X (being it intersection of closed

subsets of X). We want to show that Y is a C-representation of A. The inclusion
A ⊆

⋂
B∈Y B ∩ C is obvious. Conversely, take an element d ∈

⋂
B∈Y B ∩ C. It

follows Y ⊆ V(d) and, in other words, U(d) ⊆
⋃
T∈C(X − T ). Since, by assumption,

U(d) is compact, the open cover {X − T : T ∈ C} of U(d) has a finite subcover and,
keeping in mind that C is a chain, it follows that there exists a set T ∗ ∈ C such that
U(d) ⊆ X − T ∗. In other words, T ∗ ⊆ V(d) and, since T ∗ is a C-representation
of A, being T ∗ ∈ Σ, we have d ∈

⋂
B∈T ∗ B ∩ C = A. This argument proves that

A =
⋂
B∈Y B ∩ C, that is, Y ∈ Σ. The conclusion follows immediately by applying

Zorn’s Lemma. �

(14.4) Definition. We preserve the notation of (14.1) and let Z be a C-representation

of A. We say that a set B ∈ Z is irredundant in Z if A (
⋂

H∈Z,H 6=B

H ∩ C.

(14.5) Remark. We preserve the notation of (14.1) and assume that Z ⊆ Z ′ are
C-representations of A. If B ∈ Z is irredundant in Z ′, then B is irredundant in Z
too. Indeed we have

A =
⋂
H∈Z

H ∩ C =
⋂
H∈Z′

H ∩ C (
⋂

H∈Z′,H 6=B

H ∩ C ⊆
⋂

H∈Z,H 6=B

H ∩ C

If X is a spectral space and Y ⊆ X, we will denote the closure of Y in the patch
topology by Y

p
.

(14.6) Proposition ([14, Lemma 3.3]). We preserve the notation of (14.1) and
assume that X is a spectral C-representation of A. If Z ⊆ X is a C-representation
of A and B ∈ Z, then B is irredundant in Z if and only if B is irredundant in Z

p
.

Proof. First, assume that B is irredundant in Z. By definition, there exists an
element d ∈ D − B such that d ∈ H, for any H ∈ Z − {B}. It follows that
Z ⊆ V(d)∪{B}. By (11.8), the patch topology of X is finer than the given spectral
topology of X and Hausdorff. It follows immediately that V(d) ∪ {B} is closed in
the patch topology of X, and thus Z ⊆ V(d) ∪ {B} implies Z

p ⊆ V(d) ∪ {B}. We
infer that Z

p − {B} ⊆ V(d), and thus, since d /∈ B,⋂
H∈Zp

,H 6=B

H ∩ C )
⋂
H∈Zp

H ∩ C,

meaning that B is irredundant in Z
p
.

The converse part is obvious, keeping in mind that Z ⊆ Z
p

and (14.5). �

(14.7) Proposition ([14, Lemma 3.3]). We preserve the notation of (14.1) and
assume that X is a spectral C-representation of A. If Z ⊆ X is a C-representation
of A and B ∈ Z is irredundant in Z, then B is an isolated point of Z, equipped with
both the spectral and the patch subspace topology.

Proof. Take an element d ∈
⋂
H∈Z,H 6=BH ∩ C and d /∈ B. Then we easily obtain

Z − {B} = Z ∩ V(d). Keeping in mind that V(d) is closed both in the spectral
topology and in the patch topology ofX, in view of (11.8), the conclusion follows. �
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Let X be a topological space, Y ⊆ X and ≤ be the preorder induced by the
topology. Then the set

Y sp :=
⋃
y∈Y

y+ = {x ∈ X : x ≥ y, for some y ∈ Y }

is called the specialization of Y .

(14.8) Remark. Let X be a topological space and let Y ⊆ X. Then clearly
Y ⊆ Y sp and the equality holds whenever Y is closed. Indeed, if Y is closed and
x ∈ Y sp, take an element y ∈ Y such that x ≥ y. It follows x ∈ {y} ⊆ Y = Y .

(14.9) Proposition ([6, Lemma 1.1]). Let X be a spectral space and let Y be a
subset of X. Then the following equality Y = (Y

p
)sp holds.

Proof. By (11.8), the patch topology of X is finer than the given spectral topology,
and thus we have Y

p ⊆ Y . By (14.8) we immediately infer that (Y
p
)sp ⊆ Y .

Conversely, take a point x ∈ Y and let

F := {Ω ∩ Y p
: Ω open and compact in X, x ∈ Ω}

Since x ∈ Y , F consists of nonempty sets and, in view of (11.11), it is closed under
finite intersections. It follows that F is a collection of closed subsets of Xpatch with
the finite intersection property. Since X is spectral, Xpatch is compact, by (11.10),
and thus there is a point x0 ∈

⋂
F . Since open and compact subspaces of X form

a basis for the topology of X, it immediately follows that x ∈ {x0}, that is, x ≥ x0.
The conclusion is now clear. �

If (X,≤) is a partially ordered set, let Min(X) (resp., Max(X)) denote the set of
all minimal (resp., maximal) elements of X.

(14.10) Proposition. Let X be a spectral space and let x ∈ X. Then, there are
elements y ∈ Min(X), z ∈ Max(X) such that y ≤ x ≤ z (where ≤ is the order
induced by the topology of X).

Proof. By assumption, there are some ring A, a homeomorphism f : Spec(A) −→ X
and consider the prime ideal p := f−1(x) of A. By Zorn’s Lemma, there are a
maximal ideal m of A and a minimal prime ideal n of A such that n ⊆ p ⊆ m.
It is easily verified that f is an isomorphism of partially ordered sets, being it
a homeomorphism, and thus it is sufficient to take y := f(n), z := f(m) to get
the conclusion, keeping in mind that the order of Spec(A) is the inclusion (see
(13.2b)). �

(14.11) Proposition. Preserve the notation of (14.1), let X be a spectral C-
representation of A. Then, Min(X) 6= ∅ and it is a C-representation of A.

Proof. By (14.10), Min(X) is nonempty. Clearly, A ⊆ C ∩
⋂
B∈Min(X) B. Conversely,

take an element d ∈ C ∩
⋂
B∈Min(X) B and fix a set H ∈ X. Keeping in mind

(14.2) and (14.10), we can pick a set B ∈ Min(X) such that B ⊆ H. Since d ∈⋂
B∈Min(X) B we have d ∈ H. Since X is a C-representation of A, we infer that

A = C ∩
⋂
H∈X H ⊇ C ∩

⋂
B∈Min(X) B. The conclusion is now clear. �

(14.12) Corollary. Preserve the notation of (14.1), let X be a spectral C-representation
of A, and let Y ⊆ X be a nonempty closed set. Then Y is a C-representation of A
if and only if Min(Y ) is a C-representation of A.
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Proof. Keeping in mind (3.6a), Y is a spectral subspace of X. Then, it is sufficient
to apply (14.11). �

(14.13) Definition. We preserve the notation of (14.1) and let X be a spectral C-
representation of A. A subspace of X of the form Min(Y ), for some minimal closed
C-representation Y of A, is a C-representation of A, by (14.12), and it is called a
minimal C-representation of A.

In view of (14.11), any spectral C-representation of A contains a minimal C-
representation of A.

(14.14) Proposition ([14, Lemma 3.5]). Preserve the notation of (14.1), let X be
a spectral C-representation of A and let Z ⊆ X be a minimal C-representation of
A. Then, the following statements hold.

(a) Z is a minimal closed C-representation of A.
(b) Z

p
is a minimal C-representation of A, among the the closed C-representations

of A, with respect to the patch topology of X.
(c) We have Z = Min(Z) = Min(Z

p
) and Z = Zsp.

Proof. By definition, there exists a minimal closed C-representation Γ of A such
that Z = Min(Γ). Keeping in mind that Γ is closed, we have Z ⊆ Γ. Since Z is
a closed C-representation of A, the minimality of Γ implies Z = Γ, proving that Z
is a minimal closed C-representation of A. Furthermore, the last equality implies
Z = Min(Z).

Since Z ⊆ Z
p
, it follows that Z

p
is a C-representation of A. Now, let Y be a

C-representation of A such that Y ⊆ Z
p

and Y is closed, with respect to the patch
topology of X. We want to show that Y = Z

p
. By (14.9), Y sp is closed in X and

it is a C-representation of A, since Y ⊆ Y sp. Moreover, again by (14.9), we have
Y sp ⊆ (Z

p
)sp = Z. Since, by part (a) (which we proved before), Z is a minimal

closed C-representation of A, we infer that Y sp = Z. By applying (14.10) to the
spectral subspace Z of X, it is easily shown that (Min(Z))sp = Z = Y sp and, since
we have already proved that Z = Min(Z), we deduce that

Y sp = (Min(Z))sp = Zsp.

Moreover, since, by definition, the elements of Z are pairwise not comparable, we
have Z = Min(Zsp). It follows that

Min(Y ) = Min(Y sp) = Min(Zsp) = Z (?)

and, in particular, Z ⊆ Y . Since, by assupmption, Y ⊆ Z
p

and Y is closed in the
patch topology of X, it finally follows Y = Z

p
and, by (?), Z = Min(Z

p
). It remains

to show that Z = Zsp. Since Z = Min(Z), then Zsp = (Min(Z))sp = Z. The proof
is now complete. �

If X is a topological space and Y ⊆ X, we will denote by
◦
Y the interior of Y .

(14.15) Proposition ([15, Lemma 2.5]). Let X be a spectral space and let x ∈ X.
Then, the following conditions are equivalent.

(i) x is a minimal point of X (with respect to the order induced by the topology).

(ii) If Y is an open neighborhood of x in Xpatch, then x ∈
◦
Y .
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Proof. (i)=⇒(ii). Let Y be an open neighborhood of x in Xpatch and assume, by

contradiction, that x /∈
◦
Y . By definition, for any open and compact subset Ω of X

such that x ∈ Ω we have Ω * Y . Keeping in mind (11.11), it follows that

F := {Ω ∩ (X − Y ) : Ω ⊆ X open and compact, x ∈ Ω}
has the finite intersection property and, by definition, it consists of closed subsets
of Xpatch. Then (11.10) implies that there is a point x0 ∈

⋂
F . Since open and

compact subspaces of X form a basis for the topology, it easily follows that x0 ≤ x
and, since x is minimal, x0 = x, a contradiction, since x0 ∈

⋂
F ⊆ X − Y , but

x ∈ Y .
(i)=⇒(i). By contradiction, assume that there exists a point y ∈ X such that

y < x. Thus, x ∈ {y} and there exists an open and compact subspace U of X such
that y ∈ U and x /∈ U . By definition, Y := X − U is an open neighborhood of x in

Xpatch, and thus, by assumption x ∈
◦
Y . Then, there is an open neighborhoof V of x

(in X) such that V ⊆ Y . Since x ∈ {y}, it follows y ∈ V and, a fortiori, y ∈ X −U ,
a contradiction. �

(14.16) Proposition. Let X be a spectral space. Then, the subspace topologies
induced on Min(X) by the given spectral topology and by the patch topology are the
same.

Proof. Let U be an open set of Min(X), equipped with the subspace topology in-
duced by the patch topology of X. Then, there is an open subset Y of Xpatch such

that U = Min(X) ∩ Y . By (14.15), we have U =
◦
Y ∩Min(X) and thus U is open

in Min(X), with respect to the subspace topology induced by the given spectral
topology of X. �

(14.17) Proposition. Let X be a spectral space and let Y be a closed subset of X,
with respect to the patch topology. Then the following properties hold.

(a) Y is a spectral space, endowed with the subspace topology induced by the given
spectral topology of X.

(b) The patch topology of Y is equal to the subspace topology induced by the patch
topology of X.

(c) The inverse topology of Y is equal to the subspace topology induced by the
inverse topology of X.

Proof. Let T1 (resp., T2) denote the patch topology of Y (resp., the subspace topology
induced on Y by the given spectral topology of X). Let A be the collection of all
open and compact subspaces of (Y, T2). We want to show the following claim.

Claim. A = {Ω ∩ Y : Ω ⊆ X open and compact}.
The inclusion ⊇ is easy: indeed, any set of the form Ω ∩ Y (Ω open and compact

in X) is closed, with respect to the patch topology of X. Since Xpatch is compact,
in view of (11.10), the set Y ∩ Ω is compact in Xpatch and, a fortiori, it is compact
in X, by (11.8). Conversely, let U be an open and compact subspace of (Y, T2), and
let V be an open set of X such that U = V ∩Y . Since open and compact subspaces
form a basis of X, for any u ∈ U there is an open and compact subspace Ωu of X
such that u ∈ Ωu ⊆ V . Since U is compact and U ⊆

⋃
{Ωu : u ∈ U}, there is a

finite set F of U such that U ⊆ Ω∗ :=
⋃
u∈F Ωu ⊆ V . Then Ω∗ is clearly open and

compact and U = Y ∩ Ω∗, proving the claim.
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Now, let T3 denote the subspace topology induced on Y by the patch topology of
X. By the claim, A is a collection of clopen sets of (Y, T3) and thus, by definition,
T1 is coarser that T3. Since Y is closed in the compact space Xpatch, then (Y, T3) is
compact and, a fortiori, (Y, T1) is compact. Moreover, since A is clearly a basis for
(Y, T2), (11.10) implies that (Y, T2) is a spectral space, proving (a). Keeping in mind
that both (Y, T1), (Y, T3) are compact and Hausdorff spaces and that T1 is coarser
than T3, it follows T1 = T3, in view of (10.9). Part (c) is an immediate consequence
of the Claim. The proof is now complete. �

(14.18) Proposition. Preserve the notation of (14.1), let Z ⊆ X be C-representations
of A, and assume that X is spectral and Z is minimal (see (14.13)). Then, the spec-
tral and the patch topologies of X induce the same topology on Z.

Proof. By definition, there is a minimal closed C-representation Y of A such that
Z = Min(Y ). By (11.8), Y is closed in Xpatch. Thus the conclusion follows immedi-
ately from (14.16) and (14.17). �

(14.19) Definition. Preserve the notation of (14.1), let Z ⊆ X be C-representations
of A, and assume that X is spectral. We say that a set B ∈ Z is strongly irredun-
dant in Z if the unique closed subset Y of V(B) such that Y ∪ (Z − {B}) is a
C-representation of A is Y = V(B).

(14.20) Remark. Preserve the notation of (14.1), let Z ⊆ X be C-representations
of A, and assume that X is spectral. If B ∈ Z is strongly irredundant in Z, then B
is irredundant in Z. Indeed, Y := ∅ is a proper closed subset of V(B) and thus, by
definition, Y ∪ (Z − {B}) = Z − {B} is not a C-representation of A.

Clearly, the notion of irredundance and strong irredundance are not equivalent.
In the next result a topological criterion for irredundance in minimal representations
is given. For such representations, irredundance and strong irredundance will turn
out to be equivalent.

(14.21) Theorem ([14, Theorem 3.6]). We preserve the notation of (14.1). Let
Z ⊆ X be C-representations of A, and assume that X is spectral and Z is minimal
(see (14.13)). If B ∈ Z, then the following conditions are equivalent.

(i) B is irredundant in Z.
(ii) B is strongly irredundant in Z.

(iii) B is isolated in Z, endowed with the subspace topology induced by the spectral
topology of X.

Proof. (ii)=⇒(i) and (i)=⇒(iii) follow from (14.20) and (14.7), respectively (and
without any extra assumption on Z).

(iii)=⇒(ii). First, note that V(B) = {B}, in view of (14.2), and thus B ∈ Z
implies V(B) ⊆ Z. Let Y be a closed subset of V(B) such that Y ∪ (Z − {B}) is a

C-representation of A. A fortiori, Y ∪Z − {B} is a closed C-representation of A and

Y ∪Z − {B} ⊆ Z. Since Z is a minimal C-representation of A, then Z is a minimal

closed C-representation of A, in view of (14.14). Then we have Y ∪ Z − {B} = Z.

Moreover, since B is isolated in Z, by assumption, we have B /∈ Z − {B}. Since

B ∈ Z, it follows B ∈ Y and thus V(B) = {B} ⊆ Y , because Y is closed. It follows
V(B) = Y . The conclusion is now clear. �
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(14.22) Definition. We preserve the notation of (14.1). Let X be a spectral C-
representation of A. We say that a C-representation Z ⊆ X is irredundant (resp.,
strongly irredundant) if any set B ∈ Z is irredundant (resp., strongly irredundant)
in Z.

(14.23) Proposition. We preserve the notation of (14.1). Let Z ⊆ X be C-
representations of A, and assume that X is spectral and Z is minimal (see (14.13)).
Then Z

p
contains at most one irredundant C-representation of A. More precisely, if

Γ ⊆ Z
p

is an irredundant C-representation of A, then Γ is the set of isolated points
of Z (endowed with the subspace topology induced by the spectral topology of Z).

Proof. Γ
p

is a C-representation of A, being Γ ⊆ Γ
p
, and thus, by (14.14b), we have

Γ
p

= Z
p
. Take a set B ∈ Γ. Since B is irredundant in Γ, (14.6) implies that B is

irredundant in Z
p

and hence B is isolated in Z
p
, with respect to the patch topology.

Thus, since {B} is open in Z
p

and Z is dense in Z
p
, we have B ∈ Z. This shows

that Γ ⊆ Z. Keeping in mind (14.21) and (14.6), a set B ∈ Z is isolated in Z if and
only if B is irredundant in Z

p
. Thus, if B is isolated in Z, then it is isolated in Z

p

(with respect to the patch topology) and, since Γ is dense in Z
p
, we infer B ∈ Γ.

Conversely, if B ∈ Γ, then it is irredundant in Γ, by assumption, and thus B is
irredundant in Γ

p
= Z

p
, and this is equivalent to state that B is isolated in Z. �

We now provide a topological criterion for the existence of an irredundant repre-
sentation in a minimal representation.

(14.24) Theorem ([14, Corollary 3.7]). We preserve the notation of (14.1). Let
Z ⊆ X be C-representations of A, and assume that X is spectral and Z is minimal
(see (14.13)). Then, the following conditions are equivalent.

(i) Z contains an irredundant C-representation of A (or, equivalently, a strongly
irredundant C-representation of A, in view of (14.21)).

(ii) The set of isolated points of Z is dense in Z, with respect to the topology
induced by the spectral topology of X.

Proof. (i)=⇒(ii). Let Γ ⊆ Z be an irredundant C-representation of A. Then, Γ
p

is a C-representation of A such that Γ
p ⊆ Z

p
and, in view of (14.14b), Γ

p
= Z

p
.

Keeping in mind (14.18), it follows that Γ is dense in Z, with respect to the subspace
topology induced by the spectral topology of X. Then condition (ii) follows from
(14.23).

(ii)=⇒(i). Let Y be the set of isolated points of Z and assume, by contradiction,
that A = C ∩

⋂
B∈Z B ( C ∩

⋂
B∈Y B. Take an element d ∈ C ∩

⋂
B∈Y B such that

d /∈ A. Then, there is a set B′ ∈ Z such that d /∈ B′. Since, by assumption, Y is
dense in Z, the nonempty open set U(d) ∩ Z of Z must intersect Y . On the other
hand, d ∈ C ∩

⋂
B∈Y B implies Y ⊆ V(d), a contradiction. It follows that Y is a

C-representation of A and, by (14.21), it is irredundant. �

(14.25) Definition. Let X be a topological space. We say that X is scattered if
any nonempty subset Y of X contains a point that is isolated in Y .

We start with some simple property that characterize scattered spaces.

(14.26) Proposition. Let X be a topological space. Then, the following conditions
are equivalent.

(i) X is scattered.
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(ii) Any nonempty closed subset C of X contains a point that is isolated in C.
(iii) For any nonempty subset Y of X, the set {y ∈ Y : y is isolated in Y } is

dense in Y .

Proof. Clearly, it suffices to show that (ii)=⇒(i) and that (i)=⇒(iii).
(ii)=⇒(i). Take any nonempty subset Y of X and, by assumption, pick a point

x ∈ Y that is isolated in Y . Since {y} is open in Y and Y is dense in Y , we have
y ∈ Y . It follows that y is isolated in Y .

(i)=⇒(iii). Take any nonempty subset Y of X, and let Ω be an open subset of X
such that Ω∩Y 6= ∅. By assumption, there is a point y ∈ Ω∩Y such that y is isolated
in Ω ∩ Y . In other words, there is an open set Ω′ of X such that {y} = Ω′ ∩ Ω ∩ Y .
It follows that y is isolated in Y , proving condition (iii). �

(14.27) Theorem (Mazurkiewicz-Sierpinski, 1920). Any compact Hausdorff and
countable space is scattered.

Proof. Let X be a compact, Hausdorff and countable space. Keeping in mind that
any closed subspace of X is compact, Hausdorff and at most countable, it suffices to
show that X has some isolated point, in view of condition (ii) of (14.26). We argue
by contradiction, and assume that X has no isolated points. We are going to show
the following claim.

Claim. For any nonempty open set U of X and any x ∈ X, there exists a
nonempty open set V of X such that V ⊆ U and x /∈ V .

As a matter of fact, we can choose a point y ∈ U such that x 6= y (this is obvious
if x /∈ U ; otherwise, since x is not isolated in X, we have {x} ( U). Since X is
Hausdorff, there are disjoint open sets Ω1,Ω2 such that x ∈ Ω1, y ∈ Ω2. Then the
set V := Ω2 ∩ U ⊆ U is nonempty (it contains y) and open and x /∈ V , since W1 is
an open neighborhood of x disjoint from V . This proves the claim.

By assumption, X = {x0, x1, . . ., xn, . . .}. In view of the claim, it is easily proved,
by induction, that there exists a sequence {Vn : n ∈ N} of nonempty open sets of X
such that Vi ⊇ Vi+1 and xi /∈ Vi, for any i ∈ N. By construction, F := {Vi : i ∈ N}
is a collection of closed subsets of X with the finite intersection property. Since X
is compact, there is a point x ∈

⋂
F , and we clearly have x 6= xi, for any i ∈ N, a

contradiction. �

(14.28) Theorem ([14, Corollary 3.8]). We preserve the notation of (14.1). Let
X be a spectral C-representation of A and assume that X is scattered with respect
to either the spectral topology or the patch topology. Then, X contain a strongly
irredundant C-representation of A.

Proof. By (11.8), the patch topology is finer than the given spectral topology of
X. Thus, if X is scattered in the spectral topology, it is scattered in the patch
topology. Thus it is enough to prove the statement when X is endowed with the
patch topology. By (14.3), X contains a minimal C-representation Z of A. Since
X is scattered in the patch topology, the set of isolated points of Z is dense in
Z, with respect to the subspace patch topology, i.e., is dense in Z with respect to
the subspace spectral topology, by (14.18). Thus, in view of (14.24), Z contains a
strongly irredundant representation of A. �

(14.29) Corollary. We preserve the notation of (14.1). If X is a spectral and
countable C-representation of the set A, then X contains a strongly irredundant
C-representation of A.
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Proof. Xpatch is compact, Hausdorff and countable and thus it is scattered, in view
of (14.27). Thus, the conclusion follows from (14.28). �

(14.30) Definition. We preserve the notation of (14.1). Let X be a spectral C-
representation of A, and let Y be the intersection of all closed C-representations of
A in X. We say that a set B ∈ X is critical in X if B ∈ Y . In the following we
will set C (X) := Min(Y ).

(14.31) Proposition ([14, Proposition 3.11]). We preserve the notation of (14.1).
If X is a spectral C-representation of A and B ∈ X, then the following conditions
are equivalent.

(i) B is critical in X.
(ii) Whenever A = A1∩. . .∩An∩C, where each Ai is an intersection of members

of X, then Ai ⊆ B, for some i ∈ {1, . . ., n}.

Proof. (i)=⇒(ii). Assume that A = A1∩. . .∩An∩C, where each Ai is an intersection
of members of X. It immediately follows that each closed subset V(Ai) of X is
such that Ai =

⋂
H∈V(Ai)

H. This proves that Z :=
⋃n
i=1 V(Ai) is a closed C-

representation of A. Since, by assumption, B is critical in X, we have B ∈ Z, and
thus B ∈ V(Ai), for some 1 ≤ i ≤ n, that is, B ⊇ Ai.

(ii)=⇒(i). Assume condition (ii) and let Z be any closed C-representation of A.
Since {U(d) : d ∈ D} is a subbasis of open and compact subspace of X, being X
spectral, it follows that Z is intersection of sets of the form V(d1) ∪ . . . ∪ V(dn),
where d1, . . ., dn ∈ D. Then, in order to prove that B ∈ Z, it suffices to show that,
if Z ⊆ V(d1) ∪ . . . ∪ V(dn), then B ∈ V(d1) ∪ . . . ∪ V(dn). For any 1 ≤ i ≤ n, set
Ai :=

⋂
H∈V(di)

H and note that di ∈ Ai. Moreover, Z ′ := V(d1) ∪ . . . ∪ V(dn) is a

C-representation of A, being Z ⊆ Z ′, and thus

A = C ∩
⋂
H∈Z′

H = C ∩ A1 ∩ . . . ∩ An.

By assumption, there is some 1 ≤ i ≤ n such that Ai ⊆ B. Then di ∈ B, i.e.,
B ∈ V(di) ⊆ Z ′. The conclusion is now clear. �

We note now that for a critical set of a spectral representation, the notions of ir-
redundance and strongly irredundance in some representation turn out to be equiv-
alent.

(14.32) Proposition ([14, Corollary 3.12]). We preserve the notation of (14.1). If
Z ⊆ X are C-representations of A, X is spectral, and B ∈ Z is critical in X, then
B is irredundant in Z if and only if B is strongly irredundant in Z.

Proof. Assume that B ∈ Z is irredundant in Z, and let Y be a closed subset of
V(B) such that (Z − {B}) ∪ Y is a C-representation of A. We have to show that

Y = V(B) and, since V(B) = {B} and Y is closed, what we need to prove is that
B ∈ Y . Since X is spectral, Y is intersection of sets of the form V(d1)∪ . . .∪V(dn),
for some d1, . . ., dn ∈ D. Thus, take arbitrary elements d1, . . ., dn ∈ D such that
Y ⊆ Z ′ := V(d1) ∪ . . . ∪ V(dn). Since Y ∪ (Z − {B}) ⊆ Z ′ ∪ (Z − {B}), it follows
that Z ′ ∪ (Z −{B}) is a spectral C-representation of A. Then, if Ai :=

⋂
H∈V(di)

H,

for 1 ≤ i ≤ n, and A∗ :=
⋂
H∈Z,H 6=BH, we have A = C ∩ A1 ∩ . . . ∩ An ∩ A∗. Since

B is irredundant in Z, we have A∗ * B and thus, keeping in mind (14.31) and the
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fact that B is critical in X, it follows di ∈ Ai ⊆ B, for some 1 ≤ i ≤ n. This proves
that B ∈ V(di) ⊆ Z ′. The proof is now complete. �

(14.33) Theorem ([14, Theorem 3.13]). Let A ( C ⊆ D be sets, let X be a
spectral C-representation of A and let C (X) be as in (14.30). Then C (X) is a C-
representation of A if and only if X contains a unique minimal C-representation of
A, if and only if X contains a unique minimal closed C-representation. In this case,
if

S := {B ∈ X : B is strongly irredundant in some C-representation of A in X},
then the following properties hold.

(a) S ⊆ C (X).
(b) Any B ∈ S is strongly irredundant in C (X).
(c) If Z is a strongly irredundant C-representation of X, then Z = S. In partic-

ular, X contains at most one strongly irredundant C-representation of A.

Proof. By definition, C (X) := Min(Y ), where Y is the intersection of all closed
C-representations of A. Since Y is closed in the spectral space X, (14.12) implies
that C (X) is a C-representation of A if and only if Y is a (closed) C-representation
of A, i.e., there exists a unique minimal closed C-representation of A. Since, in view
of (14.10), for any closed subset of Γ of X, (Min(Γ))sp = Γ, it follows that Min(Γ)
determines Γ. Thus, X contains a unique minimal closed C-representation of A if
and only if X contains a unique minimal C-representation of A.

(a). Take a set B in S. By definition, there exists a C-representation Z of A such
that B ∈ Z and B is strongly irredundant in Z. Set Z ′ := Z − {B} and note that
A = C ∩ B ∩

⋂
H∈Z′ H. Consider the closed subset Γ := Y ∩ V(B) of V(B), take

an element d ∈
⋂
H∈Z′ H ∩

⋂
E∈ΓE ∩ C and fix a set E∗ ∈ C (X). If E∗ ⊇ B, then

E∗ ∈ Γ and thus d ∈ E∗. If E∗ + B, then the equality A = C ∩ B ∩
⋂
H∈Z′ H, the

fact that E∗ is critical and (14.31) imply E∗ ⊇
⋂
H∈Z′ H, and thus d ∈ E∗. Then

d ∈
⋂
E∈C (X)E ∩ C = A, since, by assumption, C (X) is a C-representation of A.

This proves that Γ ∪ Z ′ is a C-representation of A and, since B ∈ Z is strongly
irredundant in Z, we must have Γ = V(B) and, in particular, B ∈ Y , proving that
S ⊆ Y . We show now that B is minimal in Y (that is, B ∈ C (X)). Fix a set E ∈ Y
such that E ⊆ B. If

⋂
H∈Z′ H ⊆ E, it would follow

⋂
H∈Z′ H ⊆ B, against the

fact that B is irredundant in Z, being it strongly irredundant. Then, the equality
A = C ∩B ∩

⋂
H∈Z′ H and (14.31) imply B ⊆ E, that is B = E.

(b). Let B ∈ S and let Z be a C-representation of A such that B ∈ Z and
B is strongly irredundant in Z. Since, by part (a), B ∈ C (X), any E ∈ C (X)
such that E 6= B is not comparable with B. Thus, keeping in mind the equality
A = C∩B∩

⋂
H∈Z,H 6=BH, (14.31) implies that for any E ∈ C (X)−{B} is such that

E ⊇
⋂
H∈Z,H 6=BH. Then, since B is irredundant in Z, being it strongly irredundant,

we have
C ∩

⋂
E∈C (X),E 6=B

E ⊇ C ∩
⋂

H∈Z,H 6=B

H ) A.

This proves that B is irredundant in the C-representation C (X) of A and, since B
is critical in X, by part (a), (14.32) implies that B is strongly irredundant in C (X).

(c). Let Z be a strongly irredundant C-representation of A. By definition and part
(a) we have Z ⊆ S ⊆ C (X). Assume, by contradiction, that there is a set B ∈ S−Z.
Since C (X) is a C-representation of A, we have A = C ∩B ∩

⋂
E∈C (X),E 6=B E. Since
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C (X) is the collection of minimal elements of Y , any set H ∈ Z is not comparable
with B, since B /∈ Z. Then, the equality A = C ∩ B ∩

⋂
E∈C (X),E 6=B E and (14.31)

imply that H ⊇
⋂
E∈C (X),E 6=B E, for any H ∈ Z. Thus, keeping in mind that B is

irredundant in C (X), by part (b), we have

C ∩
⋂
H∈Z

H ⊇ C ∩
⋂

E∈C (X),E 6=B

E ) A,

against the fact that Z is a C-representation of A. It follows Z = S. �

15. More on Riemann-Zariski spaces.

Let K be a field and let D be any subring of K. As we proved in (11.15) and, in
a constructive way, in (12.16), Zar(K|D) is a spectral space. In this section we are
going to provide further applications of Riemann-Zariski spaces of valuation rings
in Multiplicative Ideal Theory. We start with some easy remarks.

(15.1) Remark. (a) In view of (12.6b), if D is a Prüfer domain with quotient
field L, then Zar(L|D) = {Dp : p ∈ Spec(D)}.

(b) In particular, keeping in mind that the polynomial ring K[T ] in the indeter-
minate T over a field K is a Dedekind domain, we have

Zar(K(T )|K[T ]) = {K[T ](f) : f ∈ K[T ] irreducible over K} ∪ {K(T )},
where, as usual, (f) := fK[T ].

(c) If K is a field and T is an indeterminate over K, then

Zar(K(T )|K) = Zar(K(T )|K[T ]) ∪ {K[T−1](T−1)}
The inclusion ⊇ is trivial, by (b) and the fact that K[T−1](T−1) is a valua-
tion overring of the Dedekind domain K[T−1]. Conversely, take a valuation
domain V ∈ Zar(K(T )|K). If T ∈ V , then V ∈ Zar(K(T )|K[T ]). If T /∈ V ,
then T−1 ∈ mV (as in (12.1), mV is the maximal ideal of V ). It follows that
K[T−1] ⊆ V and that the center of V in K[T−1] is (T−1). In view of (12.6b),
we have V = K[T−1](T−1).

(15.2) Lemma. Let X be a spectral space and let S be a subbasis of open and
compact subspaces of X. Then S i := {X − S : S ∈ S} is a subbasis of open and
compact subspaces of X inv (recall that X inv denotes the set X, endowed with the
inverse topology).

Proof. In view of (13.14a), S i is a collection of open and compact subspaces of
X inv. Take now an open proper subset U of X inv and take a point x ∈ U . Again
by (13.14a), there is an open and compact subspace Ω of X such that x ∈ X −
Ω ⊆ U . Since S is a subbasis of open sets of X and Ω is compact, we have Ω =⋃n
i=1

⋂ni

j=1 Sij, for suitable sets Sij ∈ S. It follows that for any 1 ≤ i ≤ n there is

some ji ∈ {1, . . ., ni} such that x ∈
⋂n
i=1(X − Siji) ⊆ X −Ω ⊆ U . The proof is now

complete. �

(15.3) Corollary. Let K be a field, let D be a subring of K, and let Zar(K|D) be
endowed with the Zariski topology. As in (11.15), set

BK(x) := B(x) := Zar(K|D[x]),

for any x ∈ K. Then {Zar(K|D)−B(x) : x ∈ K} is a subbasis of open and compact
subspaces of Zar(K|D)inv.
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Proof. By definition, any B(x) is a subbasic open set of Zar(K|D), with respect to
the Zariski topology. Moreover, B(x) is compact, being it spectral (it is a Riemann-
Zariski space). Then the conclusion follows from (15.2). �

(15.4) Remark. Let D be an integral domain which is integrally closed domain
in some field K. Then, according to (14.1) and (15.3), Zar(K|D)inv is a spectral
representation of D. This suggests that the topology that we have to use in order
to apply the results of the previous section to spaces of valuation domains is the
inverse topology.

Let X be a topological space and ≤ be the canonical preorder induced by the
topology. For any subset Y of X, the set

Y gen := {x ∈ X : x ≤ y, for some y ∈ Y }
is called the closure under generization of Y (or the generic closure of Y ). It is
immediately seen that Y ⊆ Y gen and that, if Y is open, then Y = Y gen. Whenever
the previous equality is true, we say that Y is closed under generizations.

(15.5) Example. Let K be a field and D be a subring of K. Keeping in mind
(13.2c), it easily follows that if Y ⊆ Zar(K|D), then

Y gen = {V ∈ Zar(K|D) : V ⊇ W, for some W ∈ Y }.

(15.6) Proposition ([4, Remark 2.2]). Let X be a spectral space and let Y be a

subset of X. Then Y
i

= (Y
p
)gen, i.e., the closure of Y in the inverse topology is

the generic closure (in the given spectral topology) of the closure of Y in the patch

topology. In particular, if Y is closed in the patch topology of X, then Y
i
= Y gen.

Proof. In view of the Hochster duality (13.14), X inv is a spectral space and the patch

topology of X and that of X inv are the same. Thus, by (14.9), Y
inv

is the specializa-
tion, in the inverse topology, of Y

p
. Finally, in view of (13.13), the spacialization of

any subset, in the inverse topology, is equal to the generization in the given spectral
topology. �

(15.7) Proposition. Let X be a spectral space and let Y ⊆ X. Then, the following
conditions are equivalent.

(i) Y is closed, with respect to the inverse topology.
(ii) Y is compact, in the given spectral topology, and closed under generizations.

Proof. (i)=⇒(ii). Suppose that Y is closed in the inverse topology. By (15.6) a
closed set in the inverse topology is closed under generization. Moreover, the given
spectral topology and the inverse topology have the same patch topology. Since the
patch topology is compact and finer than both the spectral topology and the inverse
topology, it follows that Y is closed, and hence compact, in the patch topology.
Finally, Y is compact in given spectral topology.

(ii)=⇒(i). Suppose that Y is compact and closed under generization. We argue

by contradiction, and take a point x ∈ Y
i − Y . Since Y = Y gen it happens, for

any y ∈ Y , that x 6≤ y, that is, y /∈ {x}. Since open and compact subsets form
a basis for the given spectral topology of X, for any y ∈ Y there is an open and
compact neighborhood Ωy of y such that x /∈ Ωy. It follows that Y ⊆

⋃
y∈Y Ωy

and, since Y is compact, there are finitely many elements y1, . . ., yn ∈ Y such that
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Y ⊆
⋃n
i=1 Ωyi =: Ω. The set Ω is open and compact, being it a finite union of open

and compact sets, and thus, by definition, it is closed in the inverse topology. It

follows x ∈ Y i ⊆ Ω, a contradiction. �

(15.8) Proposition. Let K be a fiend and let D ⊆ E be subrings of K. Then
Zar(K|E) is closed in Zar(K|D), with respect to the inverse topology.

Proof. Zar(K|E) is compact, being it spectral, and, by (15.5), it is closed under
generizations. Then, the conclusion follows from (15.7). �

(15.9) Proposition. Let K be a field, D be a subring of K and C be a subset of
K such that D ( C. If Z ⊆ Zar(K|D)inv is a closed C-representation of D, then Z
contains a minimal closed C-representation of D.

Proof. Apply (14.3). �

(15.10) Proposition ([14, page 292]). Let K be a field, D be a subring of K and
C be a subset of K such that D ( C. If Z ⊆ X ⊆ Zar(K|D) are C-representations
of D, X is spectral and V ∈ Z, then the following properties holds.

(a) V is irredundant in Z if and only if V is irredundant in the closure of Z in
the patch topology of X.

(b) If V is one-dimensional, then V is irredundant in Z if and only if V is

irredundant in the closure Z
i

of Z in X.

Proof. (a) is a consequence of (14.6).
(b). Assume that V is irredundant in Z and take an element k ∈ K such that

k ∈ C∩
⋂
W∈Z,W 6=V W and k /∈ W . Since V is one-dimensional, the unique nontrivial

valuation overring of V is K and thus (X ∩B(k))∪ {V }
i
= (X ∩B(k))∪ {V } ⊇ Z.

Since X is a spectral C-representation of D, X ∩B(k) is closed in X (equipped with
the inverse subspace topology induced by the inverse topology of Zar(K|D)), and

thus Z
i ⊆ (X ∩ B(k)) ∪ {V }. This proves that k ∈

⋂
W∈Zi

,W 6=V W . Since k /∈ V , it

follows that V is irredundant in Z
i
. The converse part is obvious. �

(15.11) Proposition ([14, (4.5)]). Let D be an integral domain which is integrally
closed in some field K ⊇ D, let C be a set such that D ( C ⊆ K and let X ⊆
Zar(K|D)inv be a minimal C-representation of D.

(a) If V ∈ X, then following conditions are equivalent.
(i) V is irredundant in X.

(ii) V is strongly irredundant in X.
(iii) V is isolated in X (with respect to the subspace inverse topology or,

equivalenty, to the subspace patch topology).
(b) X contains a strongly irredundant C-representation of D if and only if the

set of isolated points in X is dense in X, with respect to the subspace inverse
topology.

Proof. Apply (14.21) and (14.24). �

(15.12) Proposition ([14, (4.8)]). Let K be a field, D be a subring of K and C
be a set such that D ( C ⊆ K. If X ⊆ Zar(K|D) is a countable closed subspace,
with respect to the patch topology, and D = C ∩

⋂
V ∈X V , then X contains a strongly

irredundant C-representation of D.
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Proof. Apply (14.29). �

If D is an integral domain with quotient field K and a is a subset of D, we set

a−1 := (D : a) := {x ∈ K : xa ⊆ D}.
The subset av := (a−1)−1 of K is called the divisorial closure of a. Note that, if a is
an ideal of D, then so is av. We say that an ideal a of D is divisorial if a = av. If i
is a nonzero ideal of D, set

it :=
∑
{av : 0 6= a ⊆ i, a finitely generated ideal of D}.

The ideal i is called a t-ideal of D if either i = 0 or it = i.

(15.13) Remark (See, for instance, [9]). Let D be an integral domain with quotient
field K.

(a) A map F 7→ F∗ from the set of nonzero fractional ideals of D it itself is called
to be a star operation on D if
• D∗ = D and kF∗ = (kF )∗,
• F ⊆ F∗ and F ⊆ G implies F∗ ⊆ G∗.
• (F∗)∗ = F∗,

for any k ∈ K − {0} and nonzero fractional ideals F,G of D.
(b) It is straightforward that the maps F 7→ Fv, F 7→ Ft are both star operations

on D.
(c) A star operation ∗ is called to be of finite type if

F∗ =
⋃
{G∗ : G ⊆ F,G finitely generated nonzero fractional ideal of D}

for any nonzero fractional ideal F of D. Thus, by definition, the t operation
is of finite type.

(d) Given a star operation ∗ on D, an ideal a of D is called to be a ∗-ideal if either
a = 0 or a = a∗. It is straightforward that, if F is a collection of nonzero
fractional ideals of D with nonzero intersection, then

⋂
F∈F F∗ = (

⋂
F∈F F∗)∗.

In particular, a finite intersection of ∗-ideals is a ∗-ideal.
(e) By the first axion of a star operation, kD = (kD)∗, for any k ∈ K and any

star operation ∗ on D. In particular, any principal ideal is a ∗-ideal.

(15.14) Definition. Let ∗ be a star operation on an integral domain D. A prime
ideal of D is ∗-prime if it is a ∗-ideal. A maximal element, under inclusion, of the
set of proper ∗-ideals of D is called a ∗-maximal ideal. We shall denote by Spec∗(D)
(resp., Max∗(D)) the collection of all ∗-prime (resp., ∗-maximal) ideals of D.

(15.15) Proposition. Let D be an integral domain and let ∗ be a star operation on
D. The following properties hold.

(a) Max∗(D) ⊆ Spec∗(D).
(b) If ∗ is of finite type, then any proper ∗-ideal is contained in a ∗-maximal

ideal. In particular, Max∗(D) 6= ∅.
(c) If ∗ is of finite type, then D =

⋂
m∈Max∗(D) Dm.

Proof. (a). Let m be a ∗-maximal ideal of D, and let x, y ∈ D be such that xy ∈ m
and x /∈ m. Since m ( xD + m ⊆ (xD + m)∗ we have (xD + m)∗ = D, since
m ∈ Max∗(D). It follows

y ∈ y(xD + m)∗ = [y(xD + m)]∗ ⊆ (xyD + m)∗ = m∗ = m,
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proving that m is a prime ideal (and thus a ∗-prime ideal).
(b). Let a ba proper ∗-ideal ofD, let C be a chain of proper ∗-ideals ofD containing

a, and let b be the union of C. Take an element x ∈ b∗. Since ∗ is of finite type,
there is a finitely generated ideal b0 of D such that b0 ⊆ b and x ∈ b0∗. Since b0 is
finitely generated and C is a chain, there is an ideal c ∈ C such that b0 ⊆ c. Keeping
in mind that C consists of ∗-ideals, it follows x ∈ b0∗ ⊆ c∗ = c ⊆ b, proving that b
is a ∗-ideal. Then the conclusion follows from Zorn’s Lemma.

(c) Take an element x ∈
⋂

m∈Max∗(D)Dm. For a fixed m ∈ Max∗(D), take elements

a, s ∈ D, s /∈ m such that x =
a

s
, and note that D ∩ x−1D * m (since s ∈ x−1D).

Moreover, by (15.13d,e), D ∩ x−1D is a ∗-ideal. Thus, in view of part (b), we infer
D = D ∩ x−1D, that is, x ∈ D. �

(15.16) Proposition. Any invertible ideal of an integral domain is divisorial.

Proof. Let a be an invertible ideal of an integral domain D, i.e., aa−1 = D. It follows
that the inverse (a−1)−1 =: av of a−1 is a. The conclusion follows. �

(15.17) Corollary. Any ideal of a Prüfer domain is a t-ideal.

Proof. Since any nonzero finitely generated ideal of a Prüfer domain is invertible,
and a fortiori divisorial, by (15.16), we have

it =
∑
{a : 0 6= a ⊆ i, a finitely generated ideal of D} = i.

�

(15.18) Definition. Let D be an integral domain.

(a) Let V be a valuation overring of D. We say that V is essential for D if
V = Dp, for some p ∈ Spec(D). Such a prime ideal p is called an essential
prime ideal of D. Set

E(D) := {essential prime ideals of D},
V(D) := {essential valuation overrings of D}.

(b) We say that D is an essential domain if D is intersection of a nonempty
collection V of essential valuation overrings of D. Such a family V is called
an essential representation of D.

(15.19) Example. Any Prüfer domain D is an essential domain; indeed, the family
{Dm : m ∈ Max(D)} is an essential representation of D.

(15.20) Theorem (See [4, Proposition 4.5]). Let D be an essential domain with
quotient field K and let Y ⊆ Zar(K|D) be an essential representation of D. Then

Maxt(D) ⊆ {mV ∩D : V ∈ Y }
i
.

In particular, if D is Prüfer, then Max(D) ⊆ {mV ∩D : V ∈ Y }
i
.

Proof. The last statement follows from the first one, in view of (15.17). According to
(10.14) and (15.6), it suffices to show that any t-maximal ideal of D is contained in an
ultrafilter limit point of Y0 := {mV ∩D : V ∈ Y }. Fix a t-maximal ideal m of D and
consider the collection of subsets F := {V (x)∩Y0 : x ∈ m} of Y0. Assume that there
are elements x1, . . ., xn ∈ m such that V (x1, . . ., xn) ∩ Y0 = ∅, let a := (x1, . . ., xn)D
and take an element x ∈ a−1. For any V ∈ Y , there is an element dV ∈ a−mV , since
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V (a) ∩ Y0 = ∅. It follows xdV ∈ D, that is, x ∈ 1

dV
D ⊆ DmV ∩D = V (note that the

last equality is a consequence of the fact that V is essential for D). Keeping in mind
that Y is a representation of D, we have a−1 ⊆

⋂
V ∈Y V = D and, since the inclusion

D ⊆ a−1 is always true, it follows a−1 = D, and a fortiori av = D−1 = D ⊆ mt = m,
a contradiction. This argument shows that F has the finite intersection property,
and thus there exists an ultrafilter U on Y0 extending F , by (9.4). It immediately
follows m ⊆ (Y0)U := {d ∈ D : V (d) ∩ Y0 ∈ U }. �

(15.21) Lemma. Let f : X −→ Y be a homeomorphism of spectral spaces. Then
f : Xpatch −→ Y patch and f : X inv −→ Y inv are homeomorphisms.

Proof. It is sufficient to note that a subset Ω of X is open and compact if and
only if f(Ω) is open and compact, since f : X −→ Y is a homeomorphism. Then
the conclusion follows from the definition of the patch topology and of the inverse
topology. �

(15.22) Lemma. Let A be a ring. Then Max(A) is dense in Spec(A), with respect
to the inverse topology.

Proof. Take an open and compact subspace Ω of Spec(A). Then Ω = D(a), for some
finitely generated ideal a of A. Then Max(A) ⊆ Ω if and only if a = A, if and only
if Ω = Spec(A). �

(15.23) Corollary. Let D be a Prüfer domain with quotient field K and let Y ⊆
Zar(K|D) be a representation of D. Then Y is dense in Zar(K|D), with respect to
the inverse topology. In particular, the unique representation of D which is closed
in the inverse topology is Zar(K|D).

Proof. Since D is Prüfer, the domination map δ : Zar(K|D) −→ Spec(D) is a
homeomorphism, with respect to the Zariski topology. In view of (15.21), δ :
Zar(K|D)inv −→ Spec(D)inv is a homeomorphism. By (15.20) and (15.22), {mV ∩D :
V ∈ Y } is dense in Spec(D)inv. Since the domination map is a homeomorphism, Y
is dense in Zar(K|D)inv. �

(15.24) Definition. Let K be a field, let D be a subring of K, let C be a subset of K
such that D ( C and let T be an indeterminate over K. For any nonempty subset X
of Zar(K|D), consider the K-Halter-Koch ring Kr(X) :=

⋂
V ∈X V (T ) (see (12.11)).

If X is a C-representation (resp., a representation) of D we say that Kr(X) is a
C-Kronecker function ring of D (resp., a Kronecker function ring of D).

In the setting of (15.24), endow Zar(K|D) with the inverse topology and set

KC(D) := {C-Kronecker function rings of D}
RC(D) := {closed C-representations of D}.

The set KC(D) will be called the C-Kronecker space of A. By definition, KC(D) 6= ∅
if and only if RC(D) 6= ∅. Indeed, if KC(D) 6= ∅, there is some C-representation
X ⊆ Zar(K|D) of D. A fortiori, Zar(K|D) is a closed C-representation of D.

(15.25) Corollary. Let K be a field, D be a subring of K and T be an indeterminate
over K. If H := Kr(Zar(K|D)), then the natural map

η : Zar(K(T )|H)inv −→ Zar(K|D)inv W 7→ W ∩K
is a homeomorphism.
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Proof. Apply (12.16) and (15.21). �

(15.26) Theorem ([14, (4.15)]). We preserve the setting of (15.24) and assume that
Zar(K|D) is a C-representation of D. Consider the map β : RC(D) −→ KC(D)
defined by setting β(X) := Kr(X), for any X ∈ RC(A). The following properties
hold.

(a) β is an inclusion reversing bijection.
(b) Minimal closed C-representations of D bijectively corresponds, via β, to max-

imal C-Kronecker function rings of D.

Proof. (a) The fact that β is inclusion reversing is trivial. Assume now that X, Y ⊆
Zar(K|D) are closed C-representations of D and that β(X) = β(Y ), that is, R :=
Kr(X) = Kr(Y ). By (15.25), η−1(X) = {V (T ) : V ∈ X}, η−1(Y ) = {V (T ) :
V ∈ Y } are closed subspaces of Zar(K(T )|H)inv and, a fortiori, of Zar(K(T )|R)inv,
by (14.17c) and (15.8). Since η−1(X), η−1(Y ) are, by definition, representations of
the Bézout domain R (see (12.9c)), then (15.23) implies η−1(X) = η−1(Y ), that
is, X = Y . For surjectivity, take any C-Kronecker function ring R of D. Thus
R = Kr(X), for some C-representation X ⊆ Zar(K|D) of D. By (15.25) and (15.8),
X ′ := η(Zar(K(T )|R)) is closed in Zar(K|D)inv and, since R is integrally closed,
being it Bézout, we have, by definition,

Kr(X ′) :=
⋂
V ∈X′

V (T ) =
⋂

W∈Zar(K(T )|R)

W = R.

(b) is an immediate consequence of part (a). �

(15.27) Corollary. We preserve the setting of (15.24) and assume that Zar(K|D)
is a C-representation of D. If KC(D) has a unique maximal point (i.e., there is
a unique maximal C-Kronecker function ring), then D has at most one strongly
irredundant C-representation in Zar(K|D).

Proof. Apply (15.26b) and (14.33c). �

(15.28) Lemma. Let V be a valuation domain with quotient field K, and let M,N
be V -submodules of K containing V . Then, M,N are comparable.

Proof. Suppose C * D and take an element c ∈ C − D. Then, for any d ∈ D, we

have
d

c
∈ V (otherwise,

c

d
∈ V and thus c ∈ dV ⊆ D, a contradiction). It follows

d ∈ cV ⊆ C. �

(15.29) Definition. Let K be a field, D be a subring of K and C be a subset
of K such that D ( C. Adapting the terminology of the previous section, we say
that a valuation domain V ∈ Zar(K|D) is C-critical for D if V ∈ Γ, for any
C-representation Γ of D which is closed in the inverse topology of Zar(K|D). A
K-critical valuation domain will be simply called critical.

Keeping in mind (14.31), the following result is clear.

(15.30) Proposition. Let K be a field, D be a subring of K and C be a subset of
K such that D ( C. If V ∈ Zar(K|D), then the following conditions are equivalent.

(i) V is C-critical for D.
(ii) Whenever A1, . . ., An are subrings of K that are integrally closed in K and

D = A1 ∩ . . . ∩ An ∩ C, then Ai ⊆ V , for some i ∈ {1, . . ., n}.
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(15.31) Proposition ([14, Proposition 4.11]). Let D be an integral domain with
quotient field K, and let C be a D-submodule of K such that D ( C. If V is an
essential valuation overring of D such that C * V , then V is C-critical for D.

Proof. By definition, there is some prime ideal p of D such that V = Dp. Take
integrally closed overrings A1, . . ., An of D such that D = A1∩ . . .∩An∩C. Keeping
in mind that localization commutes with finite intersections, we infer that V = Dp =
(A1)p ∩ . . . ∩ (An)p ∩ Cp. By (15.28), the collection M := {Cp, (Ai)p : 1 ≤ i ≤ n} of
V -submodules of K (containing V ) is totally ordered by inclusion and, since C * V ,
the minimum of M cannot be Cp (otherwise V = Cp ⊇ C). Thus the minimum of
M is some (Ai)p, that is, V = (Ai)p ⊇ Ai. The conclusion follows from (15.30). �

(15.32) Corollary. Any essential domain admits at most one strongly irredundant
representation (in the space of its valuation overrings).

Proof. Let D be an essential domain. In view of (15.31), D is intersection of critical
valuation overrings. The conclusion follows immediately from (14.33). �

(15.33) Definition ([2]). An integral domain is called to be vacant if it admits a
unique Kronecker function ring.

Note that, by definition, any vacant domain is integrally closed. The following
result gives a topological criterion to decide if an integral domain is vacant.

(15.34) Theorem. Let D be an integral domain with quotient field K. Then the
following conditions are equivalent.

(i) D is vacant.
(ii) D is integrally closed and any representation of D is dense in Zar(K|D),

with respect to the inverse topology.
(iii) D is integrally closed and any valuation overring of D is critical for D.
(iv) D is integrally closed and, whenever A1, . . ., An are integrally closed over-

rings of D such that D = A1 ∩ . . .∩An, then Zar(K|D) =
⋃n
i=1 Zar(K|Ai).

Proof. It is enough to apply (15.26), (14.33) and (15.30). �

(15.35) Remark. The equivalence of (i) and (ii) of (15.34) is [4, Corollary 4.16].
The equivalence of (i) and (iii) is [14, Example 4.12]. The equivalence of (i) and (iv)
was proved in [2, Theorem 3.1].

(15.36) Corollary. Any Prüfer domain is vacant.

Proof. Apply (15.23) and (15.34). �

(15.37) Proposition. Any vacant domain (in particular, any Prüfer domain) ad-
mits at most one strongly irredundant representation (in the space of its valuation
overrings).

Proof. It follows by definition, keeping in mind (15.27). �

The following remark is straightforward and its proof is left to the reader.

(15.38) Remark. Let D be an integral domain with quotient field K, and let X
be a D-submodule of K.

(a) Then (X : X) := {k ∈ K : kX ⊆ X} is an overring of D.
(b) If X is an overring of D, then (X : X) = X.
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(c) If X is an ideal of D, then X is an ideal of (X : X).
(d) If D is a valuation domain and X is its maximal ideal, then (X : X) = D.

(15.39) Lemma ([2, Lemma 4.3]). Let D be an integral domain and let p be a prime
ideal of D such that V := (p : p) is a valuation overring of D with maximal ideal p.
Then, any valuation overring of D is comparable with V .

Proof. Let W be a valuation overring of D. First, assume that pW = W . If x ∈ V ,
then xp ⊆ p and, a fortiori xpW ⊆ pW , that is, x ∈ (pW : pW ) = (W : W ) = W ,
in view of (15.38b). This proves that, if pW = W , then V ⊆ W .

Assume now that pW is a proper ideal of W and that W * V , and take an element
w ∈ W − V . Since V is a valuation domain and p is its maximal ideal, it follows
w−1 ∈ p. Then, 1 = w−1w ∈ pW , against the fact that pW 6= W . This proves that,
if pW 6= W , then W ⊆ V . The conclusion is now clear. �

(15.40) Proposition. Let K be a field and let T be an indeterminate over K.
Then, Zar(K(T )|K)− {K(T )} is an irredundant representation of K.

Proof. By (15.1c), we have

Zar(K(T )|K) = Zar(K(T )|K[T ]) ∪ {K[T−1](T−1)}.
It immediately follows that K[T−1](T−1) is irredundant in Zar(K(T )|K). Now, take
any irreducible polynomial f := a0 + . . .+anT

n ∈ K[T ] (where an 6= 0), and consider

the valuation domain V := K[T ](f). Clearly,
1

f
∈ K[T ](g), for any irreducible

polynomial g ∈ K[T ] such that (g) 6= (f). Furthermore

1

f
=

T−n

a0T−n + . . .+ an
∈ K[T−1](T−1),

proving that
1

f
∈
⋂
{W : W ∈ Zar(K(T )|K),W 6= V } −K. The conclusion is now

clear. �

We now provide an example of a vacant domain that is not Prüfer.

(15.41) Example. Let K be a field, let T, U be indeterminates over K, consider
the valuation domain V := K(T )[U ](U) and let π : V −→ K(T ) be the canonical
projection (of V onto its residue field). In view of (4.2) and that (4.8), the ring
D := π−1(K) = K+UK(T )[U ](U) is a local domain and, since m := UK(T )[U ](U) is
a common prime ideal of V and D, V is a valuation overring of D, by (8.1). In view of
(8.3), D is not a valuation domain, and thus it is not a Prüfer domain. Now, note that
D is integrally closed. Indeed, by (15.40) and (8.2), {π−1(V ′) : V ′ ∈ Zar(K(T )|K)}
is a representation of D. Moreover, note that (m : m) = V , by (15.38d), and thus,
keeping in mind (15.39), any valuation overring of D is comparable with V . It
follows that, if Γ ⊆ Zar(K(T, U)|D) is any representation of D that is closed in the
inverse topology, then Γ′ := {W ∈ Γ : W ⊆ V } is nonempty, contains V (being
Γ closed under generizations) and it is a representation of D. In view of (8.3),
Γ′′ := {π(W ) : W ∈ Γ′} ⊆ Zar(K(T )|K) is a representation of K. Furthermore,
Γ′′ = Zar(K(T )|K), again by (15.40). By applying (8.3), we easily infer that Γ′ =
{W ∈ Zar(K(T, U)|D) : W ⊆ V }. Since V is a DVR and any valuation overring of
D is comparable with V , it immediately follows that Γ = Zar(K(T, U)|D). Thus,
by (15.34), D is vacant.
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(15.42) Remark. (a) Let D be an integral domain such that any valuation
overring of D is essential. Then D is a Prüfer domain. As a matter of fact,
let m be a maximal ideal of D and let V be a valuation overring of D such
that V dominates Dm (see (12.3)). By assumption, V = Dp for some prime
ideal p of D. It immediately follows m = p, and thus Dm is a valuation
domain.

(b) By part (a) and (15.34), any vacant domain that is not a Prüfer domain
admits a critical valuation overring that is not essential. Thus, in general, for
an integral domain D, the inclusion

V(D) := {essential valuation overrings of D} ⊆ {critical valuation overrings of D}

proved in (15.31) can be proper. In the following, we will study a class of
integrally closed domains for which the converse of (15.31) holds.

(15.43) Definition. Let D be an integral domain. We say that D is a PvMD if
Dm is a valuation domain, for any t-maximal ideal m of D.

(15.44) Remark. (1) Any PvMD is always essential, in view of (15.15c). In
particular, any PvMD has at most one strongly irredundant representation
consisting of valuation overrings (see (15.32)).

(2) Any Prüfer domain is a PvMD, by (15.17). We will give examples of PvMDs
that are not Prüfer.

(15.45) Proposition ([13, Proposition 2.9]). Let D be an integral domain and let
∗ be a star operation of finite type on D. Then Spec∗(D) is closed in Spec(D), with
respect to the constructible topology.

Proof. Let U be an ultrafilter on X := Spec∗(D) and let

p := XU := {d ∈ D : V (d) ∩X ∈ U }.

By (10.10), it is enough to show that p is a ∗-prime ideal. Take an element x ∈ p∗.
Since ∗ is of finite type, there exists a finitely generated ideal a ⊆ p of D such that
x ∈ a∗. Since a is finitely generated, we have V (a) ∩X ∈ U and, since X consists
of ∗-ideals, V (a) ∩ X = V (a∗) ∩ X ⊆ V (x) ∩ X. Hence, V (x) ∩ X ∈ U , that is,
x ∈ p. �

(15.46) Remark. Let D be an integral domain.

(a) E(D) is closed under generizations. Indeed, if p ∈ E(D) and q ⊆ p, then
Dq ⊇ Dp and thus Dq is a valuation domain, since Dp is.

(b) If δ is the domination map of D and V(D) is the collection of the essential
valuation overrings of D, then V(D) = δ−1(E(D)). The inclusion ⊆ is trivial.
Conversely, let V ∈ δ−1(E(D)) and let p := mV ∩ D. It follows that V
dominates Dp and then, by (12.2), V = Dp, since p is essential.

(15.47) Theorem ([5, Theorem 2.4]). Let D be an integral domain. Then, the
following conditions are equivalent.

(i) D is a PvMD.
(ii) D is an essential domain and admits an essential representation V such that

{mV ∩D : V ∈ V}
c
⊆ E(D)
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Proof. (i)=⇒(ii). We know, by definition, that {Dm : m ∈ Maxt(D)} is an essential
representation of D. If p is any t-prime ideal of D, let m be a t-maximal ideal of
D such that p ⊆ m. Then, Dp is a valuation domain, being it an overring of the
valuation domain Dm. We infer that V := {Dp : p ∈ Spect(D)} is an essential
representation of D and, by (15.45),

{mV ∩D : V ∈ V}
c

= Spect(D)
c

= Spect(D) ⊆ E(D).

(ii)=⇒(i). Assume that V is an essential representation of D and that

{mV ∩D : V ∈ V}
c
⊆ E(D).

If m is any t-maximal ideal of D, there exists a prime ideal p ∈ {mV ∩D : V ∈ V}
c

such that m ⊆ p, by (15.6) and (15.20). Since p ∈ E(D), by assumption, Dp is a
valuation domain and thus Dm is a valuation domain too, being Dp ⊆ Dm. The
conclusion follows. �

(15.48) Proposition. Any essential prime ideal of an integral domain is a t-prime
ideal.

Proof. Let p be an essential prime ideal of an integral domain D, that is, Dp is
a valuation domain, and take an element x ∈ pt. Take a finitely generated ideal
a ⊆ p of D such that x ∈ at. Since Dp is valuation domain, the ideal aDp of Dp is
principal, say aDp = αDp, for some α ∈ a. Then, since a is finitely generated, there
is an element s ∈ D − p such that sa ⊆ αD. It follows sat ⊆ αD ⊆ a ⊆ p, and thus
sx ∈ sat ⊆ p. Finally x ∈ p, since s ∈ D − p. �

(15.49) Corollary ([5, Corollary 2.6]). Let D be an integral domain. The following
conditions are equivalent.

(i) D is a PvMD.
(ii) D is essential and E(D) is closed in Spec(D), with respect to the inverse

topology.
(iii) D is essential and E(D) is closed in Spec(D), with respect to the con-

structible topology.

Proof. (i)=⇒(ii). By assumption, D is essential. By the proof of (15.47,(i)=⇒(ii)),

V := {Dp : p ∈ Spect(D)}
is an essential representation of D. Thus, keeping in mind (15.48), E(D) = Spect(D).
The conclusion follows by (15.45) and (15.6).

(ii)=⇒(iii) is trivial, since the inverse topology is coarser than the constructible
topology, by (13.14).

(iii)=⇒(i). We know that V := {Dp : p ∈ E(D)} is an essential representation of
D. Since E(D) is closed in the constructible topology, it suffices to apply condition
(ii) of (15.47). �

(15.50) Proposition. Let D be an integral domain with quotient field K. Then,
the domination map δ : Zar(K|D)inv −→ Spec(D)inv, is continuous. Moreover,
δ : Zar(K|D)patch −→ Spec(D)const is continuous and closed.

Proof. Keeping in mind the proof of (12.6), we have δ−1(D(d)) = B(d−1), for each
element d ∈ D − {0}. It follows that the inverse image of an open and compact
subspace of Spec(D) is open and compact in Zar(K|A). The conclusion follows, by
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definition. For the last part, keep in mind that a continuous map from a compact
space to a Hausdorff space is closed. �

(15.51) Remark. Let D be a PvMD with quotient field K. Keeping in mind
(15.46) and (15.48), the set V(D) of essential valuation overrings of D is

V(D) = {Dp : p ∈ Spect(D)}.

By (15.50), the domination map δ : Zar(K|D)patch −→ Spec(D)cons restricts to a
continuous bijection δV := δ|V(D) : V(D) −→ Spect(D) (with respect to the subspace
topologies induced by the patch topologies). Since δ is closed, it is not hard to
infer that δV is a homeomorphism. In particular, the space Min(V(D)) of minimal
elements of V(D) is homeomorphic to Maxt(D). Keeping in mind (14.16) and the
fact that Maxt(D) is the minimal space of Spect(D), with respect to the inverse
topology, it follows that Min(V(D)) and Maxt(D) are homeomorphic, via δ, with
respect to the subspace inverse topology.

(15.52) Corollary ([14, Lemma 6.3]). Let D be an integral domain. Then, the
following conditions are equivalent.

(i) D is a PvMD.
(ii) D is essential and every critical valuation overring of D is essential.

Proof. (i)=⇒(ii). D is essential, being it a PvMD. Thus, by (15.46b), (15.49) and
(15.50), it follows that the collection V(D) forms a closed representation of D in
the space of valuation overrings of D, endowed with the inverse topology. Then, by
definition, any critical valuation overring of D is essential.

(ii)=⇒(i). By assumption, V(D) is a representation of D. Moreover, in view of
(15.31), V(D) is precisely the set of all critical valuation overrings of D; thus it
is closed in the inverse topology and, a fortiori, in the patch topology. Since the
domination map δ is closed, with respect to the patch topology (see (15.50)), then
(15.46b) implies that E(D) is closed in Spec(D)cons. The conclusion follows from
(15.49). �

(15.53) Theorem ([14, Theorem 6.4]). Let D be a PvMD, let V be a valuation
overring of D and let p be the center of V in D. Then, the following conditions are
equivalent.

(i) V is strongly irredundant in some representation of D (consisting of valua-
tion overrings of D).

(ii) V = Dp, p ∈ Maxt(D) and p is isolated in Maxt(D), endowed with the
subspace topology induced by the inverse (or the patch) topology.

Proof. First, note that, since any PvMD is essential, then D is intersection of all
critical valuation overrings, by (15.31). Thus, in view of (14.33), Zar(K|D) contains
a unique minimal closed representation of D, in the inverse topology. Let C :=
C (Zar(K|D)) denote the space consisting of minimal critical valuation overrings of
D. By (15.31) and (15.52), C = Min(V(D)).

(i)=⇒(ii). If V is strongly irredundant in some representation of D, then V ∈ C ,
by (14.33a), and p ∈ Maxt(D), by (15.51). Moreover V is strongly irredundant
in C (14.33b), and thus isolated in C , by (14.21), since C is the uniquel minimal
representation of D. Since C is homeomorphic to Maxt(D), by (15.51), it follows
that p is isolated in Maxt(D).
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(ii)=⇒(i). Again by (15.51) we infer that V is isolated in C . By (14.21), V is
strongly irredundant in C . �
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