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NOTATION AND CONVENTIONS.

Let X be a set and F be a collection of subsets of X. Then the union (resp., the
intersection) of the members of X will be often denoted simply by | F (resp., [ F).

Any ring is assumed to be commutative with 1 # 0. Any ring homomorphism
f A — B sends, by definition, the multiplicative identity of A to that of B.
If Ais a ring and a is an ideal of A, we will denote by va := {x € A : 2" €
a, for some positive integer 7} the radical of a. An ideal a is radical if a = /a. If
ai,...,a, € A, we will denote by (ay,...,a,)A the ideal generated by a4, ..., a,. Set
Spec(A) := {prime ideals of A}, Max(A) := {maximal ideals of A}. We assume the
convention that any prime ideal is a proper ideal. Of course, we have Max(A) C
Spec(A). It is well known that, for any ideal a of A, then

Va=("){p € Spec(A4) : p 2 a}

Let A C B be aring extension. Recall that B is finite over A if B is finitely generated
as an A-module. We say that B is of finite type over A if B = A[by, ..., b,], for some
bi,....,b, € B. If B is of finite type over A, say B = Alby,...,b,] and by,..., b, are
integral over A, then B is integral over A.



1. HILBERT’S NULLSTELLENSATZ.

In the following, K is any field, 7}, ...,T, are indeterminates over K and A% is
the n-dimensional affine space over K.

(1.1) Definition. If S is any subset of the polynomial ring K[Ti,...,T,], the zero
set of S s the following subset

Z(S):={pe Al : f(p)=0,forany f € S}

of A%. We say that a subset X of A% is algebraic if X = Z(S5), for some S C
K[Ty,...,T,].
(1.2) Remark. Take subsets S, S" of K[T1,...,T,].

(a) If S C 9§, then Z(S) D Z(5").

(b) If a is the ideal of K[T7,...,T,] generated by S, then Z(S) = Z(a).

(c) For any ideal a of K|[T,...,T,] we have Z(a) = Z(y/a).
Part (a) is trivial. (b): since S C a we have, by part (a), Z(S) 2 Z(a). Conversely,
take a point p € Z(S) and a polynomial f € a. By definition, there are polynomials
fi,eoofm € K[Th, ..., T,), s1,...,8, € S such that f =Y ", s;f;. Since p € Z(95)
we have s;(p) =0, for 1 <i < m, and thus f(p) =0. (c): by part (a), the inclusion
a C v/a implies Z(a) O Z(y/a). Take now a point p € Z(a) and a polynomial
f € va, and let r be a positive integer such that f € a. Since p € Z(a) we have
(f")(p) == (f(p))" = 0, that is, f(p) = 0.

We observe now that any algebraic set is the zero set of a finite collection of
polynomials.

(1.3) Remark. Let X be an algebraic subset of A%. Then there are polynomials
f17 ey fm S K[Th .. 7Tn] such that X = Z({f17 . fm})

Indeed, by definition X = Z(S) for some subset S of K[T1,...,T,]. On the other
hand, X = Z(a), where a is the ideal of K[T7,...,T,] generated by S, by (1.2p).
Since K|[T1,...,T,] is a Noetherian ring, the ideal a is finitely generated, say by
Fuv- s fone Thus X = Z({fy, ., fu}), again by (L2).

(1.4) Definition. Let X be any subset of A'. Then the following subset
I(X):={feKT,..,T,]: f(p) =0, foranyp e X}
is an ideal of K[T1,...,T,], called the ideal of X.

(1.5) Remark. Take a subset X C A}.

(a) I(X) is a radical ideal of K[T7y,...,T,].

(b) If X is algebraic, then X = Z(I(X)).
(a): take a polynomial f € /I(X) and a positive integer r such that f" € I(X). For
any point p € X we have (f(p))” = 0, that is, f(p) = 0. In other words, f € I(X).

(b): Let a be an ideal of K[T,...,T,] such that X = Z(a). The obvious inclusion
a C I(Z(a)) and (1.2h) imply Z(a) 2 Z(I(Z(a))). Conversely, take a point p € Z(a)
and a polynomial f € I(Z(a)). By definition, any point of Z(a) is a zero of f and,
in particular, f(p) = 0.

(1.6) Remark. For any ideal a of K[T},...,T,], then v/a C I(Z(a)). The trivial
proof is left to the reader. Note that the inclusion /a C I(Z(a)) may be strict.
Indeed, if n:=1, K := R and a := (7% + 1)R[T], then a is a maximal ideal of R|[T]
and, in particular, it is a radical ideal. Thus a = v/a C I(Z(a)) = I(0) = R[T].



The statement of (1.6 is much more precise when K is algebraically closed.

(1.7) Theorem (Hilbert’s Nullstellensatz). If K is an algebraically closed field
and a is an ideal of K[Ty,...,T,], then va = 1(Z(a)).

First, we give an immediate corollary of Hilbert’s Nullstellensatz.

(1.8) Corollary. Let K be an algebraically closed field and define the map
W {algebraic subsets of A} — {radical ideals of K[1,...,T,]}
by setting (X)) := I(X). Then v is a order reversing bijection.

Proof. Apply (1.5b) and (1.7)). O

Before giving a proof of Hilbert’s Nullstellensatz, we now note that this very
famous and powerful statement admits several equivalent forms.

(1.9) Proposition. The following conditions are equivalent.

(i) Hilbert’s Nullstellensatz holds.
(i) If K is an algebraically closed field, then

Max(K|[Ty,...,T,)) ={(Th —a1,..., T, —a,)K[T1,...,T,] : a1, ...,a, € K}.

(iii) If K is an algebraically closed field and a is a proper ideal of K[Ty,...,T,],
then Z(a) # 0.

Proof. (i) = (ii). The inclusion D is an exercise. Let m be a maximal ideal of
K[Ty,...,T,]. Being m, in particular, a radical ideal, by statement (i) we have
m = I[(Z(m)) and thus Z(m) is nonempty (otherwise m = I(0) = KI[T1,...,T,)).
Take a point (aq,...,a,) € Z(m). We claim that T; —a; € m, for 1 < i < n. If
not, there is an index i such that 7; — a; ¢ m and thus m + (T; — a;) K[T4, ..., T,] =
K[Ty,...,T,], since m is maximal. It would follow that there are polynomials m €
m, f € K[T,...,T,] such that 1 = m + (T; — a;)f. Since (ay,...,a,) € Z(m), we
have 1 = m(ay,...,a,)+ (a; —a;) f(a1, .. .,a,) = 0, a contradiction. This proves that
T, —a; € m, for 1 <i <mn,thatis, n:= (T} —ay,...,T, —a,) C m. Since nis a
maximal ideal, it follows m = n.

(ii) = (iii). Take a proper ideal a of K[T},...,T,] and let m be a maximal ideal
of K[Ty,...,T,] containing a. By (ii), there are elements ay,...,a, € K such that
m=(Ty—a,...,T,—a,)K[T},...,T,) and clearly, by (L.2h), we have (ai,...,a,) €
Z(m) C Z(a).

(iil) = (i). Take any ideal a of K[T3,...,T,]. By (L.€]), we have to show that
I(Z(a)) € y/a. Take a nonzero polynomial f € I(Z(a))) and consider the ring
inclusion K[Ty,...,T,] € B := K|[11,...,T,,U], where U is a new indeterminate
over K. Let b be the ideal of B generated by a and the polynomial Uf — 1. We
claim that the subset Z(b) of A% is empty. We argue by contradiction, and pick
a point p := (a,...,a,,a) € Z(b). Since Uf — 1 € b, we have af(ay,...,a,) —

= 0. Moreover, since a C b, we have g(ay,...,a,) = 0, for any g € a, that is,
(a1,...,a,) € Z(a). Since f € I(Z(a)) it follows f(ay,...,a,) = 0 and thus the
equality af(a,...,a,) —1 = 0 implies —1 = 0, a contradiction. This argument

proves that Z(b) = (). Thus, applying condition (iii) to the algebraically closed field
K and to the ideal b of the polynomial ring B we have b = B. Pick polynomials
Tiy..,Th,S € B, f1,..., fn € a such that 1 = Z?:l rifi +s(Uf — 1), and consider
the ring homomorphism ¢ : B — K(T7,...,T,) such that T; — T;, for 1 <i < n,



Uwrs f~' and k + k, for any k € K. Thus, in particular, ¢ is the identity on
K[Ty,...,T,]. Then we have
h h h
1= o(r)d(f)+6(s)(@(U)e(f)—1) = > o(ri) fitd(s)(f T f=1) =D _d(ri)fi (%)
i=1 i=1 i=1

Moreover we have

o(ri) = d(ri(Ty, .., To,U)) =r(Th, .., To, f1) = fp_m

for some py,...,pn € K[T4,...,T,] and some m; € N. Thus (x) is equivalent to

h
1 = Z f"l% fi and, if m = max{my,...,m;}, we get, by multiplying both sides
i=1

h
for f™, the equality f™ = Zﬁ’fl’ for some py,...,pn € K[Ty,...,T,], that is
i=1

f €. O

1.1. G-ideals and Hilbert rings: toward a proof of Hilbert’s Nullstellesatz.
We will present a proof of Hilbert’s Nullstellensatz due to Goldman and Krull. It
is based on the notions of independent interest, that of G-ideal and Hilbert ring.
Thus, these notions will be central in the next step of our investigation.

(1.10) Definition. Let A be a ring and let p € Spec(A). We say that p is a G-ideal
of A if p is not the intersection of a family of prime ideals which are strictly bigger
than p.

For example, any maximal ideal of a ring is a G-ideal.

(1.11) Lemma. Let K be a field. Then, the polynomial ring K[T| has infinitely
many monic and irredicible polynomials. In particular, Spec(K[T]) is infinite.

Proof. We argue by contradiction. Assume that the set

Y. := {monic and irredicible polynomials of K[T|}

is finite, say ¥ = {fo =T, f1,..., fu}, and set f := 1+ Tfifo...fn. Then f is
monic and deg(f) > deg(f;), for 0 < i < n. It follows that f ¢ X, that is, f is
reducible. Since K[T] is a UFD, f has at least an irreducible factor g, and we can
clearly assume that g is monic. Then g = f;, for some 0 < ¢ < n. Since g divides
both f and T'f;...f,, it follows that g divides 1, a contradiction.

To prove the last statement note that, for an f € ¥, fK[T] is a maximal ideal
of K[T]. Moreover, if f,g € ¥ and fK[T] = gK|[T], then f = g. The conclusion
follows since X is infinite. OJ

(1.12) Proposition. For any integral domain D, (0) is not a G-ideal of the poly-
nomial ring D[T].

Proof. First, we prove the following fact.

Claim. If K is a field, then (0) = ({m:m € Max(K[T])}. Indeed, by (L.11)), if
f € m, for any mMax(K[T]), then f would admit infinitely many irreducible factors,
against the fact that K [T is a UFD.

Now we can prove the proposition. Let K be the quotient field of D, and let m be
a maximal ideal of K[T|. Then m is generated by an irreducible polynomial f. Since



K is the quotient field of D, there is a nonzero element d € D such that df € D[T]
(and clearly df € m). It follows that {m N D[T] : m € Max(K[T])} is a collection of
nonzero prime ideals of D[T]. Then, by the Claim,

N @nprh=( () wnD]=(0).
meMax(K|[T]) meMax(K[T])

The proof is now complete. 0

(1.13) Definition. An integral domain D is called a G-domain if (0) is a G-ideal
of D.

(1.14) Example. (1) Any field is a G-domain (because (0) is a maximal ideal).
(2) By (1.12)), for any integral domain D, the polynomial ring D[T] is not a
G-domain.

(1.15) Remark. Let A be a ring and p € Spec(A4). For any q € Spec(A), with
q 2 p, let § denote the prime ideal of the integral domain A/p corresponding to g.
Then

p is a G-ideal of A

)
[{a € Spec(A) :q 2p} 2p
)
({4 € Spec(A/p)) : 7 25} 2 (0)
)
A/p is a G-domain

(1.16) Proposition. Let D be an integral domain and K be the quotient field of
D. Then, the following conditions are equivalent.

(i) D is a G-domain.
(ii) There exists a nonzero element o € D such that K = D[a™"].
(iii) There exists a nonzero element x € K such that K = D][z].
(iv) K is of finite type over D.
Proof. (i) = (ii). By definition, there is a nonzero element « € D such that « € p,
for any nonzero prime ideal p of D. Fix any element z € K, say z = %, for some
a,b € D,b+# 0. Then, clearly

a € {p €Spec(D) : p #(0)} S [{p € Spec(D) : b € p} = VD,
and thus there is a positive integer r and an element d € D such that a” = bd, that

d d
is, b = —. Then, z = % =2c Dla™1].

a
(iii) = (i). Suppose there is an element x := % (a,b € D,b # 0) such that

K = Dix], let p be any nonzero prime ideal of D and let y € p — (0). By definition,
there are suitable dp,...,d, € D such that y=! = Zdi%' The last equality is
i=0

equivalent to the following:

y I = dob" + dyab™ 4+ dpa = 2



and finally 0™ = yz € p. Since p is a prime ideal, it follows b € p. Thus b € ({p €
Spec(D) : p # (0)}.

The equivalence of (i) and (iv) is left to the reader as an exercise. O
We recall now the following well known fact.

(1.17) Proposition. Let A be a ring, S be a multiplicative subset of A and let a be
an ideal of A such that anNS = . Then the following statements hold.
(a) The collection of ideals ¥ := {b : b is an ideal of A,b D a,b NS = (0} has
maximal elements, under inclusion.
(b) Any mazximal element of ¥ is a prime ideal of A.

(1.18) Lemma. Let A be a ring and let a be an ideal of A. Then
Va= ﬂ{p :p is a G-ideal of A,p D a}

Proof. The inclusion C is trivial. Then, it suffices to show that, if u € A —+/a, then
there is a G-ideal p of A such that p D a and u ¢ p. Take an element u € A — /a
and consider the multiplicative subset S := {1,u™ : n > 1} of A. Then SNa = 0.
By , there is a prime ideal p of A which is maximal in the family of ideals
Y :={b: bisanideal of A;b D a,b NS = (I}, partially ordered by inclusion. In
particular, p 2 a, pN S = () and thus v ¢ p. Now, let q any prime ideal of A
such that q¢ 2 p . By maximality of p, we have q ¢ X, and since q clearly contains
a, we infer that S N q # (). By primality of q it follows u € q. This proves that
u € ({q € Spec(A) : q 2 p} — p, that is, p is a G-ideal. The proof is now
complete. [

(1.19) Definition. We say that a ring A is a Hilbert ring if any G-ideal of A is
maximal.

(1.20) Example. For any field K, the polynomial ring K[T] is a Hilbert ring.
Indeed, the unique non maximal prime ideal of K[T] is (0), and it is not a G-ideal,

by (1.12).
(1.21) Proposition. Let A be a ring. Then, the following conditions are equivalent.
(i) A is a Hilbert ring.
(ii) For any ideal a of A, v/a is an intersection of mazimal ideals of A.
Proof. (i)==(ii). Apply (L.18).
(ii))==(i). Let p be a non maximal prime ideal of A. By (ii), there is a set Y of

maximal ideals of A such that p = (){m:m € Y}. Since p is not a maximal ideal,
we must have p C m, for any m € Y, and thus p is not a G-ideal. 0J

We recall now the following well-known fact concerning integral dependence.

(1.22) Proposition. Let A C B an integral extension of integral domains. Then
A is a field if and only if B is a field.

(1.23) Lemma. Let A C B be an extension of integral domains such that B = Alt],
for some element t € B which is algebraic over A. Then A is a G-domain if and
only if B is a G-domain.

Proof. Let K (resp., L) be the quotient field of A (resp., B). Then it is straightfor-
ward that L = Kt| and clearly L is algebraic over K.



(<). Suppose that B is a G-domain. By , there is an element ¢ € B
such that L = B[c™!] = Alt,c™!]. Clearly, ¢! is algebraic over A, and thus we
can pick nonzero polynomials f,g € A[T] such that f(c™') = 0 and g(t) = 0. Let
a (resp., b) be the leading coefficient of f (resp., ¢g), and consider the ring A=
Ala=,b7']. Then, the elements ¢! ¢ are integral over A: indeed, the polynomials
f=a"'f ¢ :=0b"'g € A[T] are monic and clearly f'(c™!) = ¢/(t) = 0. It follows
that the field L = ﬁ[c‘l, t] is integral over A. Thus, by , A is a field and, since
clearly A is a field between A and the quotient field K of A, we have A = K. This
proves that K is of finite type over A, and thus, in view of , A is a G-domain.

(=). Suppose now that A is a G-domain and, by , take a nonzero element
a € A such that K = Ala™!]. Then L = K[t] = Ala™!,#] = Bla™!]. Again by (L.16),
B is a G-domain. O

(1.24) Lemma. Let A be a ring and let q be a G-ideal of the polynomial ring A[T.
Then qN A is a G-ideal of A.

Proof. If p := AN q, then clearly p[T] C g. By and (1.12), A[T]/q is a G-
domain and A[T]/p[T] = (A/p)[T] is not a G-domain. It follows that p[T] C q.
Consider now the extension of integral domains D := A/p C E := A[T]/q (we can
identify D as a subring of E via the ring embedding a + p — a + q, for any a € A).
If t := T + q is the class of T" modulo the ideal g, then it is immediately seen that
E = A[t]. In view of and (L.15), it is enough to show that ¢ is algebraic over
A. Since p[T] C q, we can pick a polynomial f € q — p[T]. Then, the canonical
image f € D[T] = A[T]/p[T] of f is nonzero. We immediately get f(t) = 0. The
proof is now complete. O

(1.25) Lemma. Let A be a ring and let p be a G-ideal of A. Then, there exists a
mazimal ideal m of the polynomial ring A[T] such that mN A = p.

Proof. By definition, the integral domain D := A/p is a G-domain and thus, by
, the quotient field of of D is D[d!], for some d € D, d # 0. It follows that
the kernel n of the canonical surjective ring homomorphism 7 : D[T] — D|[d™!],
f(T) — f(d™') is a maximal ideal of D[T]. Since the canonical ring homomorphism
¢ : A[T] — DIT] is surjective, we infer that m := ¢~'(n) is a maximal ideal of
A[T] and clearly m D p[T]. It follows m N A D p[T] N A = p. Take now an element
r € mN A. By definition, p(z) :=z+p € DNn = (0), that is, z € p. O
(1.26) Theorem. Let A be a ring and let p € Spec(A). Then, the following condi-
tions are equivalent.

(i) p is a G-ideal of A.

(ii) There exists a mazimal ideal of the polynomial ring A[T] such that mNA = p.

(iii) There ezists a G-ideal q of the polynomial ring A[T| such that qN A = p.

Proof. Apply ([24) and (T25). O

Exercise. Let f: A — B be a surjective ring homomorphism.

(1) If A is a Hilbert ring, then B is a Hilbert ring.
(2) If q is a prime ideal of B such that f~'(q) is a G-ideal of A, then q is a
G-ideal of B.

(1.27) Proposition. Let A be a ring and T' be an indeterminate over A. Then A
is a Hilbert ring if and only if A[T| is a Hilbert ring. Furthermore, if A is a Hilbert



ring and q is any mazximal ideal of A[T] and m := ANq, then q is generated by m
and by a polynomial f € A[T] whose canonical image in (A/m)[T] is irreducible.

Proof. By the first part of the previous exercise it follows that if A[T] is a Hilbert
ring, then A is a Hilbert ring. Thus, assume that A is a Hilbert ring and take any
G-ideal q of A[T]. We have to show that q is a maximal ideal of A[T]. By
and the fact that A is a Hilbert ring, m := qN A is a maximal ideal of A. Consider
the canonical ring homomorphism 7 : A[T] — K|[T], where K := A/m, and note
that ¢ O m[T] = Ker(w). Then, there exists a unique prime ideal q of K[T] such
that 771(q) = q. By the second part of the previous exercise and the fact that KT
is a Hilbert ring (see ((1.20)), q is a maximal ideal of K[T)], that is, § = fK[T],
where f € A[T] and the canonical image f in K[T] is irreducible. It follows that g
is a maximal ideal of A[T| (being it the inverse image of a maximal ideal, namely
q, under a surjective ring homomorphism) and moreover q is generated by m and f.
The proof is now complete. 0

(1.28) Corollary. Let K be a field and Th, ..., T, be indeterminates over K. Then
K[Th,...,T,] is a Hilbert ring.

Proof. 1t is enough to apply ([1.27)) and induction, keeping in mind that any field is
a Hilbert ring. O

We can now prove Hilbert’s Nullstellensatz (precisely, the equivalent form (ii) of it
given in ([1.9))).

(1.29) Theorem. Let K be an algebraically closed field. Then
MaX(K[Tl, o ,Tn]) = {(Tl — A1, .., Tn — an)K[Tl, .. ,Tn] A1y, 0y € K}

Proof. The inclusion D is an easy exercise. We prove the converse inclusion by
induction of the number n of the indeterminates over K. If n = 1, the maximal
ideals of the PID KT are principal generated by the monic irreducible polynomials
over K and, since K is algebraically closed, such polynomials are linear. Suppose
n > 1 and assume that

MaX(K[Tl, .. .,Tn]) = {(Tl —day, .. .,Tn — CLn)K[Tl, .. ,Tn] 1Ay, ..., 0y € K}

Let m be a maximal ideal of the polynomial ring K[T,...,T,,T]. Since A :=
K[Ty,...,T,] is a Hilbert domain, then m N A is a maximal ideal of A, by (1.24).
By inductive assumption, mN A = (11 — ay, ..., T, — a,)A, for some ay,...,a, € K.
Furthermore, by (1.27), m is generated by mNA and by a polynomial f € A[T] whose
canonical image in (A/(m N A))[T] is irreducible. Since clearly A/(m N A) = K is
algebraically closed, a suitable polynomial f can be choosen of the type f :=T —a,
for some a € K. The proof is now complete. O

(1.30) Remark. Let K be an algebraically closed field. From the previous version
of Hilbert’s Nullstellensatz it immediately follows that the map

¢ A — Max(K([T1,...,T,])
(CLl, .. .,an) —> (T1 —ay,.. .,Tn — an>K[T1, .. -»Tn]

is a bijection. We will see soon that this map is a homeomorphism of topolog-
ical spaces too. To do this we need to define natural topologies on A% and on
Max(K [T, ...,T,]). This motivates the next section.



2. THE ZARISKI TOPOLOGY ON THE AFFINE SPACE A}

As in the previous section, K is a field and 17, ..., T,, are indeterminates over K.
Through these notes, we assume the usual convention that any topological space is
nonempty. The closure of a subset Y of a topological space X will be denoted, as
usual, by Y.

(2.1) Proposition. The algebraic subsets of A% are the closed sets for a topology
on A%.. This topology is called the Zariski topology.

Proof. Keeping in mind ), is sufficient to note that

(1) Z({0}) = A}, Z({1}) = 0,

(2) Z(anb) = Z(a) U Z(b), for any pair of ideals a, b of K[T7,...,T,];

(3) Z(Uies @) = Nes Z(a;), for any collection of ideals {a; : ¢ € I'} of K[T7,...,T,].
Statement (1) is trivial. In view of (L.2h), it is enough to show that Z(a Nb) C
Z(a)N Z(b) and that (;c; Z(a;) € Z(U,e; @i)-

Take an element p € Z(anb). If p ¢ Z(a)UZ(b), there are polynomials f € a,g € b
such that f(p), g(p) # 0. Clearly, the polynomial fg € anb and fg(p) # 0, agaist
the fact that p € Z(aNb).

Take an element p € (,.; Z(a;), and let f € (J,c; a;. Then, f € aj, for some j € 1
and since, in particular, p € Z(a;), we have f(p) = 0. O

(2.2) Remark. Let K be a field.

(a) A% is a Ty space (that is, any singleton is a closed set). As a matter of fact,
for any p = (aq,...,a,) € A%, we have {p} = Z({T\ —a1,...,T,, — an}).

(b) Al has the cofinite topology. Indeed, let C' be a proper closed subset of AL-.
Then, keeping in mind that K[T] is a PID, there is a nonzero polynomial
f € K[T] such that C = Z(fKI[T]) = Z({f}). Thus C is finite since any
nonzero polynomial in one indeterminate over a field has finitely many roots.

(c) The collection of the open sets of A of the form Dy := A% — Z({f}), for any
f € K[Ty,...,T,], is a basis of the Zariski topology. As a matter of fact, let
2 C A be an open set and let p € €. Since 2 = A — V(a) for some ideal
a of K[T,...,T,], there is a polynomial f € a such that f(p) # 0. It follows
pE Df g Q.

(2.3) Definition. A topological space is called to be Noetherian if any countable
ascending chain of open sets stabilizes (or, equivalently, if any countable descending
chain of closed sets stabilizes).

(2.4) Remark. Let X be a topological space.

(a) Then is Noetherian if and only if any nonempty collection of closed subsets of
X has a minimal element under inclusion.
(b) If X is Noetherian, then any subspace of X is Noetherian.

The easy proof is left as an exercise.

(2.5) Proposition. Let K be a field. Then A% is Noetherian, endowed with the
Zariski topology.

Proof. Let
Ci2C;,2...2C,D...
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be a descending chain of closed subsets of A.. Clearly we get the ascending chain
of radical ideals

I(Cy) CI(Cy) C...CI(Cy) C...
of the Noetherian ring K[11,...,T,]. Thus this chain stabilizes and thus there is a
positive integer i such that I(C,,) = I(C;), for any m > i. Finally, by (L.5p) we
have C,, = C;, for any m > 1. O

(2.6) Proposition. Any Noetherian space is compact.

Proof. Assume that X is a Noetherian space and let F be a nonempty collection of
closed subsets of X with the finite intersection property. Let X denote the collection
of all the intersections of finite subfamilies of F. By assumption, ¥ consists of
nonempty sets. By (2.4h), ¥ has a minimal element, say Cp, and, since ¥ is closed
under finite intersections, Cj is the minimum of . It follows immediately that

N{C:CeF)=Cy#0. 0

(2.7) Definition. A topological space X is called to be irreducible if it not a finite
union of closed proper subspaces of X (in other words, two nonempty open subsets

of X have nonempty intersection, that is, any nonempty open subset of X is dense
in X).

(2.8) Example. If K is a finite field, then A% is reducible. Indeed it can be realized
as finite union of singletons and each of them is closed, by (£2.2)).

We give now a criterion to decide when an algebraic set is irreducible (with the
subspace Zariski topology).

(2.9) Proposition. Let X be a closed subset of A%-. Then X is irreducible if and
only if the ideal 1(X) of X is a prime ideal of K[Ty,...,T,].

Proof. Assume that X is reducible and take closed proper subsets X, X5 of X such
that X; UX, = X. Keeping in mind (L.5b), for each ¢ = 1,2, we have I(X) C I(X;),
and thus there is an element f; € I(X;) — I(X). It immediately follows that the
polynomial f := fify € I(X), that is, I(X) is not a prime ideal.

Conversely, suppose that /(X)) is not a prime ideal, and take polynomials f, g €
K[Ty,...,T,] — I(X) such that fg € I(X), and take points p,q € X such that
f(p),g(q) # 0. Consider the closed subspaces C := Z({f}), D := Z({g}) of A%. It
immediately follows that X = (CNX)U(DNX) and that CNX, DN X are closed
proper subsets of X (since p € X — C,q € X — D). Thus X is reducible. O

(2.10) Corollary. Let K be an algebraically closed field. Then, the map 1 defined
m (@ restricts to a order reversing bijection

{Irreducible closed subsets of Ay} — Spec(K|[T1,...,T,])

Proof. Apply (1.8) and (2.9). O

(2.11) Lemma. Let K be an infinite field and let f € K[Ti,...,T,] be a nonzero
polynomial. Then the set A% — Z({f}) is infinite.

Proof. We can assume that f is not a constant and show the statement by induction
onn. The case n = 1 is trivial, because a nonconstant polynomial in one variable over
a field has only finitely many roots. Suppose now that n > 1 and that A% — Z({f})
is infinite, for any nonconstant polynomial f € KIT},...,T,]. Take a nonconstant
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polynomial g € KI[T3,...,T,,T]. We can clearly assume that T appears in the
expression of g, and thus we can write ¢ = ¢9 + &1 T + ... + ¢, T", where r is a
positive integer, ¢; € K[T1,...,T,], for 1 < ¢ < r and ¢, # 0. By the inductive
assumption, there are infinitely many points p € A% such that ¢,.(p) # 0, thus let
(ai,...,a,) be one of them. Then

g (T) = ¢olar,...,an) + ¢1(ay,...,a)T + ...+ ¢p(ay, ..., a,)T"

is a nonzero polynomial in one variable. Since K is infinite, there are infinitely many
elements a € K such that ¢’(a) # 0, and then A% — Z({g}) is infinite, containing

it {<a’17"‘7an7a> :g/(Oé> %O} O
(2.12) Example. Let K be a infinite field. By (2.11]), we have I(A%) = {0}. Thus,
by (2.9), A% is irreducible.

(2.13) Definition. Let X be a topological space. An irreducible subset of X which
is mazimal under inclusion is called an irreducible component of X.

(2.14) Proposition. Let X be a topological space. Then, X is union of its irre-
ducible components. In particular, X has irreducible components.

Proof. Take a point x € X. It suffices to show that there exists an irreducible
component of X containing x. Consider the collection

Y:={Y CX:zeY)Y is irreducible}

of subsets of X, partially orederd by inclusion, and note that ¥ is nonempty, because
{z} is irreducible. Let C C ¥ be a chain and let C' be the union of the sets in the
chain C. We claim that C' is irreducible. Suppose this is false, and take closed
subsets F,G C X such that C' = (FNC)U(GNC)and FNC,GNC C C. Take
points zp,rg € C such that zp ¢ F,zg ¢ G, and let Cr,Ce € C be such that
rr € Cp,xg € Cg. Since C is a chain we can assume that Cr C Cg. From the
obvious inclusions Cg € C' C F UG it follows that Cg = (F N Cg) U (G N Cg)
and, moreover, I'N Cq, G N Cq are closed proper subspaces of C¢, a contradiction,
because Cg € C C ¥ implies that Cg is irreducible. Then Zorn’s Lemma implies
that > has maximal elements and, clearly, any maximal element is an irreducible
component of X containing x. O

(2.15) Proposition. Let X be a topological space.

(a) If a subset Y of X is irreducible, then Y is irreducible too.

(b) The irreducible components of X are closed.

(c) If X is irreducible and f : X — S is a continuous surjective function of
topological spaces, then S is irreducible.

Proof. (a). Since Y is closed in X, then the closed subspaces of Y are closed in
X too. Let Cy,C5 be closed subsets of X such that Y = C; U C, and note that
Y =(C,NY)U(CynY). The subsets C; NY, i = 1,2, are closed subspaces of YV
(in the subspace topology), and, since Y is irreducible, we can assume Y = C; NY,
that is Y C Cy. Since C; is closed in X we have Y C (4, ie., Y = C.

(b). It is a trivial consequence of (a).

(c). The proof is straightforward and it is left to the reader. O

The proof of the following lemma is left to the reader.
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(2.16) Lemma. Let X be a topological space and let F be a finite collection of closed
irreducible subspaces of X such that | JF = X. Then, any irreducible component
of X belongs to F. In particular, X has only finitely many irreducible components.
Furthermore, if the members of F are pairwise incomparable, then F is the family
of all irreducible components of X.

(2.17) Proposition. Let X be a Noetherian space. Then X has only finitely many
wrreductble components.

Proof. Suppose that the statement is false. Then, the collection X of all the closed
subspaces of X having infinitely many irreducible components is nonempty and, since
X is Noetherian, > has a minimal element, say 7. In particular, 7" is reducible, and
thus there are closed proper subsets of T', say C, D such that T = C'U D (note that,
since T is closed in X, then C| D are closed in X too). By minimality we have C, D ¢
>, and thus they have only finitely many irreducible components. Let Ei,..., E,
(resp., Fpny1,- .., Ep) be the irreducible components of C' (resp., D). Then, T is the
union of the finite collection F := {F; : 1 <i < m} of closed irreducible subspaces,
and thus implies that T has only finitely many irreducible components, a
contradiction, because T € Y. The proof is now complete. Il

(2.18) Remark. Let K be an algebraically closed field, and let p be a prime ideal
of K[T1,...,T,]. Then Z(p) is irreducible. Indeed, by Hilbert’s Nullstellensatz, we
have I(Z(p)) = /P = p, and thus the conclusion follows from (2.9). As a particular
case, if f € K[T1,...,T,] is an irreducible polynomial, then the ideal p generated by
f is prime, and thus Z({f}) is irreducible.

The conclusions of the previous remark may fail when K is not algebraically
closed, as the following example shows.

(2.19) Example. Let K be a finite field, consider the irreducible polynomial f :=
T e K[T,U] and set C := Z({f}). Then clerly C = {(0,a) : a € K} is a finite
union of singletons, and thus it is reducible.

(2.20) Example. Let K be an algebraically closed field and let f € K[T},...,T,].
Suppose that f = cf" --- fir, where f" € K[T1,...,T,] is irreducible, for 1 <7 <,
c € K, and f; is not assomate with f;, for any ¢ # j. Then

Z({fy)=2{ AU . UZ{H [T

and, by (2.18)), each set Z({f;}) is irreducible. The fact that f; is not associate with
f;, for i # j, easily implies that the sets Z({f;}) are pairwise incomparable. Thus,
by [2.16), {Z({f;}) : 1 < < r} is the collection of all the irreducible components

of ZT{F}).

In the general case, i.e., when a closed set X is not the zero set of a unique
polynomial, we need further properties of Noetherian rings to find the irreducible
components of X.

(2.21) Definition. Let A be a ring and let a be a proper ideal of A. We say that a
1s irreducible if, given ideals b, ¢ of A such that a = bN¢, we have necessarily either
a=bora=rc

Clearly, any prime ideal is irreducible.
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(2.22) Proposition. Let A be a Noetherian ring. Then, any proper ideal of A is a
finite intersection of irreducible ideals of A.

Proof. If the statement is false, the set X of all the ideals of A which are not a finite
intersection of irreducible ideals of A is nonempty. Since A is Noetherian, 3 has a
maximal element, say a. Of course, a is reducible, and thus there are ideals b,¢ 2 a
such that a = b N ¢. By maximality of a, we have b, ¢ ¢ ¥, and thus each of them
is a finite intersection of irreducible ideals of A and, a fortiori, so is a. This is a
contradiction. OJ

(2.23) Definition. Let A be a ring and let a be a proper ideal of A. We say that
a is primary if, given elements x,y € A such that xy € a, then either x € a or

y € \/a.

Clearly, any prime ideal is primary.
The following remark is easy and we left it to the reader.

(2.24) Remark. Let A be a ring.

(a) If a is a primary ideal of A, then p := \/a is a prime ideal of A. We will say
that a is a p-primary ideal.

(b) If a is an ideal of A whose radical is a maximal ideal, then a is primary.

(c) If a, b are p-primary ideals, then a N b is a p-primary ideal.

(d) If a is a p-primary ideal and = € A — a, then

(a:az):={a€A:ax € a}
is a p-primary ideal of A.
(2.25) Definition. Let A be a ring and let a be a proper ideal of A.

(a) A primary decomposition of a is a finite collection of primary ideals whose
intersection is a. We say that a is decomposable if a admits a primary
decomposition.

(b) Let P := {q1,...,9n} be a primary decomposition of a. We say that P is
irredundant if, for any 1 < i < n, we have \/ﬁj # \/4;, for any j # i, and

0 2 nj;éi q;-

Keeping in mind ([2.24f) and the fact that we can omit any redundant term, we
infer that any primary decomposition of an ideal can be refined to an irredundant
primary decomposition.

(2.26) Proposition. An irreducible ideal of a Noetherian ring is primary. In par-
ticular, any proper ideal of a Noetherian ring is decomposable.

Proof. Let a be an irreducible ideal of a Noetherian ring A, and take elements
x,y € A such that xy € a. For any positive integer n, consider the ideal

a, :={a € A:ax" € a}

of A, and note that a, C a,,, for any n < m. Since A is Noetherian, there exists
a positive integer v such that a, = a,,, for any m > v. Take any element \ €
(z"A+4a) N (yA+ a). Then, there are elements «, 5 € A,i,j € a such that

A=z"a+i=yB+J.
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The previous equality implies that 2¥"'a = —iz + zyS + jz and, keeping in mind
that 2y € a, we get 2"l € a, that is, o € a,4; = a,. It follows that 2¥a € a and
thus A = x¥ + ¢ € a. This proves that

a=(z"A+a)N(yA+a),

and since a is irreducible we have either a = YA + a or a = yA + a, that is, either
x¥ € aor y € A. This shows that a is primary.
The last statement follows from the first one and ([2.22)). O

(2.27) Example. Let K be an algebraically closed field and let C' be a closed
subset of A%. We can assume that C' = Z(a) for some ideal a of K[T},...,T,].
Since K[T1,...,T,] is a Noetherian ring, the ideal a has a primary decomposition,

say a = ();_; 9;- Thus, keeping in mind (1.2c) and the proof of (2.1)), we have
C=Z(q)U...UZ(q,) =Z(Vq)U...UZ(/q,).
By (2.18)) and (2.24p), any Z(,/4;) is a closed irreducible subspace of C. Thus, by

(2.16)), any irreducible component of C' belongs to the family {Z(,/4;) : 1 <i < n}.

(2.28) Example. An ideal can have distinct irredundant primary decompositions.
For example, let K be a field let T, U be indeterminates over K, and consider the
ideal a := (T% TU)K|T,U]. If

p:=TKI[T,Ul,m:= (T,U)K[T,U],q := (T*,U)K[T, U],

then {p, m?}, {p, q} are distinct irredundant primary decompositions of a. The proof
is left to the reader.

Let A be a ring and let a be an ideal of A which admists an irredundant primary
decomposition, say P := {qi,...,q,}. We show now that the set {\/q1,...,/dn}
depends only on the ideal a and not on P. Recall the following easy and well-known
fact.

(2.29) Proposition. Let A be a ring, let F be a finite collection of ideals of A and
let p be a prime ideal of A.

(a) If p DN F, then p D a, for some a € F

(b) If p = F, then p = a, for some a € F.

(2.30) Proposition. Let A be a ring, let a be an ideal of A which admits an irre-
dundant primary decomposition P := {qi1,...,q,}. Then

{Va1, - van} = Spec(A)N{y/(a:a x):x € A}

Thus, the set of prime ideals Ass(a) := {\/q1,...,\/An} is uniquely determined by a,
and 1t 1s called the set of prime ideals associated with a.

Proof. Set p; := /q;, for © = 1,...,n, and note that, for any x € A, we have

(a:q2) = ﬂ(qz 4 X), since a = ﬂ q;. Taking radicals and keeping in mind ([2.24

i=1 i=1

and that, if z € q;, for some 7, then (q; :4 ) = A, we have \/(a :4 z) = ﬂ p;. Then,
wEq;

the inclusion {py,...,p,} 2 Spec(A)N{/(a :4 x) : x € A} follows immediately from

the previous proposition. Conversely, take a prime ideal p;; since P is irredundant,
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then ﬂqj ¢ q;, and thus there is an element x € q;, for any j # i and = ¢ q;. It
J#i
follows \/(a:4 z) = ﬂ p; =i O]
z¢q;
(2.31) Definition. Let A be a ring and let a be a proper ideal of A. The minimal

elements, under inclusion, of the set {p € Spec(A) : p D a} are called minimal
prime ideals over a .

A straightforward application of Zorn’s Lemma implies that there are minimal
prime ideals over any proper ideal of a ring. In particular, there are minimal prime
ideals (i.e., the minimal prime ideals over (0)).

(2.32) Proposition. Let A be a ring and let a be a decomposable ideal of A. Then
the minimal prime ideals of A over a are precisely the minimal elements, under
inclusion, of Ass(a). In particular, there are only finitely many prime ideals over a.

Proof. Clearly, any element of Ass(a) =: {p1,...,p,} is a prime ideal of A containing

a. Let p be a minimal prime ideal of A over a. Then p O va = ﬂ p;. By (2.29), we

have p D p;, for some i € {1,...,n}, and thus p = p;, by mlnlmahty The conclusion
is now clear. ([l

(2.33) Remark. Preserve the notation of (2.27)). By ([2.10), the minimal elements
of Ass(a) = {/@ : 1 < i < r} (ie., the minimal prime ideals over a, by (2.32))
correspond to the maximal elements of {Z(y/q;) : 1 < i < r}, that is, to the
irreducible components of Z(a).

3. THE ZARISKI TOPOLOGY ON THE PRIME SPECTRUM OF A RING.

Let A be a ring and let S be a subset of A. Define
Va(S) :=V(S) = {p € Spec(A4) : p D S}.
With a small abuse of notation, for any f € A we will write V(f) to mean V({f}).
(3.1) Proposition. Let A be a ring. Then, the subsets of Spec(A) of the form

V(S), for any S C A, form the family of the closed sets for a topology, called the
Zariski topology. Precisely, we have

(a) V(S) = V(SA) = V(VSA), for any S C A (where SA denotes the ideal of
A generated by S ).

(b) V({1}) =0 and V({0}) = Spec(A).
(¢) V(Uier Si) = Nier V(Si), for any collection {S; : i € I} of subsets of A.
(d) V(anb) =V(a)uV(b), for any ideals a,b of A.

The proof of the previous equalities is easy and it is left to the reader.

(3.2) Remark. Let A be a ring.

a) By (3.1h), any closed subset of Spec(A) is of the form V' (a), for some ideal a
of A.
(b) Moreover, again by (3.1a), the canonical map

¢ : {radical ideals of A} — {closed subsets of Spec(A)}
defined by setting ¢(a) := V(a) is a order reversing bijection.
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(c) For any nonempty subset Y of Spec(A), we have Y = V(Y). As a matter
of fact, for any p € Y we have obviously p C MY, that is p € V(NY).
Then, Y C V(NY) and, since the second set is closed, Y C V(NY). If
C' is any closed subset of Spec(A) containing Y, say C' = V(a), for some
ideal a of A, then clearly p O a, for any p € YV, that is (Y O a. It follows
C=V(a)2V(NOY).

(d) By part (c) it follows that, for any p € Spec(A), then m = V(p). In
particular, p is a maximal ideal if and only if {p} is closed.

(e) Spec(A) is a Ty space, that is, points of Spec(A) are uniquely determined by
their closure. Indeed, suppose p,q € Spec(A) and that {p} = {q}. By part
(d), this equality is equivalent to V' (p) = V(q), that is, p = q.

(f) For any f € A, set Da(f) := D(f) := Spec(A) — V(f). Then, the collection
of sets B := {D(f) : f € A} is a basis for the Zariski topology, and any set
D(f) is called a principal open subset of Spec(A). To see that B is a basis,
take any nonempty open subset Q of Spec(A) and take a point p € Q. By
definition, 2 = Spec(A) — V(a), for some ideal a of A, and thus there is an
element f € a — p. It follows immediately that p € D(f) C Q.

(g) Any irreducible closed subset of Spec(A) is of the form V(p), for some prime
ideal p of A. Indeed, by part (d) and (2.15)), V(p) is irreducible, for any
p € Spec(A). Conversely, let C' be an irreducible closed subset of Spec(A)
and let a := () C. By part (c¢) we have C' = V(a). Then, it suffices to prove
that a is prime. Take elements a,b € A such that ab € a. Then we have
immediately C' = (V(a) NC)U (V(b) N C). Since the sets V(a) NC,V(b)NC
are closed and C is irreducible, we have either C' = V(a)NC or C' = V(b)NC,
that is, either C' C V(a) or C' C V(b). In other words, either a € a or b € a.

Conversely, for any prime ideal p the set V(p) is irreducible, by part (d)
and ([2.15h).

(h) By part (g) the irreducible components of Spec(A) are precisely the sets of
the form V (p), where p is any minimal prime ideal of A.

(3.3) Proposition. Let A be a ring. Then, Spec(A) is compact.

Proof. Let A be an open cover of Spec(A). By (3.2f), we can assume that A consists
of principal open subsets of Spec(A), say A = {D(f;) : i € I}. Let a be the ideal
generated by the set {f; : i € I}. Since Spec(A) = |J A, for any maximal ideal m
of A there is some element f; such that f; ¢ m, and thus a € m. It follows that
a = A. Then, there are indexes i1,...,4, € I and elements ay,...,a, € A such
that 1 = Z;;l a;fi,. Since any prime ideal p of A is, in particular, a proper ideal,
it cannot happen that f;,..., f;, € p, and thus {D(f;;) : 1 < j < n} is a finite
subcover of A. O

(3.4) Corollary. Let A be a ring and a be an ideal of A. Then V (a) is compact.

Proof. Tt suffices to recall that any closed subspace of a compact space is compact,
and apply (B.3)). O

Recall that a continuous map f : X — Y of topological space is called to be a
topological embedding if f induces a homeomorphism of X with f(X).

(3.5) Proposition. Let f : A — B be a ring homomorphism, and consider the
map f*: Spec(B) — Spec(A) defined by f*(q) :== f~(q), for any q € Spec(B).
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(a) For any a € A we have f*~*(Da(a)) = Dp(f(a)). In particular, the map f*
s continuous and it is called the canonical continuous function induced by
the homomorphism f.

(b) If f is surjective, then f* is a closed topological embedding inducing a home-
omorphism of Spec(B) and V(Ker(f)). In particular, if n is a mazimal
ideal of B, then f*(n) is a mazimal ideal of A. In particular, we have
f*(Max(B)) = Max(A) NV (Ker(f)).

(c) If S is a multiplicative subset of A, B := Ag is the localization of A at S
and f is the canonical map (a — %, for any a € A), then f* is a topological

embedding and it induces a homeomorphism of Spec(Ag) with the subspace

{p € Spec(A) : pN S =0} of Spec(A).

Proof. (a). The equality f* '(D4(a)) = Dp(f(a)) is trivial and thus the last state-
ment follows from (3.2f).

(b). The surjectivity of f implies that f* is injective and that the equality
f*(Spec(B)) = V(Ker(f)) holds. Furthermore, for any ideal b of B, we have
f*(Vg(b)) = Va(f~1(b)), and this proves that f* is closed. For any maximal ideal
n of B, {n} is closed in Spec(B), by (3.2d), and thus f*({n}) = {f*(n)} is a closed
point of Spec(A), since f* is closed, that is, f*(n) is a maximal ideal of A.

(c). It is well known that f* is injective and that

f*(Spec(Ag)) = X := {p € Spec(A) : pN S = 0}.

Thus, it suffices to show that f* is a homeomorphism of Spec(Ag) with X. Recall
that any ideal of Ag is the extension of some ideal of A. Thus, any closed set of
Spec(Ag) is of the form Vs (aAg) for some ideal a of A. Thus the conclusion follows
from the equality f*(Va,(aAg)) = Va(a) N X, whose proof is straightforward. [

(3.6) Remark. Let A be a ring.

(a) In view of (3.5h), for any ideal a of A, the closed subspace V (a) of Spec(A)
is canonically homeomorphic to Spec(A/a), via the closed embedding 7* :
Spec(A/a) — Spec(A), where m : A — A/a is the canonical projection. In
view of (2.15¢) and (3.2h), the irreducible components of V(a) are precisely
the sets of the form V(p), where p is any minimal prime ideal over a.

(b) For any f € A, the principal open subset D(f) of Spec(A) is compact. As a
matter of fact, consider the multiplicative subset S := {1, f* : n > 1} of A.
By (3.5), Spec(Ag) is canonically homeomorphic to

{p € Spec(A) : pN S =0} = D(f).

Then, it is sufficient to apply (3.3).
(c) Let p be a prime ideal of A and, as usual, let A, denote the localization of A
at A —p. By (3.5¢), Spec(A4y) is canonically homeomorphic to

{g € Spec(4) : qN (A —p) =0} = {q € Spec(A) : g C p}.
In particular, {q € Spec(A) : ¢ C p} is compact.

The following remark will justify the reason of the name we gave to the topology
which Spec(A) is endowed with. It is strictly related to the Zariski topology on an
affine space, as we will explain now.
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(3.7) Remark. Let K be an algebraically closed field and let X be a closed subset of
A% Tf I(X) is the ideal of X, consider the factor ring I'(X) := K[T1, ..., T,|/1(X),
which is called the coordinate ring of X. We claim that Max(I'(X)), as a sub-
space of Spec(I'(X)), is canonically homeomorphic to X. By applying (3.5b) to
the canonical projection = : K[T3,...,T,] — T'(X), we infer that Max(I'(X)) is
canonically homeomorphic, via 7*, to X = Max(K|[T},...,T,]) N I(X). Now, let
p = (a1,...,a,) € A% and let m, :== (T4 — ay,..., T, — a,)K[T1,...,T,] be the
maximal ideal corresponding to p. Then clearly p € X if and only if m, D I(X). By
Hilbert’s Nullstellensatz, the map ¢ : X — X, p — m,, is a bijection. We claim
that ¢ is a homeomorphism. This follows from (2.2c), (3.2f), from the straightfor-
ward equality o' (D(f) N X) = X N Dy, for any polynomial f € K[T3,...,T,], and
from the fact that ¢ is bijective.

Note that, in view of (2.12)), if X = A’ then ¢ is precisely the map defined in
(11.30)).

(3.8) Proposition. Let A be a ring and let p € Spec(A). Then, the following
conditions are equivalent.

(i) p is a minimal prime ideal of A.

(ii) For any x € p there is an element s € A — p such that zs is nilpotent.

Proof. (i)==(ii). If p is minimal then, by (3.6¢), the only prime ideal of the local
ring A, is pA,. If € p, then the element 1 € pA, is nilpotent. Take a positive

r

integer r such that 0 (in Ay). By definition, there is an element s € A —p such

that sz” = 0. In particular, sz is nilpotent.

(il)==(i). Take a prime ideal q C p, and let = € p. By assumption, there is an
element s € A — p such that sz is nilpotent and, in particular, sz € q. Since s & p
we have s ¢ q, and then z € q. O

(3.9) Proposition. Let A be a ring. Then Spec(A) is a Ty space if and only if it
1s Hausdorff.

Proof. First, we note that Spec(A) is T; if and only if any prime ideal of A is
maximal (i.e., dim(A) = 0). Indeed, let p € Spec(A). Then, {p} is closed if and
only if V(p) = {p}, in view of (3.2d), and the last equality is equivalent to state that
p is maximal. Suppose Spec(A) is a Ty space and take distinct prime ideals p, q of A
and take an element x € p — q. Since dim(A) = 0, any prime ideal is both maximal
and minimal. By (3.§), there is an element s € A—p such that s is nilpotent. Then
D(z) (resp., D(s)) is an open neighborhood of q (resp., p) and D(z) N D(s) = 0,
since xs is nilpotent.

The converse is trivial, because any Hausdorff space is Tj. O

(3.10) Proposition. If A is a Noetherian ring, then Spec(A) is a Noetherian space.

Proof. Let C1y D Cy 2 ... D (), D ... be a descending chain of closed subspaces of
Spec(A), say C; = V(a;), where a; is some ideal of A, for any i > 1. By (3.2p) we
can assume that any a; is a radical ideal. It follows that a; Ca; C ... Ca, C ...
is an ascending chain of ideals of the Noetherian ring A. Thus, there is a positive
integer m such that a, = a,,, for any n > m. In other words, C,, = C,,, for any
n > m. O
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It is not true, in general, that a ring A is Noetherian provided that Spec(A) is
Noetherian.

(3.11) Example. Let K be a field and let 7 := {T; : i« € N} be an infinite
and coutable collection of indeterminates over K. Consider the polynomial ring
A= K[T] and its ideal a := ({T? : i € N})A. By (3.6h), Spec(A/a) is canonically
homeomorphic to V(a) and clearly V(a) = {m}, where m is the maximal ideal
of A generated by 7. Thus, V(a) is Noetherian, being it finite, but A/a is non
Noetherian. The proof is left to the reader.

Now we will show that, for any ring A, there exist a non Noetherian ring A" such
that Spec(A) and Spec(A’) are homeomorphic. In order to do this, we will present
now a new ring construction.

Let A be a ring and let M be a A-module. Let A(+)M denote the set A x M
equipped with the ring structure defined by setting

(a,m)+(b,n) := (a+b,m+n), (a,m)(b,n) = (ab,an+bm) for all a,b € A,m,n € M.
A(+)M is called the idealization of M, with respect to A.

(3.12) Remark. We list in the following some straightforward properties of A(+)M,
the first one will help the reader to understand the reason for this terminology.

(a) A is isomorphic to a subring of A(+)M, via the ring embedding A —
A(+)M, a — (a,0), and the module M is canonically identified with the
ideal (0) x M of A(+)M.

(b) If M = (0), then A(+)M is not reduced, being any (non zero) element of
(0) x M nilpotent (of index 2).

(c) If M is not finitely generated, then A(+)M is not Noetherian. Indeed, if
A(+)M is Noetherian, then in particular the ideal (0) x M is finitely gener-
ated, say by (0,m1),...,(0,my), and this easily implies that my,...,m;, is a
finite set of generators of M as a A-module.

(3.13) Proposition. Let A be a ring and M be an A-module. Let 7 : A(+)M — A
denote the projection onto A ((a,m) — a, for any (a,m) € A(+)M). Then the
canonical map 7 : Spec(A) — Spec(A(+)M) is a homeomorphism. In particular,

Spec(A(+)M) = {p x M : p € Spec(A)}.

Proof. Since 7 is a surjective ring homomorphism, 7* is a closed embedding, by
(3.5b), and 7*(Spec(A)) = V(Ker(r)) = V((0) x M). Then it is enough to note that
V((0) x M) = Spec(A(+)M), in view of (3.12p). The last statement is now obvious,
because, by definition, 7*(p) = p x M, for any p € Spec(A). O

(3.14) Example. Let A be a ring and M be a non finitely generated module
(for example, a direct sum of infinitely many copies of A). Then A(+)M is non
Noetherian, by (3.12c), and Spec(A) and Spec(A(+)M) are homeomorphic, by the

previous proposition.

4. FIBER PRODUCTS

That of fiber products is a powerful tool for presenting interesting examples and
counterexamples in Commutative Ring Theory. Thus in the following we sketch
some relevant properties of rings, and their spectra, arising as fiber products.
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(4.1) Definition. Let f : A — C,g : B — C' be ring homomorphisms. Then,
the subring

D:=fxcg:={(a,b) e AxB: f(a) = g(b)}
of A x B is called the fiber product of f and g. In the following, we will denote by

p:D — A (resp., q : D — B) the restriction to D of the projection of A x B
into A (resp., into B).

(4.2) Example. Let 7 : B — C be a ring homomorphism, and let A be a subring
of C. Consider the subring D := 7 !(A) and let i : A — C be the inclusion.
Then D is canonically isomorphic to ¢ x¢ 7. Indeed, it is easy to see that the ring
homomorphism D — i x¢ 7, d — (7(d),d) for any d € D, is well defined and
bijective. For example, the subring Z + TQI[T] of the polynomial ring Q[T] is of
this type. Indeed, in this case, B := Q[T], C := Q, 7 : Q[T] — Q is the ring
homomorphism sending a polynomial f in its constant term, and A := Z. Thus
Z+TQ[T] =n"1(Z).

First, we will provide a precise description of the prime spectrum of a fiber product
f X¢ g, under the assumption that one of the ring homomorphisms is surjective.

(4.3) Proposition. We preserve the notation given in , and assume that g is
surjective. Then p is surjective and it induces a closed embedding p* : Spec(A) —
Spec(D) whose image is Vp((0) x Ker(g)).

Proof. 1t is straightforward. Indeed, take an element a € A. Since g is surjective,
there is an element b € B such that g(b) = f(a). Thus (a,b) € D and p(a,b) = a.
The last statement follows immediately from (3.5b) and from the equality Ker(p) =
(0) x Ker(g). O

(4.4) Lemma. We preserve the notation of and fix an element b € Ker(g).
Then (0,b0) € Ker(p) € D and the canonical ring homomorphism A : Dy — By,

(z,9) s L s a well defined isomorphism.

0,b)» b’

Proof. By definition, the image of an element of the form (0,b)" via the ring homo-
bn

morphism A : D — By, (z,y) — %, is invertible in B, (A((0,b)") = T) Then A is

well defined and it is a ring homomorphism, since it is induced by A (in view of the

universal property of localizations). Take now (z,y) € D, n > 1 such that b% =0

in By. Then, there is a natural number m such that 0™y = 0. It follows

(z,y)  (z,y)(0,0)™ .
(0, b)" = (0, by =0 in D).

This proves that A is injective. Now, take any element b% € By. Clearly, by € Ker(g)

(0, by) _
(0’ b)n—i—l pn’
now complete. O

(4.5) Lemma. We preserve the notation of and fix an element b € Ker(g).
Then, the restriction of ¢* : Spec(B) — Spec(D) to the open set Dg(b) of Spec(B)
is a homeomorphism of Dg(b) with Dp((0,b)).

and thus (0,by) € D. It follows immediately that A( The proof is
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Proof. Let pn : D — Dop),n : B — By, be the localization maps, and let X :
Doy — By be the isomorphism given in ({.4). Keeping in mind (3.6p), the maps
p* = Spec(Deopy) — Dp((0,0)), n* : Spec(By) — Dp(b) are homeomorphisms.
Moreover, \* is a homeomorphism since A is an isomorphism. Since noq = Ao p, it
immediately follows that

Dp((0,6)) = p*(Spec(Diop))) = w* (X (Spec(Bs))) = ¢"(n"(Spec(By))) = ¢"(Dp(b))-

Finally, for any prime ideal q € Dg(b), we have ¢*(q) = p*(A*(n*(q))), and thus
@by is a homeomorphism of Dg(b) with Dp((0,0)). O

(4.6) Lemma. Let A be a ring and let a be an ideal of A. If Q@ C Spec(A) — V(a)
is an open set, then Q = J,.q D(s), for some S C a.

Proof. Let p € Q. Since ) is open, by (3.2f), there is an element x € A such that
p € D(z) C . Moreover, by assumption there is an element y € a—p. Thus zy € a
and p € D(zy) C Q. O

(4.7) Proposition. We preserve the notation of (4.1). Then the canonical contin-
uous map q* : Spec(B) — Spec(D) induces, by restriction, a homeomorphism of

Spec(B) — V(Ker(g)) with Spec(D) — V (Ker(p)).

Proof. Clearly, ¢*(Spec(B) — V(Ker(g))) C Spec(D) — V(Ker(p)). Let h be a prime
ideal of Spec(D) — V(Ker(p)). Since Ker(p) = (0) x Ker(g), there is an element
b € Ker(g) such that (0,b) ¢ h. By definition, the fiber ¢*~'({h}) is contained in the
open set Dp(b) and thus it consists of one point, by (4.5) . Thus ¢*|spec(B)-v (Ker(g))
is bijective and, by (.5) and ([4.6), it is open. The proof is now complete. O

(4.8) Corollary. We preserve the notation of (-) and assume that f is surjective.
Then the following properties hold.
(a) Spec(D) = p*(Spec(A4)) U ¢*(Spec(B) — V (Ker(g)).
(b) Max(D) = p*(Max(A)) U ¢*(Max(B) — V(Ker(g)).
(¢) D is local if and only if A is local and Ker(g) is contained in the Jacobson
radical of B.

Proof. Exercise. 0

Let S, T be topological spaces and let SUT := (S x {0}) U (T x {1}) denote the
disjoint union of S and 7'. With a small abuse of notation, we will identify .S, T" with
subsets of S'LIT. Thus, a natural topology on S LT is that whose open sets are
the subsets Q of ST such that 2N S (resp., QN T) is open in S (resp., in T'). In
particular, S, T are clopen subspaces of SUT. Now, let o : C' — T be a continuous
function, where C' is a closed subspace of S. Let £ be the equivalence relation on
S UT generated by identifying ¢ with «(c), for any ¢ € C. Then we will denote by
S U, T the quotient space of S LT, with respect to the equivalence relation £.

We recall now the following basic sufficient condition for a function of topological
spaces to be continuous.

(4.9) Proposition. Let f: X — Y be a function of topological spaces and let A
be an open cover of X. If the restriction f|a is continuous, for any A € A, then f
15 continuous.

Let f: X — Y be a continuous function of topological spaces. Recall that f is
called to be a quotient map if the topology of Y is the finest topology which makes
f a continuous function. We will use the fundamental property of quotient spaces.
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(4.10) Proposition. Let f : X — Y a continuous surjective function of topological
spaces and let K¢ be the equivalence relation induced by f. Then the following
conditions are equivalent.

(i) The canonical map f, : X/K; — Y is a homeomorphism.
(i) f is a quotient map.

(4.11) Theorem. [0l (1.4) Theorem] We preserve the notation of and assume
that g is surjective. Thus, we can identify Spec(C') with the closed subset V (Ker(g))
of Spec(B) (by (3.9b)). Then, Spec(D) is canonically homeomorphic to Spec(A) Uy
Spec(B).

Proof. Set b := Ker(g), X := Spec(A),Y := Spec(B), Z := Spec(C) and T := XLY,
endowed with its natural topology (see the discussion above). Let 0 : T — Z be
the natural map defined by

_)pip) ifpeX
7lp) = {q*(p) ifgey

By considering the open cover A := {X,Y} of T and applying (4.9), it follows that
o is continuous. Moreover, by ), o is surjective. By definition, the equivalence
relation K, on 7" induced by o is is that which is generated by identifying the prime
ideals of C' (they correspond to the points of the closed subspace Vg(b) of V) with
their images under f* (the straighforward verification is left to the reader). By
, the conclusion will follow if we prove that ¢ is a quotient map. Let T be a
topology on Z making ¢ a continuous map and let €2 C Z be open, with respect to
the topology T. It is sufficient to show that € is open, with respect to the Zariski
topology. By definition, ¢=*(€) is open in T, that is, c*(Q) N X = p*1(Q) (resp.,
o~ Q) NY = ¢ Q)) is open in X (resp., in V). Take a prime ideal p € Q. First,
assume that p ¢ Vp((0)xb). By (4.7)), there exists a unique prime ideal p’ € Y=V (b)
such that ¢*(p’) = p. Since p’ is an element of the open set ¢*~*(Q) N (Y — Vi(b)),
there is an element b € b such that p’ € Dg(b) C ¢ *(Q) N (Y — Vi(b)), by
Then, in view of ([L.5), we have p = ¢*(p’) € ¢*(Dp(b)) = Dp((0,b)) C Q.

Suppose now that p € Vp((0) x b) N2 and, by ([£.3), let p’ be the unique prime
ideal of A such that p*(p’) = p. Since p* () is an open neighborhood of p’, there
is an element a € A such that p’ € D(a) C p* (). Since g is surjective, take an
element b € B such that g(b) = f(a). We are going to show the following claim.

Claim: V(b) N D(b) C ¢* ().

As a matter of fact, take a prime ideal h € V(b) N D(b). Since h € V(b) there
is a unique prime ideal b’ of C' such that ¢g*(§’) = b, by (3.5p). Since b € D(b),
f(a) = g(b) ¢ ¥, that is, f*(y') € D(a) C p*~*(Q). Thus, the equality gog= fop
implies ¢*(h) = p*(f*(h')) € Q. This proves the claim.

Let ¢ be an ideal of B such that V(¢) = Y —¢*~1(£2). By the claim, we have V(b)N
D(b) NV (c) = 0. Clearly, this implies that the ideals bBy, ¢By, of By, are comaximal.
Thus, by the Chinese remainder Theorem, the canonical ring homomorphism ) :

By, — (B,/bBy) x (By/¢By) is surjective. Choose an element bin e v 1({(1,0)}),

that is, bﬁn — 1€ bB, and bﬁn € ¢. Take an element ¢ € ¢ and a natural number m
_pm
such that r_< It follows that ¢ = —, for some 3 € b and some r € N.

v b bm b
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The last equality implies that there are natural numbers ¢, u such that b'c — b* € b,
and we can assume, without loss of generality, that « > 1. Then

0=g(b'c) — g(b") = g(b'c) — f(a"),
that is (a“,b'c) € D. We claim that p € Dp((a®,b'c)) C Q. We have p(a*,bc) =
a“ ¢ p’, since p’ € D(a), and thus (a*,b'c) ¢ p*(p’) = p. Finally, take any prime
ideal g € Dp((a*,b'c)). If g € Vp((0) x b), take the unique prime ideal ¢" € X such
that p*(q’) = q. Then a* = p(a*,btc) ¢ ¢, that is a ¢ ¢’. Thus ¢’ € D(a) C p* *(Q)
and q = p*(q') € Q. If g € Spec(D) — V((0) x b), let " € Spec(B) — V(b) be such
that ¢*(q') = q. Thus blc = q(a*,b'c) ¢ ¢, since q € Dp((a¥,b'c)). In particular
c¢ q and thus ¢ € Y — V(c) = ¢* (). Then, q € Q. O

5. EAKIN-NAGATA’S THEOREM

Let A C B be a ring extension. As it is well known, if A is Noetherian and B is
of finite type over A, then B is Noetherian. Indeed, if B := A[by,..., b,], for some
by,....,b, € B, then B is a homomorphic image of the Noetherian polynomial ring
AlTy,...,T,] (via the ring homomorhism A[T},....T,] — B, f — f(b1,...,b,)).
If A C B is a finite extension, it is, in particular, of finite type, and thus B is
Noetherian provided that A is Noetherian. In general, if B is a Noetherian A-
module, then A is a Noetherian ring, being it a Noetherian A-submodule of B. But,
if B is a Noetherian ring it is not necessarily true that A is a Noetherian ring. For
example, if {7} : ¢ € I} is an infinite collection of indeterminates over a field K,
then the polynomial ring A := K[{T; : i € I}] is a non Noetherian domain, but the
quotient field of A is Noetherian.

Eakin-Nagata’s Theorem states that, under the assumption that the ring extension
A C B is finite, then A is a Noetherian ring provided that B is a Noetherian
ring. There are several proofs of this nontrivial result. We will provide that due to
Formanek.

First we recall some easy basic facts.

(5.1) Remark. Let A be a ring.

(a) If M is a A-module and N is a submodule of M, then M is Noetherian (resp.,
Artin) if and only if N and M /N are Noetherian (resp., Artin). Moreover, if
N and M/N are finitely generated, then M is finitely generated.

(b) If My,..., M, is a finite collection of Noetherian A-modules, then the direct
product M := My x ... x M, is Noetherian. As a matter of fact, it suffices
to prove the statement for n := 2, and then use induction. If M := M; x Ms,
then M; is isomorphic to the submodule N := M; x (0) of M. Moreover,
M/N is clearly isomorphic to Ms. Then, the statement follows from part (a).

(c) If A is a Noetherian ring and M is a finitely generated A-module, then M
is Noetherian. Indeed, if {m,...,m,} is a set of generators of M, there is
a unique surjective A-linear map f : A~ — M such that e; — m;, where
{e1,...,e,} is the canonical basis of the free module A”. Then it is enough
to note that A" is a Noetherian A-module, by part (b).

If Ais aring and M is a A-module, then Anny (M) := {a € A:aM = (0)} is
an ideal of A, called the annihilator of M. The module M is called to be faithful if
Anny (M) = (0).
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(5.2) Remark. Let A be aring and, let M be an A-module and set a := Anny(M).
For any ideal b C a of A, then M can be endowed with a natural structure of A/b-

module, via the scalar multiplication defined by (a+b)-m := am, for any a+b € A/a,
m e M.

(a) Clearly, for any subset N of M, N is a A-submodule of M if and only if N
is a A/b-submodule of M. This implies that M is Noetherian (resp., Artin)
as a A-module if and only if it is Noetherian (resp., Artin) as a A/b-module.

(b) By definition, M is a faithful A/a-module.

(5.3) Proposition. If A is a ring and there is a Noetherian and faithful A-module,
then A is a Noetherian ring.

Proof. Let M be a Noetherian and faithful A-module, and let {m;,...,m,} be a
finite set of generators of M. Consider the A-linear map f : A — M" defined
by f(a) := (amy,...,am,), for any a € A. Since, for any a € A, the equalities
am; = ... = am, = 0 imply aM = 0, it follows that f is injective, since M is
faithful. Thus A can be identified with a A-submodule of the Noetherian module
M7, and thus A is Noetherian as a A-module, that is, A is a Noetherian ring. [

(5.4) Lemma. Let A be a ring and let X be a finitely generated faithful A-module
such that the A-module X/aX is Noetherian, for any nonzero ideal a of A. Then X
1s Noetherian.

Proof. Consider the collection
Y. :={N C X : N is a submodule of X and X/N is faithful}

of submodules of X, partially ordered by inclusion, and note that it is nonempty,
since (0) € ¥. Let C C ¥ be a chain and note that N := | JC is a submodule of X.
Take an element a € Anny(X/N) and let {z1,...,2,} be a finite set of generators
of X. This is equivalent to state that ax; € N, for 1 < i < r. Since C is a chain,
there is an element N’ € C such that ax; € N/, for 1 < i < r. It follows that
a € Anny(X/N’) and thus a = 0, since N’ € ¥. This proves that X/N is faithful,
that is, N € ¥.. By Zorn’s Lemma, there is a maximal element M € ¥. Since X/M
is a faithful A-module, if it is Noetherian, then A is a Noetherian ring, by (5.3), and
thus X is a Noetherian module, by (5.1k). Thus the conclusion follows if we show
that Y := X/M is Noetherian. For any nonzero ideal a of A the A-module Y/aY
is a quotient of X/aX, and thus, by assumption, it is Noetherian. Moreover if Z is
a nonzero submodule of Y, then Z = P/M for some submodule P of X such that
M C P. Thus Y/Z = X/P is not faithful, since M is maximal in ¥. Thus, keeping
in mind the assumptions, Y has the following properties:

(1) Y is finitely generated (it is a quotient of X);
(2) Y/aY is Noetherian, for any nonzero ideal a of A;
(3) Y/Z is not faithful, for any nonzero submodule Z of Y.

Fix now any nonzero submodule Z of Y. By (3), the A-module Y/Z is not faithful,
and thus there exists a nonzero element a € A such that a(Y/Z) = (0), that is,
aY C Z. Thus the factor module Z/aY is a submodule of the Noetherian module
Y/aY (property (2)), and hence Z/aY is finitely generated. Keeping in mind that aY
is finitely generated, being it Y (property (1)), it follows that Z is finitely generated,
in view of ) This proves that any submodule of Y is finitely generated, that
is, Y is Noetherian. O
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The statement of the following remark can be easily verified.

(5.5) Remark. Let (X, <) be a partially ordered set. Then the following conditions
are equivalent.

(a) (X, <) satisfies the ascending chain condition.
(b) Any nonempty subset of X has a maximal element.

(5.6) Theorem ([8]). Let A be a ring and let M be a finitely generated faithful
A-module such that the collection {aM : a ideal of A} of submodules of M satisfies
the ascending chain condition. Then, M s Noetherian.

Proof. By contradiction, suppose that M is non Noetherian. Then, the collection

Y :={aM : aideal of A and M/aM is non Noetherian}

of submodules of M is nonempty and, by , it has a maximal element agM, for
some ideal ag of A. Since agM € X, the A-module X* := M /agM is non Noetherian.
If A* := A/Ann,(X*) then, by (5.2), X* is a faithful and non Noetherian A*-module.
If i is any nonzero ideal of A*, then i = a*/Ann(X*), for some ideal a* of A such that
a* 2 Anna(X*) D ag. It easily follows that a*M 2D agM. Since agM is maximal in ¥,
then M/a*M is a Noetherian A-module. Since Anny(X*) C Anny(M/a*M), then,
in view of (5.2)), M/a*M is a Noetherian A*-module and clearly X*/iX* = M /a*M.
This contradicts the statement of . O

(5.7) Theorem (Eakin-Nagata). Let A C B be a finite ring extension and assume
that B is a Noetherian ring. Then, A is a Noetherian ring.

Proof. By the conventions stated at the beginning, A and B have the same mul-
tiplicative identity, and then B is a faithful A-module. The collection of ideals
{aB : a ideal of A} of B satisfies the ascending chain condition, since B is Noether-
ian. By , B is a Noetherian A-module, and thus A is a Noetherian ring, by
(5.3)) (or from the fact that it is a A-submodule of the Noetherian module B). O

Let f : A — B be a ring homomorphism. Clearly, B is a A-module, via the
natural scalar multiplication defined by a-b:= f(a)b, for any a € A,b € B. We say
that f is finite (resp., of finite type, integral) if the ring extension f(A) C B is finite
(resp., of finite type, integral). By well known properties on integral dependence, f
is finite if and only if it is integral and of finite type.

The proof of the following straightforward lemma is left to the reader.

(5.8) Lemma. We preserve the notation of and assume that g is surjective.
If f is finite (resp., of finite type, integral), then q is finite (resp., of finite type,
integral).

(5.9) Proposition. [0, Proposition (1.8)] We preserve the notation of and
assume that g is surjective. Then, the following conditions are equivalent.

(i) D is a Noetherian ring and q is finite.

(ii) A, B are Noetherian rings and f is finite.

Proof. (1)==(ii). Keeping in mind ([£.3), A = p(D) and ¢(D) are Noetherian rings,
being homomorphic images of the Noetherian ring D. Since the ring extension
q(D) C B is finite, then B is a Noetherian ring. By assumption, B is finitely
generated as ¢(D)-module, say by by,...,b,. We claim that C' is generated by
g(b1),...,9(bn), as a f(A)-module. Indeed let ¢ € C and, since g is surjective,
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let b e B such that g(b) = c. Take elements (x1,11), - (:cn,yn) € D such that

b—z xz,yzb—Zyzb Therw—zgyz bi) foz

(11):(11) Since A is a Noetherian rlng and p : D —> A is surjective, then
A is Noetherian as a D-module, too. Morover, C' is a Noetherian ring, being it
the homomorphic image of the Noetherian ring B, via g. By , q is finite and
thus, in view of Eakin-Nagata’s Theorem, ¢(D) is a Noetherian ring and, clearly,
a Noetherian D-module. The ideal Ker(g) of ¢(D) is a D-submodule of ¢(D), and
thus Ker(g) is a Noetherian D-module and clearly it is isomorphic to (0) x Ker(g) =
Ker(p). Since A is isomorphic to D/Ker(p) and it is a Noetherian D-module (being
A a Noetherian ring), the conclusion follows from (5.1}). O

(5.10) Corollary. Let m: B — C' be a surjective ring homomorphism, let A be a
subring of C and let D := 7w=1(A). The following conditions are equivalent.

(i) D is a Noetherian ring and the ring extension D C B is finite.
(ii) A, B are Noetherian rings and the ring extension A C C' is finite.

Proof. Apply (5.9) to the ring construction (4.2)). The easy details are left to the
reader. OJ

(5.11) Corollary. Let A C B be a ring extension and let T' be an indeterminate
over B. Then, the ring A+ TBIT] is Noetherian if and only if A is a Noetherian
ring and the ring extension A C B is finite.

Proof. 1t D := A+ TB|T] is a Noetherian ring, that so is A being it a homomorphic
image of D. Now, let a be the ideal of D generated by the set {bT" : b € B}. Since
D is Noetherian, then a is finitely generated, say by fi,..., f, € a. Set, for any
1<i<n, fi(T) :=bT + g:(T)T?, for some b; € B and ¢;(T) € B[T]. Then an easy
computation proves that B is generated by by, ..., b, as an A-module.

Conversely, assume that A is Noetherian and that A C B is finite. Then B[T]
is Noetherian, by Hilbert’s basis Theorem. Now the conclusion follows from ([5.10)),
keeping in mind that A + TB[T| = 7~ '(A), where 7 : B[T] — B is the surjective
ring homomorphism defined by 7(f) := f(0), for any f € B[T]. O

6. THE KRULL INTERSECTION THEOREM

Now we state and prove a very famous theorem which will be useful in the follow-
ing.
(6.1) Theorem (Krull intersection Theorem). Let A be a Noetherian ring, a be an
ideal of A and M be a finitely generated A-module. Then

a(ﬂ a"M) = ﬂ a"M
n>1 n>1

Proof. By ), M is a Noetherian A-module. Set N :=[ -, a"M. The collection
Y of all the submodules S of M such that SN N = alN is nonempty, since aN € X,
and thus Y admits a maximal element C, by noetherianity. We are going to show
the following claim.

Claim. If x € a, there is a positive integer v such that x*M C C.

For any 7 > 1, consider the following A-submodule

Ni:={m e M :2'mec C}
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of M. By noetherianity, the ascending chain N; C Ny C ... of submodules of M is
eventually constant. Take a positive integer v such that N, = N, for any n > v,
and note that (C'+xz”M)NN D aN. Conversely, take an element y € (C+z"M)NN,
and let ¢ € C,m € M be such that y = ¢ + 2¥m. It follows xy — zc = z¥"'m and,
since zy € aN C C, we have 2*™m € C, that is, m € N,4; = N,. In other words,
2’m € C and thus y € C NN = aN. This proves that (C' + 2"M)N N = aN, i.e.,
C + x"M € ¥ and, since C' is maximal in 3, we infer that x*M C C. The proof of
claim is complete.

Keeping in mind that a is finitely generated, the claim implies that there exists a
positive integer k such that N C a*M C C, and thus aN = NNC = N, O

The following fact is well-known and we recall it for the reader convenience.

(6.2) Theorem (Nakayama’s Lemma). Let A be a ring, M be a finitely generated
A-module and let a be an ideal of A which is contained in the Jacobson radical of A.
If aM = M, then M = (0).

(6.3) Corollary. Let A be a ring, M be a finitely generated A-module and let a be an
ideal of A which is contained in the Jacobson radical of A. If N is an A-submodule
of M and M = aM + N, then M = N.

Proof. Apply (6.2) to the finitely generated A-module M/N. O

(6.4) Corollary. Let A be a Noetherian ring, M be a finitely generated A-module
and let a be an ideal of A contained in the Jacobson radical of A. Then

() a"M = (0).

n>1
Proof. By (5.1¢), the submodule N := 1, ., a"M of M is finitely generated and, by
the Krull intersection Theorem, aN = N. By Nakayama’s Lemma, N = (0). O

(6.5) Corollary. Let A be a Noetherian ring and let a be an ideal of A which is
contained in the Jacobson radical of A. Then (1,5, a" = (0).

Proof. Apply (6.4) to M := A. O

7. THE PRINCIPAL IDEAL THEOREM

The next important result deals with the height of a prime ideal of a Noetherian
ring which is minimal over a principal ideal. We will see that such a prime ideal
must have height < 1.

We start with some easy remarks.

(7.1) Remark. Let A be a local ring with maximal ideal m and residue field K,
let M be a finitely generated A-module, and let X := M/mM. By (6.2), X is
both an A-module and a A/m-module, that is a K-vector space. Since M is finitely
generated, it follows that X is, in particular, a finitely generated K-vector space,
that is, it is both Noetherian and Artin as a K-vector space. Thus, by ), and
furthermore X is both Noetherian and Artin as a A-module.

(7.2) Lemma. Let A be a local ring with finitely generated mazimal ideal m and
residue field K. Then, for any positive integer r, m"/m"*1 is both an Noetherian
and a Artin A-module.
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Proof. Consider the finitely generated M := m” and note that M/mM = m"/m" !,
Then it suffices to apply (7.1)). O

(7.3) Proposition. Any Noetherian ring with a unique prime ideal is an Artin ring.

Proof. Let A be a Noetherian ring and m be its unique prime ideal (hence, m is the
nilradical of A). Since m is finitely generated, there is a smallest positive integer k
such that m* = (0). If k = 1 the A is a field and thus we have nothing to prove.
Assume that k£ > 2. Since, for any positive integer r, m” is a A-submodule of m"~!
and the factor module m"~!/m" is an Artin A-module (by ), it is easily proved by
induction that m, m?, ..., m* are Artin A-modules, keeping in mind ) Moreover,
the field A/m is an Artin A-module (by (7.1)). Then, A is an Artin A-module, that

is, an Artin ring, again by (5.1a). O

More generally, it is possible to show that a ring is an Artin ring if and only if it
is Noetherian and zero-dimensional.
The proof of the following lemma is an easy exercise.

(7.4) Lemma. Let D be an integral domain and let q be a prime ideal of D. Then,
the ideal g™ = (q"Dq) N D is of D is q-primary, for any positive integer n.

(7.5) Theorem (Principal Ideal Theorem). Let A be a Noetherian ring, a € A and
let q € Spec(A) be minimal over aA. Then ht(q) < 1.

Proof. We argue by contradiction, and assume there are prime ideals pg,p; of A
such that po C p; € q. Consider the local domain D := A,/pyA, and note that, by
(3.68,¢), Spec(D) is homeomorphic to the subspace {h € Spec(A) : po C h C q} of
Spec(A). Moreover the maximal ideal m of D (which corresponds to ) is minimal
over the principal ideal x D, where x is the canonical image of a in D, and there
is a nonzero prime ideal p of D (corresponding to p;) such that x ¢ p. Since m is
minimal over z, (3.6h) implies that the Noetherian factor ring D/zD has a unique
prime ideal (corresponding to m), and thus D/zD is an Artin ring, by (7.3). For
any positive integer t, let p(*) denote the canonical image of p® in D/zD. Since
pM D p®@ D ... and D/xD is Artin, there is a positive integer v such that p( = p(),
for any t > v, that is, p® + 2D = p) 4+ zD. Take an integer t > v and an element
v € p®). Thus there are elements w € p),d € D such that v = w + xd. It follows
xd € p™ +p® = p®_ Since z ¢ p and p) is p-primary (by ), it follows d € p™).
This proves that p®) = p® + zp®) and, by , we have p) = p® . By applying
to the Noetherian local domain D, and its maximal ideal pD,, we infer that
N>1 P'Dy, = (0) and, a fortiori,

(0) =(p'Dyn D =[)p" =p®.
t>1 t>1
Since p¥ C p®), by primality it follows p = (0), a contradiction. O
(7.6) Corollary. Let A be a Noetherian ring and let p,q € Spec(A) be such that
p € q. If the set { € Spec(A) : p C b C q} is nonempty, then it is infinite.

Proof. Consider the Noetherian domain D := A/p. By (B.6h), it suffices to prove
that if there is a nonzero prime ideal h of D such that b; C q' := q/p, then there
are infinitely many prime ideals of D with the same property. By contradiction,
assume that X := {p € Spec(D) : (0) # p € q'} = {b1,...,h,} and note that,
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clearly |J;_, h; C ¢'. If the equality J._, h; = ¢’ holds, by the prime avoidance
theorem, ¢ C by, for some 1 < k < n, against the fact that b, € X. Hence we have
Ui, hi € ¢'. Take an element z € q' — |J;_, h; and take a (nonzero) prime ideal
p € Spec(D) minimal over D and such that p C q’. By the principal ideal theorem
we have ht(p) < 1 and, since ht(q’) > 2, it follows p C ¢’. By definition, p € X, a
contradiction, since each prime ideal of X does not contain x. O

(7.7) Remark. It is easy to note that the Principal Ideal Theorem and fail
in the non Noetherian setting. For example, let V' be a two-dimensional valuation
domain. As it is well known, the set of all ideals of a valuation domain is totally
ordered by inclusion, and thus Spec(V') = {(0),p, m}, with (0) C p € m. Thus, for
any element z € m — p, m is minimal over 2V and ht(V') > 2. Furthermore, there is
a unique prime ideal (namely, p) between (0) and m.

Furthermore note that Spec(V') is a Noetherian space, but there are no Noetherian
rings A such that Spec(A) is homeomorphic to Spec(V), in view of (7.6). Indeed,
in general, if f : Spec(A;) — Spec(Ay) is a homeomorphism, then f is order
preserving (that is, for any by, by € Spec(A;), then by C bo if and only if f(h;) C
f(B2)). The easy proof of this statement is left to the reader.

8. VALUATION DOMAINS AND FIBER PRODUCTS

Now we provide a technique for constructing valuation rings, based on fiber prod-
ucts.
We leave the straightforward proof of this easy lemma to the reader.

(8.1) Lemma. Let A C B be a ring extension and assume that A and B share a
common ideal containing a reqular element of B. Then A and B have the same total
ring of quotients.

(8.2) Proposition. [0, Theorem 2.4] Let V' be a local domain with residue field K,
m:V — K be the canonical projection, and let D be a subring of K whose quotient
field is K. Then 7= Y(D) is a valuation domain if and only if V, D are valuation
domains.

Proof. Set E := 7~ (D). First, note that the maximal ideal m = Ker(m) of V is
clearly a common ideal of V' and E. If m = (0), then V is a field and F and D are
isomorphic. Thus, in this case, the statement is trivial. Assume now that m # (0).
By , V and E have the same quotient field, say L. Thus, if £ is a valuation
domain, then so is V' (any overring of a valuation domain is a valuation domain).
Moreover, if © € K — D and v € V is such that 7(v) = =z, then v ¢ E. Thus,
since E is a valuation domain and v is in the quotient field of E, then v~ € E and
m(v™1) € D is the inverse of z in D.

Conversely, assume that D and V are valuation domains and take an element
re€L—FE. Ifz ¢V, then 7! € m C E, since V is a valuation domain of L. If
x € V then x is a unit of V' (otherwise z € m C F, a contradiction). Sincex € V—E,
then 7(z) € K — D and, since D is a valuation domain of K, (7(z))~! € D. From
m(z)m(x™t) =1, we infer m(z~!) = (n(z))"! € D, and finally 27! € E. O

(8.3) Proposition. Let V' be a valuation domain with residue field K, let 7 :V —
K be the canonical projection, and let D be any nonzero subring of K. If W is a
valuation domain of the quotient field of V' such that of n=*(D) C W C V, then
(W) is a valuation domain of K containing D and W = 7= (x(W)).
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Proof. Clearly, m(W) is a ring containing D. The statement is trivial if V' is a field.
Thus assume that the maximal ideal m of V' is nonzero. It follows that 7~(D), W, V/
have the same quotient field, in view of (8.1)). Take a nonzero element k € K and an
element v € V such that 7(v) = k. If k ¢ 7(W), then v ¢ W. Since V, W have the
same quotient field and W is a valuation domain, it follows that v=! € W. Then,
1 =m(v)r(v) = w(v 1)k, that is, k! = m(v™') € W. This proves that (W) is
a valuation domain of K. Finally, it is obvious that W C 7~ !(x(W)). Conversely,
take an element z € 7! (7w(W)), and let w € W be such that 7(x) = 7(w). It
follows z —w € m C 7~ 1(D) C W, and thus z € W. O

(8.4) Example. Consider the valuation domain V' := Q[T]y and let 7 : V — Q
be the canonical projection. Then, by , the ring 7 H(Z)) = Z) + TQ[T) 1)
is a valuation domain of Q(T). It is easy to verify that dim(Zy,) + TQ[T)r)) = 2.
This can be also seen as a particular case of the following result.

(8.5) Proposition. [0, Proposition 2.1] Let V' be a local ring with mazimal ideal m
and residue field K, and let m : V. — K be the canonical projection. Let D be a
subring of K and set E := 7=Y(D). The following properties hold.

(a) Any prime ideal of E is comparable with m.
(b) If V. D are finite dimensional, then E is finite dimensional and we have

dim(E) = dim(V) + dim(D).

Proof. Clearly, m = Ker(n) is a common ideal of V and E. Let i : E — V be
the inclusion map. Keeping in mind (4.3)), and ([4.2), it follows that Vi(m) is
homeomorphic to Spec(D), via (7|g)*, and that Spec(F) — Vg(m) is homeomorphic
to Spec(V) — Vis(m) = {h € Spec(V') : h C m}, via i*. This proves part (a).

(b). Let (0) € p1 € ... € py, be prime ideals of D and ho T h; € ... C h,=m
be prime ideals of V' such that dim(D) = n,dim(V) = m. Note that h; = h; N E,
for any 1 <7 <mn, since h; Cm C E. Then,

hoChi C...Ch,=m= Wil((o)) G Qny1 = 7771(131) G S = 771<pM)
is a chain of prime ideals of E of length n+m, that is dim(F) < n+m. Conversely,
let qo € g1 € ... € g, be a chain of prime ideals of E. By part (a), any prime
ideal of this chain is comparable with m. If g, C m, then, by the discussion above,
g0 € g1 € ... € g, is a chain of prime ideals of V, and thus r <n < n+4+m. If
qo 2 m, then there are prime ideals py C p; S ... C p, of D such that q; = 7= (p;),
for 0 < i < r, and thus r < m < n+ m. Otherwise, we have q; C m C q;41, for
some index 0 < ¢ < r. It follows that qo € ... C q; is a chain of prime ideals of V,
and thus ¢ < n, and that tha chain q;;1 C ... € g, corresponds to a chain of prime
ideals of D of length r — ¢, that is r — ¢ < m. Hence, r <n + m. O

9. ULTRAFILTERS

We will see in the following that there is a very powerful tool for describing the
prime spectrum of several classes of rings. This tool is the notion of ultrafilter.

(9.1) Definition. Let X be a set.

(a) A nonempty collection F of nonempty subsets of X is called to be a filter on
X if the following properties are verified:
e FNG e %, forany F,G € F;
e fFFeZ and FCY C X, thenY € F.
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(b) A mazimal element in the collection of all filters on X, partially ordered by
C, s called to be an ultrafilter on X.

(9.2) Example. (a) If X is a set, then {X} is a filter on X. Moreover, for any
filter # on X, we have X € .Z#.
(b) Recall that if X is a topological space and x € X, a subset Y of X is called
a neighborhood of x if there is an open subset U of X such that x € U C Y.
Then, clearly, the collection .#(x) of the neighborhoods of x is a filter on X.
(¢) Now let X be any set and let € X. Then, the collection

U, ={Y CX:ze€Y}

is an ultrafilter on X, called the trivial ultrafilter generated by x. It is obvious
that %, is a filter on X. If there is a filter .# on X such that %, C .#, then
we can pick a set F' € F —%,. This implies © ¢ F, thatis, X —F € %, C .7.
It follows ) = F N (X — F) € %, a contradiction (by definition, any filter
does not contain 0).

Recall that a nonempty collection F of subsets of a set X has the finite intersection
property if, for any finite subcollection G of F, we have (G # (.

(9.3) Remark. Let X be a set.

(a) By definition, any filter on X has the finite intersection property.
(b) Let F be a collection of subsets of X with the finite intersection property.
Then, it is immediately seen that the collection of sets

F(F) = {AQX:AQﬂFi, for some Fi, ..., F, € F}
i=1

is a filter on X and F C .7 (F).

(9.4) Proposition (Ultrafilter Lemma, Tarski, 1930). Let X be a set and F be
a collection of subsets of X with the finite intersection property. Then there is an
ultrafilter %4 on X such that F C 7. In particular, any filter on X can be extended
to an ultrafilter on X.

Proof. By (0.3p), the collection ¥ := {% : .Z is a filter on X,.# D F}, partially
ordered by inclusion, is nonempty. Moreover, by definition, the union of a chain of
filters is a filter. Thus, any chain in 3 has an upper bound. The conclusion follows
by Zorn’s Lemma. The last statement follows from (9.3a). O

(9.5) Proposition. Let X be a set and let % be a collection of subsets of X. Then,
the following conditions are equivalent.

(i) % is an ultrafilter on X.
(ii) % is a filter on X and, if Y, Z C X satisfy Y UZ € %, then either Y € %
orZ e U.
(i) % s a filter on X and, for any subset Y of X, then either Y € % or
X-Yev%.

Proof. (1)=(ii). Take Y, Z C X such that YUZ € % and Y ¢ % . Then, for every
U € % we have ZNU # ) (otherwise, U C X — Z and thusY DUN(YUZ) € %;
it would follow Y € %, a contradiction). This proves that the collection % U {Z}
has the finite intersection property and thus, in view of , there is an ultrafilter
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¥ on X such that Z U{Z} C ¥ and, since % is an ultrafilter, it follows ¥ =
UU{X}y=%,thatis, Z € ¥%.

(il)==(iii). Take any subset Y of X and note that, since X belongs to any filter
on X, YU (X —-Y)e . Apply (ii) to get the conclusion.

(iii)==(i). Suppose there exists a filter .# on X such that % C .#, and take a
set '€ .% — 7. By (iii), theset X —F € % C . and thus) = FN(X — F) € Z,
a contradiction. O

(9.6) Corollary. Any ultrafilter on a finite set is trivial.

Proof. Set X := {x1,...,x,} and let % be an ultrafilter on X. Since
X =Azx}u...U{zx,} e %,

condition (ii) of (9.5)) implies that {z;} € %, for some 1 < ¢ < n. It immediately
follows that % C %,, and, since % is an ultrafilter, % = %,,. O

(9.7) Proposition. Any infinite set admits nontrivial ultrafilters.

Proof. Let X be an infinite set and let F the collection of all the subsets Y of X
such that X —Y is finite. Since X is infinite, F has the finite intersection property,
and thus, in view of , there is an ultrafilter 7 on X such that F C % . For any
v € X wehave X — {z} € F C %, and since ) ¢ % , it follows that {x} ¢ % . This
proves that %/ is nontrivial. O

9.1. The Stone-Cech compactification of a discrete space. Let X be a topo-
logical space. Recall that a compactification of X is a compact space Y together with
a topological embedding ¢ : X — Y such that ¢(X) is dense in Y. Now we will use
ultrafilters to give a very important example of compactification of a discrete space.
We start by fixing some notation: for any set X let 5X be the collection of all the
ultrafilters on X and, for any subset Y of X, let Y* := {% € X : Y € % }. Since
the collection B := {Y* : Y C X} clearly covers the set X and (Y NZ)*=Y*NZ*,
it immediately follows that B is a basis of open sets for a (unique) topology on SX.
We will call it the Stone-Cech topology.

(9.8) Proposition. Let X be a set.
(a) For anyY C X we have X —Y* = (X —Y)*. In particular, the basic open
set Y is clopen in BX.
(b) X is a compact and Hausdorff space.

Proof. (a). The equality X — Y* = (X — Y)* holds since exactly one of the sets
Y, X — Y belongs to an ultrafilter, in view of .

(b). First, we show that X is a Hausdorff space. Take distinct ultrafilters %, ¥
on X, and take aset Y € % — 7. Again by , X—Y €, and thus Y¥, (X —Y)?
are disjoint open neighborhoods of %, ¥, respectively.

We show now that SX is compact. Let A be an open cover of 5X. By the
definition of the Stone-Cech topology, we can assume, without loss of generality,
that A consists of basic open sets, that is A := {Y* : YV € .#}, where & is a
collection of subsets of X. By contradiction, assume that A does not admit any
finite subcover, and let %’ := {X =Y : Y € #}. Take finitely many members
Yy,....Y, € #. By assumtion, |J;_, Y;ﬁ C BX, and thus there exists an ultrafilter
% on X such that Y; ¢ %, forany i =1,...,n. By and by definition, we have
Nie (X —Y;) € % and, a fortiori, (;_,(X —Y;) # (. This argument shows that .%’
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has the finite intersection property and hence, in view of , there is an ultrafilter
¥ such that .’ C #. In particular, we have X —Y ¢ ¥ and equivalently Y ¢ ¥
for any Y € %, against the fact that A is an open cover of 5X. The proof is now
complete. O

(9.9) Proposition. Let X be a set, endowed with the discrete topology, and let
t: X — BX be the function defined by 1(x) := ,, for any x € X, where %, is the
trivial ultrafilter generated by x. Then, X and v provide a compactification of X,
called the Stone-Cech compactification.

Proof. Tt remains to show that ¢ is a topological embedding and that ¢(X) is dense in
BX. The map ¢ is obviously injective and continuous. Moreover, the straightforward
equality «(Y) = Y# N ¢(X), which holds for any subset Y of X, shows that ¢ is a
topological embedding. Finally, take any nonempty open subset €2 of 5X. In order to
prove that QN (X)) # 0 it suffices to assume that 0 = Y*¥, for some nonempty subset
Y of X. Clearly, for any y € Y, the trivial ultrafilter %, belongs to QN ¢(X). O

We recall here the following easy fact for the reader convenience.

(9.10) Lemma. Let X be a Ty space, U C X be open and x € U. Then, there is
an open set V such that x € V and V C U.

Proof. The sets {x} and X — U are closed and disjoint. By assumption, there are
disjoint open sets V,{ of X such that x € V and X — U C Q. It follows that
VcX-QCU. O

(9.11) Theorem (Universal property of the Stone-Cech compactification). Let X
be a discrete space and let v be the topological embedding defined in . Then,
for any compact and Hausdorff space K and any function f : X — K, there is a
unique continuous function f : X — K such that f = f ou.

Proof. First, we will show the following claims.
Claim 1. Take an ultrafilter % on X and set C(%) :=({
is an open subset of K and UNC(%) # 0, then f~Y(U) € % .
As a matter of fact, take an element k € U N C(% ). This implies that, for any
Y € %, we have UN f(Y) # () and, equivalently, Y N f~1(U) # 0. Thus, keeping in
mind (9.5)), we easily infer that f~1(U) € Z.
Claim 2. For any ultrafilter % on X, the set C'(%) consists of a unique point.
Indeed, take sets Y1,...,Y, € % and note that T := (\_, Y; # 0, since T' € % .

Then 0 # f(T) € N, f(Yi). This proves that the collection {f(Y):Y € %} is a
collection of closed sets of the compact space K, with the finite intersection property.
It follows that C(%) # (. Now assume that z,y € C(%) and that = # y. Since K
is a Hausdorff space, there are disjoint open sets U,V C K such that x € U,y € V.
By Claim 1 we have f~Y(U), f(V) € %, and thus 0 = f~Y({U)N fY(V) € %, a
contradiction. R

Now, let f : X — K be the function such that, for any Z € X, f(%) is
the unique element of the set C'(%). We show that ]?is continuous by proving that
it is continuous at any point of SX. Take any ultrafilter % on X and any open
neighborhood U of f(%). Since K is normal, being it compact and Hausdorff, we
can take an open neighborhood V' of fA(OZ/ ) such that V' C U, in view of @I)
Since clearly VN C(%) # 0, we have f~%(V) € %, by Claim 1, that is, (f~1(V))*

FY):Yew} 1tU
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is an open neighborhood of % . Take any ultrafilter ¥ € (f~}(V))*. By definition,

f)eN{fY):Y e ¥} C f(f~1(V)) CV CU. This proves that f is continuous.
The fact that f = fo ¢ follows immediately by Claim 2 and the fact that, for any
z € X, then clearly f(z) € {f(Y):z €Y} =: C(%,). Finally, if g : X — K is
a continuous function such that g ot = f, then ﬂb(x) = glux)- From the fact that

1(X) is dense in X and that K is a Hausdorff space it follows that f = g. O

9.2. The prime spectrum of a product of fields. Now we will give an interesting
application of the Stone-Cech compactification for describing the prime spectrum of
any product of fields.

(9.12) Remark. Let {K, : z € X} be a nonempty collection of fields, where X is
any index set, and consider the ring A :=[], .y K,. By definition, an element of A
is a function f: X — (J,cyx K, such that f(z) € K, for any z € X.

(a) For any x € X, m, :={f € A: f(x) = 0} is a maximal ideal of A, because it
is the kernel of the surjective ring homomorphism p, : A — K., f +— f(x).

(b) Note that if X is finite, then any prime ideal of A is of the form m,, for
x € X. As a matter of fact, let p any prime ideal of A and, for any x € X,
let f, € A be defined by

)1 ity #x
fm(y)'_{() ify=a

Since X is finite, the product [ [,y fs is defined and belongs to A and clearly
[L.cx f- = 0 € p. Since p is prime, f, € p, for some z € X. Moreover, for
any f € m, we have f = ff, € p. Thus m, C p and, since m, is maximal,
the equality holds.

(c) If X is infinite, the prime spectrum of A is much more complicated. This
intuition comes from the following easy observation. Let a := @ _ K, be
the direct sum of the collection {K, : € X}, that is,

a:={feA:{xeX: f(x)+#0} is finite}.

zeX

It is immediately seen that a is an ideal of A and, since X is infinite, it is a
proper ideal (1 ¢ a). Then, there is a maximal ideal m of A such that a C m.
But clearly, for any x € X, it happens that m # m,, since, if f, is the function
defined in part (b), then 1 — f, € a — m,.

(9.13) Lemma. Let A be a ring such that any element of A can be written as the
product of an invertible element of A and an idempotent of A. Then A is zero-
dimensional.

Proof. Let p be a prime ideal of A. We will show that A/p is a field. For any
a € A, let @ € A/p denote the class of a modulo p. Suppose that @ # 0 and take an
invertible element u € A and a idempotent e € A such that a = ue. Thus @ = ue
and, since the unique idempotents of an integral domain are 0, 1, we must havee = 1
(otherwise @ = 0). It follows @ = u, that is, @ is invertible in A/p. O

(9.14) Proposition. Any product of fields is zero-dimensional.
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Proof. Let {K, : x € X} be a nonempty collection of fields and let A := ]|
For any f € A define the elements u,e € A by setting

xeX

if 1 if
u(w) = @) i S@) £ 0 () = if (@) #0
1 if f(z) = 0 if f(z)=0
Clearly, u is an invertible element of A, e is an idempotent and f = wue. The
conclusion follows from (9.13)). O

Let {Kx D E X} be a nonempty collection of fields and let A := [ . K
In view of ) there is a natural injective map A : X — Spec(A) defined by
AMz) == my, for any z € X. By (3.9) and (9.14)), Spec(A) is a compact and Hausdorff
space. Thus, in light of the umversal property of the Stone-Cech compactification,
there exists a unique continuous function A : X —» Spec(A) such that Nov=A,
where ¢ : X — (X is the canonical topological embedding (now X is endowed Wlth
the discrete topology). In the next crucial result we are going to describe the map

X and to show that it is a homeomorphism.

(9.15) Theorem. Let {K, : © € X} be a nonempty collection of fields and let
A= T],ex Koo For any ultrafilter % on X let

py ={feA:{xeX: f(x)=0} e %}

(a) Then py is a prime ideal of A.

(b) Let A : X — Spec(A) be the map defined in the above discussion (A(z) :=
m,, for any x € X ), and let 1 : X — BX be the canonical topological em-
bedding. Then the unique continuous function N BX — Spec(A) such that
Nou = A, induced by the unversal property of the Stone-Cech compactification,
is defined by /):(02/) =Py, for any % € X, and it is a homeomorphism.

Proof. For any f € A, set Z; :={z € X : f(x) = 0}.

(a). For any f,¢g € py and any a € A we clearly have Zy N Z, C Z;y, and
Zy C Zgy. Since Zy, Zy € U, we have Zy N Z, € % and thus Zyy,, Zoy € %, that
is, f £g,af € py. Moreover Z; = () ¢ % . This proves that p4 is a proper ideal of
A. Take now elements f,g € A such that fg € py. Thus Z; U Z, = Z;, € % and,
by , either Zy € % or Z; € % . In other words, either f € py or g € py. Thus
pg, is a prime ideal of A.

(b). Let % be an ultrafilter on X and, as in the proof of the universal property of
the Stone-Cech compactification, let C'(%) := ({A\(U) : U € % }. Keeping in mind
(3-2c) we have

=N {izeli=V(m)=(VEf€A: flv=0}).

vew vew zelU Uew

Fix a set U € % and note that a function f € A is such that f|y = 0 if and
only if U C Z; and thus it follows Z; € %, that is f € py. This proves that
py € C(%). By Claim 1 of the proof of the universal property of the Stone-Cech

compactification, it follows that the unique continuous function A BX — Spec(A)
such that A ot = X is defined by setting AN(%) := py, for any Z € 5X. We claim
that A is injective. Take distinct ultrafilters 7,7 on X, fix aset U € % — ¥ and
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consider the function f € A such that

0 ifxeclU
flw) = {1 ifreX—U.

Then U = Z; € % — V', that is, f € py — py. In order to see that \is surjective,
take any prime ideal p of A and let G := {Z; : f € p}. Take elements fi,..., f, € p
and, in light of the proof of , take invertible elements uq,...,u, € A and
idempotents ey, ..., e, € A such that f; = u;e;, for 1 < i < n. Clearly, since p is a
prime ideal, e; € p, for 1 < i <n. If _, Z;, = 0, for any x € X there is an index
i € {1,...,n} such that f;(z) # 0 and, a fortiori, e;(x) # 0. Since e; = €7, we infer
that e;(x) = 1. It follows that [ (1 —e;) =0 € p, and thus 1 — e; € p, for some
1 < i < n. Thus we have 1 = (1 — ¢;) + ¢; € p, a contradiction. This argument
shows that G has the finite intersection property, and hence G can be extended to
an ultrafilter % on X, by . By definition, we have p C py and, by ,
p = py. Finally, \ s closed, being it a continuous function from a compact space
into a Hausdorff space (by and ) The conclusion is now clear. 0J

10. THE CONSTRUCTIBLE TOPOLOGY ON THE PRIME SPECTRUM OF A RING.

Let A be aring. As we saw in (3.2g), the prime spectrum Spec(A) of A, endowed
with the Zariski topology, is always a T space but it is Hausdorff if and only if A
is zero-dimensional, by . In the following, we are going to define and study a
new topology on Spec(A), introduced by A. Grothendieck, which refines the Zariski
topology and makes Spec(A) a compact and Hausdorff space.

(10.1) Definition. [10, (7.2.11)] If A is any ring, the constructible topology on
Spec(A) is the coarsest topology for which the open and compact subspaces of Spec(A)
(when equipped with the Zariski topology) are clopen sets. We will denote by Spec(A)®"s
the set Spec(A), endowed with the constructible topology.

(10.2) Remark. Let A be a ring.

(a) In view of (3.2f), the open and compact subspaces of Spec(A) are precisely
the subsets of the form (J!_, D(f;), where fi,..., f, € Aand n > 1, and they
form a basis B of open sets of the Zariski topology. Since, by definition, any
member of B is, in particular, open in Spec(A)®", the Zariski topology is
coarser than the constructible topology.

(b) By definition, a subbasis of open sets for Spec(A)®™ is

S := BU{Spec(A) — Q2 :Q € B},

and thus the collection of all finite intersections of members of S forms a basis
of open sets for the constructible topology. Such finite intersections are sets
of the form A := (L, (Spec(A4) — V(a;)) N(;=, V(b;), where the ideals a;, b;
are finitely generated. In other words, A = (Spec(A4) — V' (a)) U V(b), where
a=a;---a, and b = by +...+ b, (note that a and b are finitely generated).
If a:= (ai,...,a,)A, then A = J;_, D(a;) NV (b). Since, by definition, any
set of the form D(a) NV (i), where a € A and i is a finitely generated ideal of
A, is open in Spec(A)®"™ it finally follows that a basis of open sets for the
constructible topology is

Beons == {D(a) NV (i) : a € A, i finitely generated ideal of A}.
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Note that any set in By, is clopen in Spec(A)®ms.

(c) Spec(A)®™ is a Hausdorff space. Indeed, if p, q are distinct prime ideals of
A, take an element f € p —q. By definition, V(f), D(f) are disjoint open
neighborhoods of p, q, respectively, in Spec(A)®"s.

(d) Spec(A)®™ is totally disconnected. Indeed, if C' is any subset of Spec(A)
and p,q € C are distinct prime ideals, take an element f € p — q. Then, by
definition, ©; := D(f) N C,Qy := V(f) N C are nonempty, disjoint and open
subspaces of C' (with the subspace topology induced by that of Spec(A)®")
and C = Q; N y. Thus C is not connected.

By using just the definition, it is hard to provide an easy description of the closed
subsets, with respect to the constructible topology. We will do this by using ultra-
filters.

(10.3) Lemma. Let A be a ring and Y be a nonempty subset of Spec(A). The
following properties hold.

(a) Let % be an ultrafilter on'Y . Then,
Yy ={acA:V(a)NY € %}

is a prime ideal of A, called the ultrafilter limit point of Y (with respect to
the ultrafilter %).

(b) For any prime ideal p € Y, let k, denote the residue field of A at p (that
is, Ky is the quotient field of A/p or, equivalently, the residue field of the
local ring A,). Consider the ring Ay = 1_[&,J and let A\ : A — Ay be

pey
the canonical ring homomorphism (i.e., for any a € A, then A a) € Ay is
the function defined by Aa)(p) == a+p € A/p C Ky, for any p € Y. If
A* : Spec(Ay ) — Spec(A) is the canonical map induced by X, then

X (Spec(Ay)) = {Yy : % ultrafilter on Y'}.
Proof. Clearly, it is sufficient to prove part (b). By (9.15]), we have
Spec(Ay) = {py : % ultrafilter on Y},

where py ={f € Ay : Zy € %} and Z; .= {p € Y : f(p) = 0}. Now, for every
a€ A,

Iy ={p €Y : Ma)(p) =0} ={p €Y :a+p=0in A/p} =V(a)NY.

It follows immediately that, for any ultrafilter 7 on Y, A™'(p4) = Y. The con-
clusion is now clear. O

(10.4) Example. Let A be a ring.

(a) If Y is a subset of Spec(A), p € Y and %, is the trivial ultrafilter on Y
generated by p, then p =Yy,

(b) If A = Z,Y := Max(A) and % is any nontrivial ultrafilter on Y, then
Yn = (0). Indeed, if n € Z and V(n)NY € %, then V(n) NY is infinite,
since % is nontrivial, and thus n = 0 (any nonzero integer has only finitely
many prime factors).

(10.5) Definition. Let A be a ring and let Y C Spec(A). We say that Y is
ultrafilter closed if Yy €Y, for any ultrafilter % on'Y .
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(10.6) Example. Let A be a ring.

(a) For any ideal a of A, then V(a) is ultrafilter closed. Indeed, let % be an
ultrafilter on Y := V(a) and let @ € a. Then V(a)NY =Y € %, that is,
a € Yy . This proves that, a C Yy, ie., Yy €Y.

(b) For any element f € A, then D(f) is ultrafilter closed. Indeed, if % is an
ultrafilter on Y := D(f), then f ¢ Y, (otherwise, ) = V(f)NY € %,
contradiction), that is, Yy € Y.

(¢) If A:=7Z and Y := Max(A), then Y is not ultrafilter closed, by (10.4b).

The proof of the following result is straightforward and it is left to the reader as
an exercise.

(10.7) Lemma. Let A be a ring, X C Spec(A) and Z be an ultrafilter on X.

(a) If U € %, then |y :={V C U :V € %} is an ultrafilter on U and the
equality of prime ideals X = Uy, holds.

(b) If X CY C Spec(A), then %Y :={T CY :TNX €U} is an ultrafilter on
Y and Xy =Yy .

(10.8) Proposition ([7] and [3, Remark 2.7(3)]). Let A be a ring. Then the ultra-
filter closed subsets of Spec(A) form the collection of the closed sets for a (unique)
topology on Spec(A). We will call such a topology the ultrafilter topology.

Proof. Clearly, () and Spec(A) are ultrafilter closed.

Now, suppose that Y, Z C Spec(A) are ultrafilter closed and let % be an ultrafilter
on Y U Z. By definition, T := Y U Z € % and thus, by , we can assume,
without loss of generality, that Y € %. By (10.7h), % |y is an ultrafilter on Y and
Ty =Yy, and Yy, € Y C T since Y is ultrafilter closed. Thus 7' is ultrafilter
closed.

Let G be a nonempty collection of ultrafilter closed subsets of Spec(A), let X :=
(G and let % be an ultrafilter on X. By ), forany Y € G, " is an ultrafilter
onY and Xy =Y,y € Y, since Y is ultrafilter closed. It follows X4 € NG =: X,
proving that X is ultrafilter clsoed. O

We recall now the following useful and basic fact about General Topology.

(10.9) Remark. Let X be a set and let 7,U be topologies on X, such that (X,7)
is compact, (X,U) is Hausdorff and U is coarser than 7. Then, 7 = U. Indeed, any
continuous function from a compact space to a Hausdorff space is closed, and thus
the identity (X,7T) — (X,U), which is continuous since U is coarser than T, is a
closed map, i.e., it is a homeomorphism. In other words, U = T.

(10.10) Theorem ([7, Theorem 8] and [3, Corollary 2.17]). Let A be a ring. Then
the constructible topology and the ultrafilter topology on Spec(A) are the same topol-

0qgy.

Proof. Let 2 an open and compact subspace of Spec(A), with respect to the Zariski
topology. As we saw in ), Q=U~,(D(f:)), for some fi,..., f,, € A, and thus
Spec(A) — Q =N, V(fi) = V(a) where a = (fi,..., fo)A. In view of and
of the fact that the ultrafilter topology is a topology (see ), it follows that
2, Spec(A) — Q are ultrafilter closed, that is, that € is clopen, with respect to the
ultrafilter topology. Then, by definition, the ultrafilter topology is finer than the
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constructible topology. By ) and , the conclusion will follow from the
following claim.

Claim. Spec(A) is compact, with respect to the ultrafilter topology.

Let G be a nonempty collection of ultrafilter closed subsets of X := Spec(A) and
assume that G has the finite intersection property. By we can extend G to an
ultrafilter % on X. We claim that the ultrafilter limit point Xy belongs to (1G. To
prove this, take any set Y € G and note that Y € %, since % extends G. Then, by
, % |y is an ultrafilter on Y and X4 = Yy, €Y, since Y is ultrafilter closed.
The proof is now complete. 0

From the previous theorem and the claim in its proof the following corollary
immediately follows.

(10.11) Corollary. Let A be a ring. Then Spec(A)®™ is compact.

(10.12) Corollary. Let A be a ring. Then the constructible topology is equal to the
Zariski topology on Spec(A) if and only if A is zero-dimensional.

Proof. Note that A is zero-dimensional if and only if the Zariski topology on Spec(A)

is compact and Hausdorff, by (3.3) and (3.9)). Apply (10.9) and ((10.11)) to get the

conclusion. m

(10.13) Proposition. Let f: A — B be a ring homomorphism. Then the canon-
ical map f* : Spec(B) — Spec(A) is continuous and closed, when Spec(A) and
Spec(B) are endowed with the constructible topology.

Proof. Since, by (10.2c) and ((10.11)), Spec(A)®", Spec(B)®" are compact and Haus-
dorff spaces, it suffices to show that f* : Spec(B)® — Spec(A)®™ is con-

tinuous. Let © be an open and compact subspace of Spec(A), with the Zariski
topology, say Q@ = ., D(a;), for some ai,...,a, € A. In view of (3.5h), we

have f*1(Q) = UD(f(al-)) is open and compact (with respect to the Zariski
i=1

topology) and Spe_c(B) — Q) = V(f(ar),..., f(ay)). By definition, we in-
fer that both f*'(Q) and Spec(B) — f*'(Q) are open in Spec(B)°™. Hence
f* : Spec(B)“"s — Spec(A)®™ is continuous, by (10.2p). O

In the following Y will denote the closure of a subset ¥ C Spec(A), with respect
to the constructible topology.

(10.14) Proposition ([3, Proposition 2.13]). Let A be a ring and let Y C Spec(A).
Then,

Y" ={Yy : U ultrafilter on Y'}.

Proof. By (10.3p) and (10.13)), the set Y’ := {Y} : % ultrafilter on Y'} is closed
in Spec(A)®". Furthermore, by (10.4p), ¥ C Y’. Take now any closed subset
C' C Spec(A)®™ such that Y C C and take an ultrafilter limit point Yy of Y, for
some ultrafilter 7 on Y. By ), % © is an ultrafilter on C' and Yy = Cyc. By
, C' is ultrafilter closed and thus Y, € C. The conclusion is now clear. O

(10.15) Corollary. Let A be a ring and let Y C Spec(A). Then, the following
conditions are equivalent.

(i) Y is closed in Spec(A)®"s.
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(ii) There is a ring homomorphism f : A — B, for some ring B, such that
Y = f*(Spec(B)).
Proof. (ii)==(i) follows from the fact that f* : Spec(B)®" — Spec(A)®™ is a

closed map (see ((10.13))).
(i)==(ii). Apply (10.14)) and ((10.3p). O

Recall that a subset of a topological space X is called to be locally closed if it is
intersection of an open subset and a closed subset of X. Following Chevalley, we say
that a subset of a topological space is constructible if it is a finite union of locally
closed subsets. The following remark will justify the terminology choosen for the
constructible topology.

(10.16) Remark. Let A be a ring. In (10.2b) we observed that a basis of clopen
subsets for the constructible topology of Spec(A) is

Beons := {D(a) NV (i) : a € A, i finitely generated ideal of A}.

(a) Any clopen subset of Spec(A)®™ is constructible, with respect to the Zariski
topology. As a matter of fact, a clopen 2 of Spec(A)®"™ is a union of a
suitable subfamily of B.,.s, being it open and it is compact, because it is
closed in the compact space Spec(A)®™ (see (10.11)). It follows that € is
a finite union of members of B.,,s. Thus the conclusion follows by noting
that Beons consists of locally closed subspaces of Spec(A) (with the Zariski
topology).

(b) If Spec(A), with the Zariski topology, is a Noetherian space, then the con-
structible subsets of Spec(A) are precisely the clopen subsets of Spec(A)®".
Indeed, for any ideal a of A, the open subset 2 := Spec(A)—V (a) of Spec(A) is
compact, by noetherianity, and thus Q = |J_, D(f;), for some fi,..., f,, € A.
It follows V'(a) = V(f1,..., fn). Hence, a locally closed subset of Spec(A) is
of the form I' := V(a) N (Spec(A) — V' (b)), for some finitely generated ideals
a,b of A. In view of ), I' is clopen, with respect to the constructible
topology. Finally, it is enough to note that a finite union of clopen subsets
of a topological space is clopen.

11. SPECTRAL SPACES.

(11.1) Definition ([12]). A topological space is spectral if it is homeomorphic to
the prime spectrum of a ring, endowed with the Zariski topology.

By (3.2f), the collection B := {D(f) : f € A} of all principal open subsets of
the prime spectrum of a ring A is a basis for the Zariski topology, consisting of
compact subspaces, by ) Note that B is closed under finite intersections, since
we have D(f) N D(g) = D(fg), for any f,g € A. Thus, any spectral space has
a basis of open and compact subspaces which is closed under finite intersections.
Moreover, in view of , a spectral space is compact. Finally, given a ring A
and an irreducible closed subset C' of Spec(A), there is a unique prime ideal p of
A such that C' = V(p) = {p}, in view of ,e,g). We infer that any irreducible
closed subspace of a spectral space X is the closure of a unique point x € X (the
topological spaces satisfying this condition are called sober spaces). In particular, a
spectral space is T\.
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Thus, any spectral space is compact, sober and has a basis of open and compact
subspaces which is closed under finite intersections. In his thesis, M. Hochster
showed much more.

(11.2) Theorem ([I2, Proposition 4]). For a topological space X the following
conditions are equivalent.

(i) X is a spectral space.
(il) X is compact, sober and has a basis of open and compact subspaces which
15 closed under finite intersections.

The proof of the nontrivial part of this theorem ((ii)==(i)) is hard and requires
several difficult techniques which seem not so close to the goals of this course. For
this reason we will not present the proof of (ii)==-(i).

We now classify Hausdorff spectral spaces.

(11.3) Corollary. Let X be a Hausdorff space. Then, the following conditions are
equivalent.

(i) X is a spectral space.
(ii) X is compact and it admits a basis consisting of clopen subsets.

Proof. (i)==(ii). It is sufficient to note that an open and compact subspace of a
Hausdorff space is clopen and apply the remarks above or the trivial part of .

(ii)==(i). Since X is compact, a clopen subspace of X is compact too. Thus X
has a basis of open and compact subspaces closed under finite intersections, namely
the collection of all clopen subspaces of X (note that the intersection of finitely many
clopen sets is clopen). Moreover X is clearly sober since the irreducible subspaces
of a Hausdorff space are the singletons. Then, it is sufficient to apply (11.2). O

(11.4) Lemma. Let X be a compact and Hausdorff space, and let x € X. Then
ﬂ{C’ : C is clopen in X and z € C'}

15 a connected subspace of X.

Proof. We argue by contradiction, and take nonempty disjoint closed subspaces I'; A
of @ :=({C : Cis clopen in X and = € C'}, with respect to the subspace topology,
such that Q = T'UA. Note that I', A are closed in X, since @ is closed in X. Since
X is a Ty space, being it compact and Hausdorff, there are open and disjoint subsets
U,V of X such that U D T and V' O A. Consider now the collection

G:={C:Cisclopenin X and z € C}U{X — (UUV)}

of closed sets of X. Since X — (UUV) C X — @, we have (|G = 0 and thus, by
compactness, G has not the finite intersection property. Hence, there are finitely

many clopen subspaces C1,...,C,, of X such that x € ﬂ C; and satisfying
i=1

ﬁcm(X—(UUV))—Q,
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that is, z € Q C C := ﬂC’i C U UV. Assume, without loss of generality, that

=1
x € U. We have immediately
UNCCcliuCc=0UnCNnUuV)=UNC.

This proves that U N C' is a clopen set of X and, since clearly x € U N C, we have
QCUNC. ThusACVNCVNUNC)CVNU and, since A # (), we deduce
V NU # (), a contradiction. O

(11.5) Proposition. Let X be a compact Hausdorff and totally disconnected space.
Then X has a basis of clopen sets. In particular, X is a spectral space.

Proof. Let €2 be an open subset of X and let z € €2. Consider the collection
G:={C:Cisclopenin X and z € C} U{X — Q}
of closed subsets of X. Since X is totally disconnected and
ﬂ{C : C'is clopen in X and z € C'}
is connected, in view of , we infer that
{z} = ﬂ{C’ : C'is clopen in X and x € C}.

Thus (G = 0 and, by compactness, there are finitely many clopen subsets C, . .., C,,
of X such that z € C' :=(_, C; C Q. From the fact that C'is clopen the conclusion
immediately follows. The last statement is a consequence of ((11.3)). OJ

The next goal is to find explicitly a ring whose prime spectrum is homeomorphic
to a given compact Hausdorff totally disconnected space.

(11.6) Theorem. Let X be a topological space and let A(X) be the ring of all
continuous functions X — Fy, where Fy is equipped with the discrete topology. The
following properties hold.
(a) A(X) is zero-dimensional.
(b) For any x € X, consider the mazimal ideal m, := {f € A(X) : f(z) = 0}
of A(X) (m, is the kernel of the canonical surjective ring homomorphism
A(X) — Fy, f— f(x)). Then, the map 7 : X — Spec(A(X)), x — m, is
continuous.
(¢) If X is compact, then T is surjective.
(d) If X is compact, Hausdorff and totally disconnected, then T is a homeomor-
phism.

Proof. Since any element of A(X) is idempotent, statement (a) follows immediately
from ((9.13).

(b). Take any function f € A(X). Then clearly 7='(D(f)) = f~'({1}) is open,
since f is continuous. This proves that 7 is continuous.

(c). Take any prime ideal p of A(X) and let F :={f~'({0}): f ep}. UNF =0,
then {f~1({1}) : f € p} is an open cover of X. By compactness, there are finitely
many fi,...,f, € p such that X = U, f~1({1}). It follows immediately that
[I-,(1 = fi) =0 € p and, by primality, 1 — f; € p, for some 1 <i <n. Then 1 € p,
a contradiction.

(d) Take distinct points x,y € X. Since X is, in particular, a T; space, then
X — {y} is an open neighborhood of z. Since X is compact, Hausdorff and totally
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disconnected, there is a clopen set C' of X such that + € C' C X — {y}, by (L1.5).
It follows that the function f: X — 5 such that

0 ifzeC
f(z)'_{1 ifreX—C

is, by definition, continuous, that is, f € A(X). Moreover f € m, — m,. This
proves that 7 is bijective. The fact that 7 is a homeomorphism is an immediate
consequence of the previous parts, of the fact that X is, in particular, compact, and

that Spec(A(X)) is Hausdorff, by part (a) and (3.9). O

In the following definition, we essentially extend the notion of the constructible
topology to any topological space.

(11.7) Definition ([12]). Let X be a topological space. The patch topology on X
is the coarsest topology for which the open and compact subspaces of X are clopen
sets. We shall denote by XP**M the set X equipped with the patch topology.

By definition, if X := Spec(A), then the patch topology and the constructible
topology are equal.

(11.8) Remark. Let X be a Ty space with a basis of open and compact subspaces.
Then, XPh is a Hausdorff space and the patch topology is finer than the given
topology on X. As a matter of fact, take z,y € X and = # y. By assumption, there
is an open and compact subspace U of X such that x € U and y ¢ U. By definition,
U, X — U are clopen disjoint neighborhoods of x, y, respectively. The last statement
follows by definition.

(11.9) Lemma. Let X be a spectral space and let f : Spec(A) — X be a home-
omorphism. Then, f : Spec(A)®" — XPat js q homeomorphism. In particular,
Xrateh s g compact space.

Proof. By definition, a subbasis of open sets for XPatch jg

Spaten = {2, X — Q : Q open and compact in X}.
Since f is a homeomorphism, f~1(£2) is open and compact in Spec(A), for any open
and compact subspace Q of X, and thus f~1(Q) is clopen in Spec(A)®™. This
proves that f~!(U) is open in Spec(A)©™, for any U € Spaten, that is, the map
f : Spec(A)ens — XPatch g continuous. Moreover, f : Spec(A)ens —; Xpaich

is bijective and closed, since Spec(A)°™ is compact (see (10.11)) and XPatch g
Hausdorff, by (11.8). Thus f : Spec(A)<s —s XPatch ig 3 homeomorphism. O

Surprisingly, compactness of certain topological spaces, equipped with the patch
topology, is crucial to show if such spaces are spectral, as the following result proves.

(11.10) Theorem ([12, Corollary to Proposition 7]). For a topological space X, the
following conditions are equivalent.

(i) X is a spectral space.

(ii) X is Ty, has a basis of open and compact subspaces and XP*" is compact.

Proof. (i)==(ii). Apply the trivial part of (11.2)) and ((11.9).

(ii)==(i). Let B be the collection of all open and compact subspaces of X. By
assumption, B is a basis of X. By definition, B is a collection of clopen sets in the
compact space XP2h Thus, in particular, an intersection of finitely many members
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of B is closed in XP*" and thus it is compact both in the compact space XPatch

and in X since, by (11.8)), the topology of X is coarser than the patch topology.
This proves that B is closed under finite intersection. Moreover, X is compact, since
Xrateh jg compact. Now let C' be an irreducible closed subspace of X and let

G:={UNC :U open and compact in X and UNC # 0}

Since the patch topology is finer than the given topology on X, then G is a collection
of closed subsets of XP2h  Moreover, since C' is irreducible, then G has the finite
intersection property. Since XP*! is compact, there is a point 7o € ()G, and clearly
{zo} C C. Conversely, take a poin x € C' and let V' be an open neighborhood of x.
By assumption, there is an open and compact subspace U of X such that z € U C V.
Then UNC # (), that is, UNC € G, and thus zy € UNC, in particular. This proves
that C' = {xo}. The conclusion follows from . 0J

(11.11) Corollary. Let X be a spectral space and let §2y, . . ., be open and compact
subspaces of X. Then (\;_, % is (open) and compact. Thus the basis of all open
and compact subspaces of X is closed under finite intersections.

Proof. Each €; is clopen in XP*" and thus Q := ()., is closed in XP*" in
particular, and thus it is compact in the compact space XP*! (in view of [11.10)).
Since, by , the patch topology on X is finer than the given spectral topology
of X, it follows that 2 is compact in X. OJ

In the applications it may be not so easy to discuss compactness of XPah thus we
will provide now a more direct and powerfur criterion for deciding when a topological
space X is spectral, based on ultrafilters.

Take any set X and fix a nonempty collection § of subsets of X. For any ultrafilter
% on X and any subset Y of X, set

Y(U) =Ys(%) ={zeX:[VSeS§,(xeS < SNY e %)|}.
The set Y (%) is called the ultrafilter limit set of Y, with respect to % . Since S will

be always fixed, we will not mention it in the terminology.

(11.12) Example ([3, Example 2.1(2)]). Let A be a ring, X := Spec(A4) and

S = {D(f) : f € A} be the collection of principal open subsets of X. Take any

subset Y of X and any ultrafilter % on Y and consider the ultrafilter limit point
Yy ={x e A:V(@)nY e}

of Y, with respect to % (see (10.3))). Then, by definition Ys(%) = {Yu#}.

(11.13) Theorem ([3, Corollary 3.3]). Let X be a topological space. Then, the
following conditions are equivalent.
(i) X is a spectral space.

(ii) X is a Ty space and has a subbasis S of open sets such that, for any ultrafilter
U on X, the ultrafilter limit set Xs(%) is nonempty.

Proof. (i)==(ii). Since X is a spectral space, the collection S of all open and
compact subspaces of X is a basis of X (in particular, a subbasis), by the trivial
part of (11.2). For any ultrafilter % on X set

U ={X—-S:SeS—WU(SN).
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By (0.5), * C % and thus it has the finite intersection property. Moreover, by
definition, % * consists of clopen sets of XP"  Since, in view of , Xpatch
is compact, there is a point z € ((%*. We claim that = € Xg(%). To prove
this, fix aset S € §. If x € Sand S — X € %, then X — S € %* and thus
x € X — S, a contradiction. Thus x € S implies S € % . The converse is trivial,
since SN¥% C wU*.

(ii)==(i). By definition, the collection of sets B := {(\U : U C S,U finite} is a
basis of open sets for X.

Claim 1. B consists of compact subspaces of X.

As a matter of fact, the generic element of B is of the form B :=(;_; ¥;, for some
Y1,.., %, € 8. By the Alexander subbasis Theorem it suffices to prove that any
open cover of B consisting of sets of S admits a finite subcover. Take a subcollection
V of S such that B C |JV and assume that V has not finite subcovers. Then the
collection of sets {B —V : V € V} has the finite intersection property and, by ,
it can be extended to an ultrafilter %7 on X. By assumption, there is an element
zo € Xs(%). Choose any set V' € V and note that from B—V C Band B—V € %
it follows B € % and, a fortiori, ¥4,...,%, € %. Since ¥q,..., %, € S, 2y € Xs(%)
implies zy € (), ¥; =: B. Furthermore, since V C S and B —V € %, for any
VeV, xy € Xs(%) implies xy ¢ V, for any V' € V. This contradicts the inclusion
B C |JV. The proof of Claim 1 is now complete.

Claim 2. XP# js compact.

Recall that a subbasis of open sets for the patch topology on X is, by definition,
the collection

Spaten = {2, X — Q : Q open and compact in X}.

Again by the Alexander subbasis theorem, it suffices to prove that if H is a subcol-
lection of Spaten and an (open) cover of X, then H has a finite subcover. Suppose
this is not the case. As before, the collection G := {X — H : H € H} has the finite
intersection property and can be extended to an ultrafilter % on X. By assump-
tion, there are a point 2o € Xs(%) and a set Hy € H such that zy € Hy. Since
H C Spateh, there is an open and compact subspace {2 of X such that either Hy = (2
or Hy = X — €. Since €2 is open and compact and B is a basis of X, there are
finitely many sets By, ..., B, € B such that Q = J_, B;. If Hy = , take an index
¢t such that xo € B; and, since B; € S, take finitely many Si,...,S,, € § such that
B, = ﬂ;nzl S;j. The fact that o € S;, for 1 < j < m, and that o € Xs(% ) imply
that S; € %, for 1 < j < m, and thus Hy € %, since B; = (;_, S; € % and
B; C Hy. On the other hand, from Hy € H and G C % it follows X — Hy € %, and
thus () € %, a contradiction.
Suppose now that Hy = X —Q = (), (X — B;). Since zy € Hy and each B; is
a finite intersection of members of S, for any i € {1,...,n} there is a set T; € S
such that g € X —T; C X — B;. Since zg € X5(% ), we have X —T; € % and, a
fortiori, X — B; € %, for 1 <i <mn. Thus Hy = (\_,(X — B;) € % and this leads
to a contradiction, as before.
Now the conclusion is an immediate consequence of Claim 1, Claim 2 and ([11.10).
O

(11.14) Example (3| Proposition 3.5]). Let A, B rings such that A is a subring of
B, and let R(B|A) be the set of the subrings C' of B such that A is a subring of C.
Consider the natural topology on R(B|A) whose subbasic open sets are the sets of
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the type U(x) := {C € R(BJA) : x € C'}. Then R(B|A) is spectral. As a matter of
fact, we first observe that X := R(B|A) is a T space. This is obvious, because if
C,D € X and x € C' — D then C € U(z) and D ¢ U(zx). Take now any ultrafilter
% on X and set
Ay ={xeB:Ux) e %}.

We claim that A5 € X. Indeed, 0 € Ay, since U(0) = X € % and, if z,y € Ay,
then U(z) N U(y) € %, by definition. Since clearly U(z) N U(y) C U(x — y),
U(x)NU(y) € U(xy), we have, a fortiori, U(x — y),U(xy) € % and, in other
words, © — y,zy € Agy. Thus, Ay is a subring of B. Finally, U(a) = X, for any
a € A, and thus A C Ay . This proves that Ay € X. Moreover, by definition, if
S:={U(z) : x € B}, then Ay € Xs(%). Thus the conclusion follows from (11.13).

(11.15) Example. Let K be a field, D be any subring of K and let Zar(K|D) be
the set of all valuation rings V' of K (i.e., K is the quotient field of V') such that
D is a subring of V. In the particular case D := (0) Zar(K|D) will be denoted by
Zar(K) and it consists of all valuation domains of K. Clearly, Zar(K|D) is a subset
of R(K|D) and thus it can take the subspace topology induced by the topology
on R(K|D) defined in (11.14). Such a topology on Zar(K|D) is called the Zariski
topology and clearly a subbasis of open sets of Zar(K|D) consists of the sets of the
form BX(z) := B(x) := Zar(K|D[z]), for x € K. The set Zar(K|D), equipped
with the Zariski topology, is usually called the Riemann-Zariski space of K over D.
Being it a subspace of the Ty space R(K|D), the space Z := Zar(K|D) is Ty. Take
any ultrafilter 7 on Z and define Ay := {x € K : B(z) € % }. The same argument
given in (11.14) proves that Ay € R(K|D). Furthermore, we claim that Ay is a
valuation domain of K. To do this, take any nonzero element x € K and assume
that © ¢ Ay . By definition, B(z) ¢ % and thus Z — B(x) € % . Since the elements
of Z are, in particular, valuation domains we have Z — B(z) C B(x™!) and thus
B(x™') € %, meaning that z=! € Ay . This shows that A, € Z and, by definition,
for any © € K, Ay € B(x) if and only if B(z) € % . This proves that Ay € Zs(%),
where S := {B(z) : € K}. By (11.13), Zar(K|D) is a spectral space.

12. A RING WHOSE PRIME SPECTRUM IS HOMEOMORPHIC TO Zar(K|D).

This section is motivated by the last example of the previous one: in (11.15)) we
showed that, for any field K and any subring D of K, the Riemann-Zariski space
Zar(K|D), endowed with the Zariski topology, is a spectral space. The proof we
gave is based on the ultrafilter criterion (11.13]) and thus it is not constructive. Our
aim is to give now a constructive proof of (11.15): we will find a ring B, namely
a Bézout domain, such that Spec(B) is homeomorphic to Zar(K|D). First, we will
need some tool on valuation theory.

(12.1) Definition. For any local ring A, let my denote the mazimal ideal of A.
If A, B are local rings, we say that B dominates A, and we write A <4 B, if A is
a subring of B and my = ANmpg (i.e., my Cmp).

(12.2) Proposition. Let L be a field and let
Ly :=L:={D: D is a local subring of L}.
The following properties hold.
(a) <4 is a partial order on L.
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(b) Suppose that V' is a maximal element of (L, <4). If A is a subring of K such
that V C A and there ezizts a prime ideal of A lying over the maximal ideal
of V., then A=V.

(c) For any A € L there is a mazimal element B € L, under <4, such that
A<,y B.

(d) Valuation domains of L are precisely the maximal elements of (L, <g4).

Proof. Part (a) is straightforward.
(b) Let m be the maximal ideal of V' and let p be a prime ideal of A such that
pNV =m. Then A, € L, since A, is local and contains V', and moreover

pA, NV =pA,NANV =pNV =m.

It follows V' <p A, and, by maximality of V, V = A = A,.

(c) Restrict the partial order <; to the nonempty set L4 := {B € L: A <; B},
And consider a chain C := {B; : i € I} C L4, with respect to <. For any i € I,
let m; be the maximal ideal of B;, and set B := J,.; Bi,m := |J;.; m;. Thus B is a
ring, since it is the union of a chain of subrings of L and m is an additive subgroup
of L, being it the union of a chain of additive subgroups of L. Take elements m € m,
b € B, take indexes i,j € I such that m € m; and b € B;. If B, <4 B;j, then
m € m; € m;. It follows b € m; C m. If B; <; B;, then b € B; C B;, and thus
bm € m; C m. This proves that m is an ideal of B, and clearly m # B. Take a non
invertible element x € B and an index ¢ € [ such that x € B;. A fortiori, x is not
invertible in B;, and thus x € m; C m, since B; is local. This proves that m is the
set of all non invertible elements of B, that is, that B is a local ring and B € L.
By definition B; <; B, for each ¢ € I, that is, B is an upper bound for the chain C.
Then the conclusion follows by Zorn’s Lemma.

(d). Suppose that V' is a maximal element of (£, <;), and take an element = €
L — V. Then V[x] is a subring of L and properly contains V. If m is the maximal
ideal of V and the ideal m[z] of V'[z] is proper, then there is a maximal ideal n of V[z]
such that m[z] C n, and this implies m C m{z]|NV CnNV C V, that is, n lies over
m. By part (b) it follows V' = V{[z], a contradiction. This proves that m[z] = V|[z]
and then 1 = mo+miz+...+myuz", for some my, ...,m;, € m. The element 1 —my is
clearly invertible in V. If X := (1—mg)~!, then 1 = dmyx+. ..+ mya". By dividing
both sides of the previous equality for 2" we get (z71)" = Amy(z7)" 1+ ...+ Amy,.
This proves that x~! is integral over V, that is, V' C V[z~!] is an integral extension.
By the lying over Theorem, there is a prime ideal of V[z~!] lying over m. Then, by
part (b), V = V[z!], that is, 7! € V. This proves that V is a valuation domain
of L.

Conversely, assume that V' is a valuation domain of L. Thus, in particular, V € L.
Take alocal ring A € £ such that V' <; A and assume, by contradiction, that A # V/,
that is, V- C A. Take an element x € A — V' and note that, since V' is a valuation
domain, 7! € my. Moreover we have my C my, since V <; A, and thus 27! € my4.
Since z € A, it follows 1 € my, a contradiction. The proof is now complete. O

(12.3) Corollary. Let A be a subring of a field L and let p € Spec(A). Then A, is
dominated by some valuation domain of L.

Proof. Tt is enough to apply parts (¢) and (d) of (12.2)). O
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(12.4) Remark. Let K C L be a field extension and let W be a valuation domain
of L. Then it is easily seen that W N K is a valuation domain of K. Furthermore,
W dominates W N K.

(12.5) Corollary. Let K C L be a field extension and let V' be a valuation domain
of K. Then there is a valuation domain W of L such that W N K = V. Such a
valuation domain W is called an extension of V' to L.

Proof. By ,d), V' is dominated by some valuation domain W of L. Keeping
in mind that my C myy, it easily follows that the valuation domain W N K of K
dominates V. Since both V and W N K are valuation domains of K, then (12.2d)
implies V =W N K. O

Let A be an integral domain with quotient field L. Then the canonical map
0 : Zar(L|A) — Spec(A) defined by 6(V) := my N A, where my is the maximal
ideal of V, is called the domination map of A.

(12.6) Proposition ([I, Lemma 2.1 and Proposition 2.2]). Let A be an integral
domain with quotient field L. The following properties hold.

(a) The domination map 0 : Zar(L|A) — Spec(A) is continuous and surjective.
(b) If A is a Prifer domain, then 0 is a homeomorphism.

Proof. (a). Let p be a prime ideal of A. By (12.3), the local overring A, of A is
dominated by some valuation domain V', i.e., A, €V and myNA, = pA,. It follows
immediately §(V') := my N A = p. This proves that ¢ is surjective. Now, consider
a principal open set D(a) of Spec(A), for a fixed element a € A. If V' € Zar(L|A),
then clearly §(V) := my N A € D(a) if and only if a=* € V. This proves that
6~1(D(a)) = B(a™") and thus, by (3.2f), ¢ is continuous.

(b). Assume that A is a Priifer domain, and let VW € Zar(L|A) such that
(V) =46(W) =:p. It follows immediately that A, is dominated by both V' and W.
Since A is a Priifer domain, A, is a valuation domain, and thus it is maximal under
domination, by ) It follows A, =V = W, proving that ¢ is injective. Finally,
we show that 0 is open. By definition, a basis of open sets for Zar(L|A) consists
of finite intersections of sets of the type B(z), where x € L. Since we know that
J is injective, it suffices to prove that §(B(z)) is open in Spec(A), for any = € L.
We claim that §(B(x)) = Spec(A) — V(a), where a := {a € A : ax € A}. As
a matter of fact, let p € Spec(A). If p € 6(B(x)), we have A, € B(z), since A,
is the unique point of the space Zar(L|A) which is mapped to p by d, being A a

Priifer domain. It follows x = —, for some a € A,s € A — p, and thus s € a — p.
s

Thus a € p. The previous implications can be easily reversed, and thus the equality
d(B(z)) = Spec(A) — V(a) is proved. O

The following notion will be crucial to provide a representatio of a Riemann-Zariski
space as a spectrum of a ring.

(12.7) Definition ([I1]). Let K be a field and let T be an indeterminate over K. A
subring H of K(T') is called to be an K-Halter-Koch ring if the following properties
are satisfied:

(a) T, T~ € H;

(b) for any nonzero polynomial f € K[T), then @ € H (ie, f(0)e fH).
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(12.8) Remark. Let K be a field and let 7" be an indeterminate over K. The
following properties immediately follow from the definition.

(a) If H is a K-Halter-Koch ring and H' is a subring of K(T") such that H C H’,
then H' is a K-Halter-Koch ring.

(b) If H is a nonempty collection of K-Halter-Koch rings, then (H is a K-
Halter-Koch ring.

We now investigate about some fundamental properties of K-Halter-Koch rings.

(12.9) Theorem ([I1, Theorem 2.2|). Let K be a field, let T be an indeterminate
over K and let H C K(T') be a K-Halter-Koch ring. The following properties hold.
(a) The quotient field of H is K(T).
(b) If f = fo+ iT+...+ f, T" € K[T), then the equality fH = foH +...+ f, H
of H-submodules of K(T') holds.
(¢) H is a Bézout domain.

Proof. (a). It is sufficient to show that K[T] is contained in the quotient field of H.
In order to prove this, take a polynomial f € K[T] and set Fy :=1+Tf € K[T|. By

1 F¢(0
condition (b) of the definition, we have h := S (©) € H. It follows that
1+7Tf Fy
1—-h
f= T is an element of the quotient field of H, keeping in mind that T" € H, by
definition.

(b). The fact that T € H easily implies fH C foH + ...+ f,H. Conversely, it

is sufficient to show, by induction, that f; € fH, for any 0 < i < n. By part (b) of
0

definition we have fy = % € H, that is, fo € fH. Assume now that 0 < h < n

and that f; € fH, for any 0 < j < h, and set g := fr,+ fo1T+...+ fuT™" € K[T).

Clearly we have

h—1
g=T"(f=>_fT)) € fH
=0
since T~" € H, by definition, and f; € fH, for 0 < j < h — 1. Thus we have
gH C fH. Again by part (b) of the definition, f, = ¢(0) € ¢H C fH. Now the
statement follows by induction.
(c). Take two rational functions «, 5 € H. It suffices to show that («, 5)H is

principal. Take polynomials f,g,h € K[T|, where h # 0, such that o := %, 8=
9 If n is a natural number greater than the degree of f, then part (b) easily
implies (f,g)H = (f + T"g)H, and thus («, 5)H = (o + T"B)H. The proof is now
complete. 0

(12.10) Example. Let K be a field, T' be an indeterminate over K, and let V'
be a valuation domain of K. Let v denote any valuation on K determining the
ring V. For any nonzero polynomial f := fo + 1T + ...+ f,T" € K[T] define
V'(f) = inf{v(fo),v(f1),...,v(fn)}. Tt is easily seen that v’ extends to a valuation
v, of K(T') defined by setting vg(é) = (f)—=v'(h), for any f,h € K[T] with h # 0.

The valuation domain of v, is called the Gaussian extension of V to K(T') and it is
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usually denoted by V(T). It clear that V(T)N K =V, i.e, V(T') is an extension of
V to K(T).

(a) Let m be the maximal ideal of V.. Then V(1) = V[T ). As a matter of fact,
for any polinomial f := fo+ ...+ f,7" € V[T] — m[T] we have v(f;) > 0,
for 0 < i < n, since f € V[T], and moreover v(f;) = 0 for some j, since
f ¢ m[T]. It follows v,(f) = 0, that is, f is invertible in V(7T'), and thus
V[T )wm € V(T). Take now a rational function

 fot+r AT+ ..+ I
" ho+ T+ ...+ hy,TT

where f:= fo+ iT+ ...+ T, h:=ho+MT+ ...+ h, T € K[T], and
thus, by definition, inf{v(f;) : 0 <i <n} > inf{u(h;) : 0 < j < m} =:v(h).
It immeditaly follows that #, # eV, for0<i<nand0<j<m, and
1
h
thus hi e V[T, € V[T] — m[T], and this proves that o € V[T ]z
! !
(b) We prove now that V(7T') is a K-Halter-Koch ring. Clearly we have v,(T") =
v (T™1) = v(1) = 0, and thus 7,7~ € V(T). Moreover, for any nonzero
polynomial f:= fo+ fiT + ...+ f,1T" € K[T], we have

vg(m) =v(fo) —inf{v(fo),v(f1),..,v(fa)} >0,

f
/(0)

that is, — € V(T). The conclusion is now clear.
(12.11) Example. Let K be a field, T' be an indeterminate over K and let Y be a

nonempty subset of Zar(K). In view of (12.8b) and (12.10b), Hy := oy V(T) is
a K-Halter-Koch ring.

(12.12) Remark. Let K C L be a field extension. In view of (12.4) and (12.5)), we
can define a natural surjection 7 : Zar(L) — Zar(K) by setting m(W) := W N K,
for any W € Zar(L). Then 7 is continuous, since clearly 7= *(B%(z)) = BX(x), for
any r € K.

e V(T),

(12.13) Proposition ([4, Proposition 3.1)). Let K be a field, T be an indetermi-
nate over K and 7 : Zar(K(T)) — Zar(K) be the continuous surjection defined in
(12.19). Then the restriction of w to Zy := {V(T) : V € Zar(K)} is a homeomor-
phism of Zy with Zar(K).

Proof. The restriction ¢ : Zy — Zar(K) is clearly a continuous bijection since, for
any V € Zar(K), o(V(T)) = V. We have to show that ¢ is open. In order to
prove this, keeping in mind that ¢ is bijective, it is sufficient to verify that, for any
0#a€e K(T), p(ZoN B(a)) is open in Zar(K). Set

CL0+(11T—|—...—|—(ITTT

=

bo+ 0T +...4+bT5’
where a;,b; € K for 0 < i < r,0 < j < s. Fix a valuation ring V(1) € Z,, for
some V' € Zar(K), let v be a valuation defining v and v, the corresponding valuation
defining V(T'). Then V(T') € B(«) if and only if vy(c) > 0, that is, if and only if

() inf{v(a;) : 0 <4 <r}>inf{u(b;): 0 <5 <s}.
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Now let M :={(7,7) : 0<i<r,0<j<s,aj,b; # 0} and, for any (4, j) € M, set

; b

F; ::{a—,@,—”:ogAgr,ogugs}.
bj a; j

Then (x) easily implies that ©(Zo N B(®)) = U jyenr(Myer, B(x)). The proof is

now complete. 0

(12.14) Proposition ([4, Proposition 3.3]). Let K be a field, T be an indetermi-
nate over K, and let H be a K-Halter-Koch ring. Then Zar(K(T)|H) consists of
Gaussian extensions of valuation domains of K. Precisely, if W € Zar(K(T)|H)
and V=W NK, then W =V (T).

Proof. Let w be a valuation on K(7T') defining W. By definition, v := w|x is a
valuation on K defining V. Fix a nonzero polynomial f := fo+ fiT + ...+ f,T" €
K[T). Since H C W, then W is a K-Halter-Koch ring, by (12.8h). Since 7,7~ € W
we have w(T) = 0. Thus
w(f) > inf{w(f;) : 0 <i<r}=inf{o(f;): 0 <i<r}=:v4(f)

On the other hand, by ), fH=foH+...+ f.H, and thus f; € fH, for 0 <
i <r. Take elements h; € H such that f; = fh;, for 0 <i <r. Thus w(h;) > 0, for
any 0 < i < r, since H C W. It follows that v(f;) = w(f;) = w(f) + w(h;) > w(f),
for 0 < ¢ < r, and thus vy(f) > w(f). This proves that w|xi = vy|kr, that is,
w = vg. The conclusion is now clear.
(12.15) Corollary. Let K be a field, T be an indeterminate over K and let H be a
subring of K(T'). Then, the following conditions are equivalent.

(i) H is a K-Halter-Koch ring.

(ii) H is integrally closed and Zar(K(T)|H) consists of Gaussian extensions of

valuation domains of K.

Proof. (i)==(ii). Apply (12.9¢) and (12.14]), keeping in mind that any Bézout do-
main is integrally closed, being it a Priifer domain, in particular.
(ii)==(i). By assumption, H is the intersection of a collection of Gaussian exten-

sions of valuation domains of K. Then, it suffices to apply . OJ
(12.16) Theorem ([4, Corollary 3.6]). Let K be a field, D be a subring of K and T
be an indeterminate over K. If H := ﬂ V(T), then the following properties
VeZar(K|D)
hold.
(a) The canonical map n : Zar(K(T)|H) — Zar(K|D), W — WNK, is a
homeomorphism.
(b) The canonical map o : Zar(K|D) — Spec(H), V + myy N H, is a home-
omorphism.

Proof. (a). As in (12.13)), let Zy := {V(T) : V € Zar(K)}. In view of (12.14)), we
have Zar(K(T)|H) = {V(T) : V € Zar(K|D)} C Z,. Thus 7 is the restriction to
Zar(K (T)|H) of the homeomorphism ¢ : Zyg — Zar(K) presented in (12.13). The
conclusion immediately follows by noting that ¢(Zar(K(T)|H)) = Zar(K|D).

(b). Let 0 : Zar(K(T)|H) — Spec(H) be the domination map. Clearly we have
o = don . Being H a K-Halter-Koch ring , H is a Bézout domain (see
(12.9¢)) and, a fortiori, a Priifer domain. Thus § is a homeomorphism, by )
Then it suffices to apply part (a). O
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13. THE ORDER INDUCED BY A TOPOLOGY.

(13.1) Definition. Let (X, T) be a topological space. Then the preorder <s (which
will be denoted by < when there is no danger of confusion) on X defined by setting

r<y: < ye{a}

1s called the preorder induced by the topology of X. Note that < is a partial order
on X if and only if X is a Ty space.

(13.2) Example. Let X be a topological space.

(a) If X is a Ty space, then the partial order < is trivial, by definition.

(b) If A is a ring and p,q € X := Spec(A), endowed with the Zariski topology,
then p < q if and only if p C q, by (3.24).

(c) If Ais a subring of B and C, D € X := R(B|A), with the topology defined
in (11.14), then C < D if and only if D C C. Indeed, if D € {C} and d € D,
then U(d) is an open neighborhood of D and thus C' € U(d), i.e., d € C.
Conversely, assume that D C C and take an open neighborhood of D. By
definition, there are finitely many elements z1,...,x, € B such that D €
Nie, U(x;) C U. Tt follows, zy,...,2, € D C C, ie., C € (N, U(z;) C U.
This proves that D € {C}.

(13.3) Definition. Let (X, =) be a partially ordered set. We say that a topology T
on X is order-compatible with <, or that =< and T are order compatible, provided
that the preorder <r induced by T is an order (i.e., X is Ty) and it coincides with
<.

We will provide a classification of all partial orders on a set X which are order-
compatible with some spectral topology on X. First, we will characterize all topolo-
gies which are order-compactible with a fixed partial order.

If (X, <) is a partially ordered set and z € X, the set 27 :={y € X : x <y} is
called specialization of x.

(13.4) Proposition. Let (X, =) be a partially ordered set and let T be a topology
on X. Then, the following conditions are equivalent.
(i) T is order-compatible with <.
(ii) The following properties are satisfied:
(a) For any x € X, the set xt is closed in (X, T).
(b) If C is a closed subset of (X,T) and x € C, then ™ C C.

Proof. Let < denote the order induced by T.

(i)==(ii). Fix a point z € X and and element y € X —x". By assumption, < and
< are the same order, and thus y ¢ {z}. Take any open set Q, of (X, 7) such that
y € Qyandz ¢ Q. Then clearly y € Q, C X —a7. It follows X =2 = U, cx_,+ L,
that is, X — 2" is open. This proves statement (a). Take now a closed subset C' of
(X, T) and elements x € C,y € z7. Since < is the order induced by the topology
T, we infer y € {z} C C, and thus y € C. Thus statement (b) is proved.

(il)=>(i). Assume (ii) and that = < y, that is y € 2. For any closed subset C' of
(X, T) such that x € C we have, by statement (b), ™ C C and, a fortiori, y € C.
This shows that y € {z}, that is < y. Conversely, assume that y € {z}. Since, by
statement (a), 7 is a closed subset of (X,7T) and x € z™, it follows {z} C =™ and,
a fortiori, y € 2™, that is, x < y. The proof is now complete. O
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(13.5) Example. Let (X, <) be a partially ordered set.

(a) Consider the topology 7, on X for which the collection {z* : 2z € X} is a
subbasis for the closed sets. Then, 7; is the coarsest topology on X which

is order-compatible with <. As a matter of fact, take a closed subset C of
(X, Ti). By definition, C' = (,.; D; where D; = | J7*, y;, for suitable elements

i€l j=1
yij € X. Thus, if z € C, for any i € [ there is an index j(i) € {1,...,n;} such
that = € y;;(i), Le., Yij) = «. It immediately follows that = C C. By ((13.4),
7T, is order-compatible with <. By statement (a) of (13.4)), any topology on
X which is order compatible with < is finer that 7j.

(b) It is easy to verify that the collection of subsets
{CC X :forany x € C,zt C C}

of X is the family of closed sets for a topology on X, and we will denote such
a topology by 7. Clearly, for any x € X and any y € 2, we have y* C x™,
that is, ™ is closed in (X, 7z). Thus, by (13.4), 7, is order compatible with
=< and clearly any topology on X which is order-compatible with =< is coarser
than 77.

(c) Let T be any topology on X which is order compatible with <. Then, for
any r,y € X,

ye{r) <= <7y & 2=y <= yeca,
that is {z} = x™.

(d) If X is finite and and C' := {xq,...,2,} C X is closed, with respect to T,
we have z;7 C C, for any 1 < i < n. It follows C = J_, ;, that is, C is
closed, with respect to T;. It follows that 7; = T, that is, there is a unique
topology on X which is order-compatible with <.

(13.6) Proposition. Let X be a finite Ty space. Then X is spectral.

Proof. Clearly any subset of X is compact. Moreover XP! is compact, being it
finite. Thus the conclusion follows from ((11.10)). 0J

(13.7) Corollary. Let (X, =) be a finite partially ordered set. Then there is a
unique spectral topology on X which is order-compatible with <.

Proof. By (13.5d) T is the unique topology on X which is order compatible with
=< and, by definition, (X, 7z) is Ty. Then it suffices to apply ((13.6]). O

(13.8) Proposition ([I2] Proposition 14]). Let (X, <) be a partially ordered set.
Then, there is at most one Noetherian spectral topology on X which is order com-
patible with <.

Proof. Let T, 7T’ be Noetherian spectral topologies on X which are order-compatible
with <, and let C' be a closed subset of (X,7). Since (X,7T) is Noetherian, C' is
union of only finitely many irreducible components, say C1, ..., C,, in view of ,
and they are clearly closed in (X,7). Since the topology T is spectral, for each

1 < i < n there is a point z; € C; such that C; = {z;} (any spectral space is sober).
Thus, since 7, 7" are order-compatible with < and applying (13.5¢), C; = 2;* is the
closure of {z;} also with respect to the topology 7’. Thus C is closed in (X,77),
being it finite union of closed sets. The converse part is done by exchanging the role
of T and T". O
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(13.9) Proposition. Let X,Y be Noetherian spectral spaces. Let X, Y be endowed
by their natural structures of partially ordered sets induced by the topologies. If
f: X — Y is an order-isomorphism (i.e., f is bijective and both f, f~1 are order
preserving), then f is a homeomorphism.

Proof. Let C be a closed subset of Y. Keeping in mind the proof of , there are
elements ¢y, . .., ¢, € C such that C = J;_, ¢;7. Keeping in mind that f is an order-
isomorphism and (13.5F), it follows that f~(C) = U, f~" ()" = U, (7))},
and thus f is continuous. Apply the same argument to f~! to show that f~! is
continuous. 0

The problem of finding explicitly a ring whose prime spectrum is order isomorphic
(and then homeomorphic, by to a given finite partially ordered set was solved
by Lewis in 1973. In the following we will present an easy example which will put
in evidence the crucial role of fiber products for producing such constructions. We
start from an easy remark.

(13.10) Remark. Let K be any field, let 7" be an indeterminate over K and, for
any A € K let py := (T — M) K[T]. Given pairwise distinct elements as,...,a, € K,
consider the multiplicative subset S := K[T]—J;_, pa, and let A := K[T]s. Keeping
in mind the Prime avoidance Lemma and applying properties of localization, we infer
that Spec(A) is homeomorphic and order isomorphic to {(0),p,, : 1 <i <n}. Thus
A has precisely n maximal ideals, namely m; := p,, A, for 1 < i < n. Furthermore,
we easily infer that A/m; = K, for 1 < i < n (an isomorphim is induced by the
extension to A of the canonical ring homomorphism K[T] — K, f — f(«;)).

(13.11) Example. Consider the finite X := {a,b, ¢, d, e, f}, partially orderd by an
order = whose Hasse diagram diagram is

a b c

N
V%

By ) and , the unique topology 77 which is order compatible with the
given partial order is spectral. We will find a ring D such that Spec(D) is order
isomorphic (X, <) (and, a fortiori, Spec(D) is homeomorphic to X, endowed with
the unique topology inducing <, by . Take a field K, an indeterminate T" over
K, distinct elements «, 8 € K and consider the multiplicative subset

S = K[T) - (T~ )K[T] U (T — B)KIT))

of K[T]. By ([13.10), the prime spectrum of the ring B := K[T'|g is order isomorphic
to the subset {d, e, f} of X, and the residue fields of the two maximal ideals m,, mg
of B are isomorphic to K. Now choose K := L(U), where L is any field and U is
an indeterminate over L. Consider pairwise distinct elements A1, Ao, A3 € L and set

A := L[U]x, where

e

%= LIU] = (U = X)L[U)),

i=1
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and note that A C K. Again by , Spec(A) is order isomorphic to the subset
{a,b,c,e} of X. By the Chinese Remainder Theorem, the canonical ring homomor-
phism 7 : B — (B/m,) x (B/mg) = K x K is surjective. Since K x A is a subring
of K x K, we can consider the ring D := 771 (K x A). By applying and
it follows that Spec(D) is order isomorphic to X.

(13.12) Proposition. Let X be a spectral space and let
O :={X —Q:Q open and compact in X} U {X}.

Then there is a (unique) topology on X for which O is a basis of open sets. This
topology is called the inverse topology (with respect to the given spectral topology)
on X. We will denote by X™ the set X, endowed with the inverse topology. More-
over, if Y C X, we will denote by Y the closure of Y, with respect to the inverse
topology.

Proof. 1t suffices to note that O is closed under finite intersection. As a matter of
fact, if €, Q" are open and compact in X, then QU Q' is open and compact too, and
thus (X —Q)N(X -Q) =X —-(QUQ) €. O

The following result justifies the choice of the terminology.

(13.13) Proposition. Let X be a spectral space. The following properties hold.
(a) X™ 4s a Ty space.
(b) If z,y € X, < is the order induced by the topology of X and <; is the order
induced by the inverse topology, then

Ty <<= Yy

Proof. (a). Take distinct points z,y € X. Since X is spectral, it is Ty, and thus
there is an open set U of X such that z € U, y ¢ U. Moreover, since X has a basis
of open and compact subspaces (being it spectral), there is an open and compact
subspace of X such that x € Q C U. Since y ¢ U, then y ¢ Q, a fortiori. Thus
V := X —Q is, by definition, an open neighborhood of y, with respect to the inverse
topology, and = ¢ V. It follows that X™ is a T, space.

(b). Assume x < y and let U be an open neighborhood of z, with respect to
the inverse topology. By definition, there is an open and compact subspace €2 of
X such that x € X —Q C U. Since x < y and X — ) is closed in X, it follows

ye{r} CX-QCU. It follows = € {y}l. Conversely, assume that y <; x and
let V' be an open neighborhood of y, with respect to the given spectral topology of
X. Since X is spectral, there is an open and compact subspace {2 of X such that
y € Q2 C V. By definition, the set € is closed in X v and, keeping in mind that

ygix,wehavexeglQQQV,thatis,yem. O
(13.14) Theorem (Hochster duality [12, Proposition 8]). Let X be a spectral space.

Then, the following properties hold.
(a) The collection

O :={X —Q:Q open and compact in X} U{X}

is a basis of open and compact subspaces of X'V,
(b) X™ s a spectral space and the patch topology of X™ is equal to the patch
topology of X.
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(c) (X™)™ s X

Proof. (a). The inverse topology on X is coarser than the patch topology of X,
since, by definition, the members of O are clopen in XP*"  Since X is spectral,
then XPatch js compact, by and thus the members of O are compact in XPatch,
being them, in particular, closed in XPah A fortiori, they are compact as subspaces
of X.

(b) Let V be an open and compact subspace of X'™. Being it open, V is a union
of a subcollection of O@. By compactness, we can assume that such a subcollection
is finite. Thus V' = |JI_, (X — ), for some open and compact subspaces y, ..., {,
of X. Since X is spectral, (;_, ; is compact in X, in view of , and thus
V=UL_X-Q) =X-N_,Q € 0. It follows that O is precisely the set of all
open and compact subspaces of XV,

Now, let B be the basis of open and compact subspaces of X, and let 7 be a
topology on X. Since B :={X —U : U € O}, B is a collection of clopen sets for T if
and only if O is a collection of clopen sets for 7. It follows that the patch topology
of X and the patch topology on X' are the same topology. Keeping in mind part
(a) and (11.10)), it follows that X™ is spectral.

(c). By the proof of part (b), O consists precisely of the open and compact
subspaces of X™. By definition, a basis of open sets for the inverse topology of
X is given by the complements of the members of O, that is, such a basis is
precisely B. The proof is now complete. O

14. TOPOLOGY AND IRREDUNDANT INTERSECTIONS.

(14.1) Definition ([I4]). Let D be a set and let A,C be subsets of D such that
ACC. If X is a fized collection of subsets of D and F C D, set

V(F):={BeX:FCB} UF):=X—V(F)

and, with a small abuse of notation, set V(d) := V({d}),U(d) = U({d}), for any
deD.

We say that X is C-representation of A if A = (\gzcyx BN C. Moreover, we will
say that a C-representation X is spectral if X is a spectral space and the collection
of sets {U(d) : d € D} is a subbasis of open and compact subspaces of X. When X is

a C-representation of A and C := D, we will simply say that X is a representation
of A.

(14.2) Remark. Preserve the notation of and let X be a topological space,
whose points are subsets of D, such that {{/(d) : d € D} is a subbasis of open sets
for X. Then, the order induced by the topology is the inclusion C.

As a matter of fact, let G, H € X and assume that G < H, i.e., H € @ Then
g € G is equivalent to G € V(g) and, since V(g) is, by definition, closed in X, it
follows H € {G} C V(g) and, in particular, g € H. This proves that G C H.

Conversely, assume that G C H and let 2 be an open neighborhood of H. By
definition, there is a finite subset I of D such that H € (. U(f) C Q. Since

G C H, we infer that G € (\;cpU(f). It follows G € Q, and thus H € {G}.

(14.3) Proposition ([14, Lemma 3.2]). We preserve the notation of and
assume that X is a spectral C-representation of A. Then X contains a minimal
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closed C-representation of A (i.e., a closed subset of X that is minimal, under
inclusion, among closed C-representations of A).

Proof. Let ¥ be the collection of all closed (in X) C-representations of A, partially
ordered by inclusion D. The set ¥ is clearly nonempty, since X € X. Let C C ¥ be a
chain and let Y := (| C. Then Y is clearly closed in X (being it intersection of closed
subsets of X'). We want to show that Y is a C-representation of A. The inclusion
A C (Ngey BN C is obvious. Conversely, take an element d € [\gey BN C. It
follows Y C V(d) and, in other words, U(d) C (J,co(X —T). Since, by assumption,
U(d) is compact, the open cover {X — T : T € C} of U(d) has a finite subcover and,
keeping in mind that C is a chain, it follows that there exists a set T € C such that
U(d) € X —T*. In other words, T* C V(d) and, since T* is a C-representation
of A, being T* € ¥, we have d € (e BN C = A. This argument proves that
A= \gey BNC, that is, Y € ¥. The conclusion follows immediately by applying
Zorn’s Lemma. O

(14.4) Definition. We preserve the notation of and let Z be a C-representation
of A. We say that a set B € Z is irredundant in Z if A C ﬂ HnC.
HeZ,H#B
(14.5) Remark. We preserve the notation of (14.1) and assume that Z C Z’ are
C-representations of A. If B € Z is irredundant in Z’, then B is irredundant in Z
too. Indeed we have
A=(VHnC=(JHnCS () HnCcc (] HNC
HeZ HeZ' HeZ',H#B HeZ,H#B
If X is a spectral space and Y C X, we will denote the closure of Y in the patch
topology by Y.
(14.6) Proposition ([I14, Lemma 3.3]). We preserve the notation of and

assume that X is a spectral C-representation of A. If Z C X is a C-representation
of A and B € Z, then B is irredundant in Z if and only if B is irredundant in Z" .

Proof. First, assume that B is irredundant in Z. By definition, there exists an
element d € D — B such that d € H, for any H € Z — {B}. It follows that
Z CV(d)u{B}. By (11.8), the patch topology of X is finer than the given spectral
topology of X and Hausdorff. It follows immediately that V(d) U {B} is closed in
the patch topology of X, and thus Z C V(d) U {B} implies Z* C V(d) U {B}. We
infer that Z° — {B} C V(d), and thus, since d ¢ B,

(1 EnCc2 () HnC,
HeZP H+#B HeZ"®
meaning that B is irredundant in zv. B
The converse part is obvious, keeping in mind that Z C Z° and |D 0

(14.7) Proposition ([I4, Lemma 3.3]). We preserve the notation of and
assume that X is a spectral C-representation of A. If Z C X is a C'-representation
of A and B € Z is irredundant in Z, then B is an isolated point of Z, equipped with
both the spectral and the patch subspace topology.

Proof. Take an element d € (1), z2uzpH NC and d ¢ B. Then we easily obtain

Z —{B} = ZNV(d). Keeping in mind that V(d) is closed both in the spectral
topology and in the patch topology of X, in view of (11.8)), the conclusion follows. [
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Let X be a topological space, ¥ C X and < be the preorder induced by the
topology. Then the set

YSp::Uy+:{x€X:x2y, for some y € Y}
yey

is called the specialization of Y.

(14.8) Remark. Let X be a topological space and let Y C X. Then clearly
Y C Y*P and the equality holds whenever Y is closed. Indeed,i_f Y 13 closed and
xr € Y take an element y € Y such that x > y. It follows x € {y} CY =Y.

(14.9) Proposition ([6, Lemma 1.1]). Let X be a spectral space and let'Y be a
subset of X. Then the following equality Y = (Y")*® holds.

Proof. By (|11.8)), the patch topology of X is finer than the given spectral topology,
and thus we have Y C 7._By (14.8) we immediately infer that (Y")® C Y.
Conversely, take a point x € Y and let

F :={QNY":Q open and compact in X,z € Q}

Since x € Y, F consists of nonempty sets and, in view of , it is closed under
finite intersections. It follows that JF is a collection of closed subsets of XPa*h with
the finite intersection property. Since X is spectral, XP* is compact, by ,
and thus there is a point zy € (| F. Since open and compact subspaces of X form

a basis for the topology of X, it immediately follows that z € {x(}, that is, z > xo.
The conclusion is now clear. [

If (X, <) is a partially ordered set, let Min(X) (resp., Max(X)) denote the set of
all minimal (resp., maximal) elements of X.

(14.10) Proposition. Let X be a spectral space and let x € X. Then, there are
elements y € Min(X),z € Max(X) such that y < x < z (where < is the order
induced by the topology of X ).

Proof. By assumption, there are some ring A, a homeomorphism f : Spec(4) — X
and consider the prime ideal p := f~'(x) of A. By Zorn’s Lemma, there are a
maximal ideal m of A and a minimal prime ideal n of A such that n C p C m.
It is easily verified that f is an isomorphism of partially ordered sets, being it
a homeomorphism, and thus it is sufficient to take y := f(n),z := f(m) to get
the conclusion, keeping in mind that the order of Spec(A) is the inclusion (see

(13.2b)). O

(14.11) Proposition. Preserve the notation of , let X be a spectral C-
representation of A. Then, Min(X) # 0 and it is a C-representation of A.

Proof. By ((14.10]), Min(X) is nonempty. Clearly, A C CﬂﬂBeMin(X) B. Conversely,
take an element d € C'N ﬂBGMm(X)B and fix a set H € X. Keeping in mind

(14.2) and (14.10), we can pick a set B € Min(X) such that B C H. Since d €
: B we have d € H. Since X is a C-representation of A, we infer that
BeMin(X)

A=CNNyex H 2 CN\pemincx) B- The conclusion is now clear. O

(14.12) Corollary. Preserve the notation of , let X be a spectral C-representation
of A, and let Y C X be a nonempty closed set. Then'Y is a C-representation of A
if and only if Min(Y") is a C-representation of A.
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Proof. Keeping in mind (3.6p), Y is a spectral subspace of X. Then, it is sufficient
to apply (14.11)). O

(14.13) Definition. We preserve the notation of and let X be a spectral C'-
representation of A. A subspace of X of the form Min(Y'), for some minimal closed
C-representation Y of A, is a C-representation of A, by , and it is called a
minimal C-representation of A.

In view of (14.11]), any spectral C-representation of A contains a minimal C-
representation of A.

(14.14) Proposition ([14, Lemma 3.5]). Preserve the notation of , let X be
a spectral C'-representation of A and let Z C X be a minimal C-representation of
A. Then, the following statements hold.

(a) Z is a minimal closed C-representation of A.

(b) Z" is a minimal C-representation of A, among the the closed C-representations
of A, with respect to the patch topology of X .

(¢) We have Z = Min(Z) = Min(Z") and Z = Z*.

Proof. By definition, there exists a minimal closed C-representation I' of A such
that Z = Min(I'). Keeping in mind that I is closed, we have Z C I'. Since Z is
a closed C-representation of A, the minimality of I' implies Z = T, proving that Z
is a minimal closed C-representation of A. Furthermore, the last equality implies

Z = Min(2).

Since Z C Z", it follows that Z" is a C-representation of A. Now, let Y be a
C-representation of A such that Y C Z° and Y is closed, with respect to the patch
topology of X. We want to show that Y = Z°. By , Y*®P is closed in X and
it is a C-representation of A, since Y C Y*®P. Moreover, again by , we have
Y C (Z°)® = Z. Since, by part (a) (which we proved before), Z is a minimal
closed C-representation of A, we infer that Y = Z. By applying (14.10)) to the
spectral subspace Z of X, it is easily shown that (Min(Z))® = Z = Y*® and, since

we have already proved that Z = Min(Z), we deduce that
Y = (Min(Z2))® = Z*.
Moreover, since, by definition, the elements of Z are pairwise not comparable, we
have Z = Min(Z*P). It follows that
Min(Y) = Min(Y*P) = Min(Z*?) = Z (%)

and, in particular, Z C Y. Since, by assupmption, Y C Z° and Y is closed in the
patch topology of X, it finally follows Y = Z* and, by (%), Z = Min(?p). It remains
to show that Z = Z*. Since Z = Min(Z), then Z® = (Min(Z))® = Z. The proof
is now complete. O

If X is a topological space and Y C X, we will denote by )3 the interior of Y.
(14.15) Proposition ([15, Lemma 2.5]). Let X be a spectral space and let v € X.
Then, the following conditions are equivalent.

(i) « is a minimal point of X (with respect to the order induced by the topology).
(i) If Y is an open neighborhood of x in XP*N then x E}?.
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Proof. (i)==(ii). Let Y be an open neighborhood of x in XP#" and assume, by

contradiction, that x §Z}3 By definition, for any open and compact subset €2 of X
such that = € Q we have Q € Y. Keeping in mind (11.11)), it follows that

F={QN (X -Y):QC X open and compact,z € Q}

has the finite intersection property and, by definition, it consists of closed subsets
of XPatch  Then implies that there is a point xy € [|F. Since open and
compact subspaces of X form a basis for the topology, it easily follows that zo < x
and, since x is minimal, xy = z, a contradiction, since zo € (|F € X — Y, but
rey.

(i)==(i). By contradiction, assume that there exists a point y € X such that
y < z. Thus, x € @ and there exists an open and compact subspace U of X such
that y € U and = ¢ U. By definition, Y := X — U is an open neighborhood of x in

Xpateh “and thus, by assumption E}g. Then, there is an open neighborhoof V' of x

(in X) such that V C Y. Since z € {y}, it follows y € V and, a fortiori, y € X — U,
a contradiction. O]

(14.16) Proposition. Let X be a spectral space. Then, the subspace topologies
induced on Min(X) by the given spectral topology and by the patch topology are the
same.

Proof. Let U be an open set of Min(X), equipped with the subspace topology in-
duced by the patch topology of X. Then, there is an open subset Y of XP#h gych
that U = Min(X) NY. By (14.15), we have U =Y NMin(X) and thus U is open
in Min(X), with respect to the subspace topology induced by the given spectral
topology of X. 0

(14.17) Proposition. Let X be a spectral space and let Y be a closed subset of X,
with respect to the patch topology. Then the following properties hold.

(a) Y is a spectral space, endowed with the subspace topology induced by the given
spectral topology of X .

(b) The patch topology of Y is equal to the subspace topology induced by the patch
topology of X.

(¢) The inverse topology of Y is equal to the subspace topology induced by the
inverse topology of X.

Proof. Let Ti (resp., Tz) denote the patch topology of Y (resp., the subspace topology
induced on Y by the given spectral topology of X). Let A be the collection of all
open and compact subspaces of (Y, 73). We want to show the following claim.

Claim. A={QNY :Q C X open and compact}.

The inclusion D is easy: indeed, any set of the form Q2 NY (Q open and compact
in X) is closed, with respect to the patch topology of X. Since XP* is compact,
in view of (11.10), the set Y N Q is compact in XP2h and, a fortiori, it is compact
in X, by (11.8)). Conversely, let U be an open and compact subspace of (Y, 7s), and
let V' be an open set of X such that U =V NY. Since open and compact subspaces
form a basis of X, for any u € U there is an open and compact subspace €2, of X
such that v € ©, C V. Since U is compact and U C | J{Q, : v € U}, there is a
finite set I of U such that U C Q* := [J,,cp Q@ € V. Then Q* is clearly open and
compact and U =Y N Q*, proving the claim.
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Now, let 73 denote the subspace topology induced on Y by the patch topology of
X. By the claim, A is a collection of clopen sets of (Y, 73) and thus, by definition,
71 is coarser that 73. Since Y is closed in the compact space XP2l then (Y, T;3) is
compact and, a fortiori, (Y, 77) is compact. Moreover, since A is clearly a basis for
(Y, T2), implies that (Y, 7z) is a spectral space, proving (a). Keeping in mind
that both (Y, 77), (Y, 73) are compact and Hausdorff spaces and that 77 is coarser
than 73, it follows 77 = T3, in view of . Part (c) is an immediate consequence
of the Claim. The proof is now complete. OJ

(14.18) Proposition. Preserve the notation of (14.1), let Z C X be C-representations
of A, and assume that X is spectral and Z is minimal (see (14.13)). Then, the spec-
tral and the patch topologies of X induce the same topology on Z.

Proof. By definition, there is a minimal closed C-representation Y of A such that

Z =Min(Y). By (11.8), Y is closed in XP**h Thus the conclusion follows immedi-
ately from ([14.16)) and ({14.17)). O

(14.19) Definition. Preserve the notation of , let Z C X be C-representations
of A, and assume that X s spectral. We say that a set B € Z is strongly irredun-
dant in Z if the unique closed subset Y of V(B) such that Y U (Z — {B}) is a
C-representation of A is Y = V(B).

(14.20) Remark. Preserve the notation of (14.1), let Z C X be C-representations
of A, and assume that X is spectral. If B € Z is strongly irredundant in Z, then B
is irredundant in Z. Indeed, Y := () is a proper closed subset of V(B) and thus, by
definition, Y U (Z — {B}) = Z — { B} is not a C-representation of A.

Clearly, the notion of irredundance and strong irredundance are not equivalent.
In the next result a topological criterion for irredundance in minimal representations
is given. For such representations, irredundance and strong irredundance will turn
out to be equivalent.

(14.21) Theorem ([14, Theorem 3.6]). We preserve the notation of (14.1). Let
Z C X be C-representations of A, and assume that X is spectral and Z is minimal
(see ) If B € Z, then the following conditions are equivalent.
(i) B is irredundant in Z.
(ii) B is strongly irredundant in Z.
(iii) B is isolated in Z, endowed with the subspace topology induced by the spectral
topology of X.

Proof. (ii)==(i) and (i)==-(iii) follow from and (14.7), respectively (and
without any extra assumption on 7).

(iii)==(ii). First, note that V(B) = {B}, in view of , and thus B € Z
implies V(B) C Z. Let Y be a closed subset of V(B) such that Y U (Z — {B}) is a
C-representation of A. A fortiori, Y UZ — {B} is a closed C-representation of A and
YUZ — {B} C Z. Since Z is a minimal C-representation of A, then Z is a minimal
closed C-representation of A, in view of . Then we have Y U Z — {B} = Z.
Moreover, since B is isolated in Z, by assumption, we have B ¢ Z — {B}. Since
B e Z, it follows B € Y and thus V(B) = {B} C Y, because Y is closed. It follows
V(B) =Y. The conclusion is now clear. O
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(14.22) Definition. We preserve the notation of . Let X be a spectral C-
representation of A. We say that a C-representation Z C X is irredundant (resp.,

strongly irredundant) if any set B € Z is irredundant (resp., strongly irredundant)
m 4.

(14.23) Proposition. We preserve the notation of (14.1). Let Z C X be C-
representatzons of A, and assume that X is spectral and Z 18 mmzmal (see (m ).

Then Z contains at most one irredundant C'-representation of A. More precisely, if
[ C Z" is an irredundant C-representation of A, then T is the set of isolated points
of Z (endowed with the subspace topology induced by the spectral topology of Z ).

Proof T is a C-representation of A, being I' C T, and thus by ) we have
I’ = 7" Take aset B € I'. Since B is 1rredundant in I, 1mphes that B is
irredundant in Z° and hence B is isolated in Z*, with respect to the patch topology.
Thus, since {B} is open in Z° and Z is dense in Z', we have B € Z. This shows
that ' C Z. Keeping in mind and , aset B € Z isisolated in Z if and
only if B is irredundant in Z°. Thus, if B is isolated in Z, then it is isolated in Z°
(with respect to the patch topology) and, since I' is dense in Z". we infer B € T.
Conversely, if B € I', then it is irredundant in I, by assumption, and thus B is
irredundant in T" = Z", and this is equivalent to state that B is isolated in Z. [

We now provide a topological criterion for the existence of an irredundant repre-
sentation in a minimal representation.

(14.24) Theorem (14, Corollary 3.7]). We preserve the notation of . Let
Z C X be C-representations of A, and assume that X is spectral and Z is minimal
(see ). Then, the following conditions are equivalent.

(i) Z contains an irredundant C'-representation of A (or, equivalently, a strongly
irredundant C-representation of A, in view of )

(ii) The set of isolated points of Z is dense in Z, with respect to the topology
induced by the spectral topology of X.

Proof. (i)==(ii). Let I' C Z be an irredundant C-representation of A. Then, T
is a C-representation of A such that T" C Z° and, in view of ), =2
Keeping in mind , it follows that I is dense in Z, with respect to the subspace
topology induced by the spectral topology of X. Then condition (ii) follows from
(T4.23).

(ii)==(i). Let Y be the set of isolated points of Z and assume, by contradiction,
that A= CNNgey B S CN(\gey B- Take an element d € C'N () 5.y B such that
d ¢ A. Then, there is a set B’ € Z such that d ¢ B’. Since, by assumption, Y is
dense in Z, the nonempty open set U(d) N Z of Z must intersect Y. On the other
hand, d € C'N(\zey B implies Y C V(d), a contradiction. It follows that Y is a
C-representation of A and, by , it is irredundant. O

(14.25) Definition. Let X be a topological space. We say that X is scattered if
any nonempty subset Y of X contains a point that is isolated in Y .

We start with some simple property that characterize scattered spaces.

(14.26) Proposition. Let X be a topological space. Then, the following conditions
are equivalent.

(i) X is scattered.
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(ii) Any nonempty closed subset C' of X contains a point that is isolated in C.
(iii) For any nonempty subset Y of X, the set {y € Y : y is isolated in Y} is
dense in'Y .

Proof. Clearly, it suffices to show that (ii)==(i) and that (i)==-(iii).

(ii)==(i). Take any nonempty subset Y of X and, by assumption, pick a point
x € Y that is isolated in Y. Since {y} is open in Y and Y is dense in Y, we have
y € Y. It follows that y is isolated in Y.

(i)==(iii). Take any nonempty subset Y of X, and let 2 be an open subset of X
such that QNY # (). By assumption, there is a point y € QNY such that y is isolated
in QNY. In other words, there is an open set 2’ of X such that {y} =Q'NQNY.
It follows that y is isolated in Y, proving condition (iii). O

(14.27) Theorem (Mazurkiewicz-Sierpinski, 1920). Any compact Hausdorff and
countable space is scattered.

Proof. Let X be a compact, Hausdorff and countable space. Keeping in mind that
any closed subspace of X is compact, Hausdorff and at most countable, it suffices to
show that X has some isolated point, in view of condition (ii) of (14.26). We argue
by contradiction, and assume that X has no isolated points. We are going to show
the following claim.

Claim. For any nonempty open set U of X and any z € X, there exists a
nonempty open set V of X such that V C U and z ¢ V.

As a matter of fact, we can choose a point y € U such that x # y (this is obvious
if © ¢ U; otherwise, since x is not isolated in X, we have {z} C U). Since X is
Hausdorff, there are disjoint open sets 2, {25 such that x € Qy,y € Q5. Then the
set V := QyNU C U is nonempty (it contains y) and open and z ¢ V| since W, is
an open neighborhood of x disjoint from V. This proves the claim.

By assumption, X = {zg,z1,...,2y,,...}. In view of the claim, it is easily proved,
by induction, that there exists a sequence {V,, : n € N} of nonempty open sets of X
such that V; D Viy1 and z; ¢ V;, for any ¢ € N. By construction, F := {V; : i € N}
is a collection of closed subsets of X with the finite intersection property. Since X
is compact, there is a point = € [|F, and we clearly have x # x;, for any ¢ € N, a
contradiction. O

(14.28) Theorem ([14, Corollary 3.8]). We preserve the notation of (14.1). Let
X be a spectral C-representation of A and assume that X is scattered with respect
to either the spectral topology or the patch topology. Then, X contain a strongly
irredundant C'-representation of A.

Proof. By , the patch topology is finer than the given spectral topology of
X. Thus, if X is scattered in the spectral topology, it is scattered in the patch
topology. Thus it is enough to prove the statement when X is endowed with the
patch topology. By , X contains a minimal C-representation Z of A. Since
X is scattered in the patch topology, the set of isolated points of Z is dense in
7, with respect to the subspace patch topology, i.e., is dense in Z with respect to
the subspace spectral topology, by . Thus, in view of , Z contains a

strongly irredundant representation of A. O

(14.29) Corollary. We preserve the notation of . If X is a spectral and
countable C-representation of the set A, then X contains a strongly irredundant
C-representation of A.
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Proof. XP* is compact, Hausdorff and countable and thus it is scattered, in view

of (14.27)). Thus, the conclusion follows from (|14.2§)). O

(14.30) Definition. We preserve the notation of . Let X be a spectral C-
representation of A, and let' Y be the intersection of all closed C-representations of
A in X. We say that a set B € X is critical in X of B € Y. In the following we
will set €(X) := Min(Y).

(14.31) Proposition ([14, Proposition 3.11]). We preserve the notation of (14.1)).
If X is a spectral C-representation of A and B € X, then the following conditions
are equivalent.
(i) B is critical in X.
(ii) Whenever A = A1N...NA,NC, where each A; is an intersection of members
of X, then A; C B, for some i € {1,...,n}.

Proof. (i)==(ii). Assume that A = A;N...NA,NC, where each A; is an intersection
of members of X. It immediately follows that each closed subset V(A4;) of X is
such that A; = (pcpa,) H. This proves that Z := Ui, V(4;) is a closed C-
representation of A. Since, by assumption, B is critical in X, we have B € Z, and
thus B € V(A;), for some 1 < i < n, that is, B D A;.

(il)==(i). Assume condition (ii) and let Z be any closed C-representation of A.
Since {U(d) : d € D} is a subbasis of open and compact subspace of X, being X
spectral, it follows that Z is intersection of sets of the form V(dy) U... U V(d,),
where dy,...,d, € D. Then, in order to prove that B € Z, it suffices to show that,
if Z CV(dy)U...UV(dy), then B € V(dy)U...UV(d,). For any 1 < i < n, set
A; = Nyeya, H and note that d; € A;. Moreover, Z' := V(di) U...UV(d,) is a
C-representation of A, being Z C 7', and thus

A=Cn (VH=CnAN...NA,

Hez'
By assumption, there is some 1 < i < n such that A; C B. Then d; € B, i.e.,
B € V(d;) C Z'. The conclusion is now clear. O

We note now that for a critical set of a spectral representation, the notions of ir-
redundance and strongly irredundance in some representation turn out to be equiv-
alent.

(14.32) Proposition (|14, Corollary 3.12]). We preserve the notation of Cf
Z C X are C-representations of A, X 1is spectral, and B € Z 1is critical in X, then
B s irredundant in Z if and only if B is strongly irredundant in Z.

Proof. Assume that B € Z is irredundant in Z, and let Y be a closed subset of
V(B) such that (Z — {B}) UY is a C-representation of A. We have to show that
Y = V(B) and, since V(B) = {B} and Y is closed, what we need to prove is that
B €Y. Since X is spectral, Y is intersection of sets of the form V(d;)U...UV(d,),
for some di,...,d, € D. Thus, take arbitrary elements di,...,d, € D such that
Y CZ :=V(d)U...UuV(d,). Since Y U(Z —{B}) C Z'U (Z — {B}), it follows
that Z'U(Z — {B}) is a spectral C-representation of A. Then, if A; := (cy ) H.
for 1 <i<mn,and A* := ﬂHeZ’H#BH, we have A=CNA N...NA,NA* Since
B is irredundant in Z, we have A* ¢ B and thus, keeping in mind and the
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fact that B is critical in X, it follows d; € A; C B, for some 1 < i < n. This proves
that B € V(d;) C Z’. The proof is now complete. O

(14.33) Theorem ([14, Theorem 3.13]). Let A C C C D be sets, let X be a
spectral C-representation of A and let €(X) be as in (14.30). Then €(X) is a C-
representation of A if and only if X contains a unique minimal C'-representation of
A, if and only if X contains a unique minimal closed C-representation. In this case,
if

S :={B € X : B is strongly irredundant in some C-representation of A in X},

then the following properties hold.
(a) S CE(X).
(b) Any B € S is strongly irredundant in € (X).
(¢) If Z is a strongly irredundant C-representation of X, then Z = S. In partic-
ular, X contains at most one strongly irredundant C'-representation of A.

Proof. By definition, %' (X) := Min(Y), where Y is the intersection of all closed
C-representations of A. Since Y is closed in the spectral space X, (14.12]) implies
that € (X) is a C-representation of A if and only if Y is a (closed) C-representation
of A, i.e., there exists a unique minimal closed C-representation of A. Since, in view
of (14.10)), for any closed subset of I of X, (Min(T))** = T, it follows that Min(T')
determines I". Thus, X contains a unique minimal closed C-representation of A if
and only if X contains a unique minimal C-representation of A.

(a). Take a set B in S. By definition, there exists a C-representation Z of A such
that B € Z and B is strongly irredundant in Z. Set Z' := Z — { B} and note that
A=CnNBN(\yey H. Consider the closed subset I' := Y N V(B) of V(B), take
an element d € (e H N (per ENC and fix a set £* € €(X). If £* O B, then
E* €T and thus d € E*. If E* 2 B, then the equality A=CNBN Npes H, the
fact that E* is critical and (14.31) imply E* O (. H, and thus d € £*. Then
d e ﬂEe%(X) ENC = A, since, by assumption, ¢ (X) is a C-representation of A.
This proves that I' U Z’ is a C-representation of A and, since B € Z is strongly
irredundant in Z, we must have I' = V(B) and, in particular, B € Y, proving that
S CY. We show now that B is minimal in Y (that is, B € €(X)). Fixaset E €Y
such that £ C B. If (e, H C E, it would follow (., H C B, against the
fact that B is irredundant in Z, being it strongly irredundant. Then, the equality
A=CNBN(\yey H and (14.31) imply B C E, that is B = E.

(b). Let B € S and let Z be a C-representation of A such that B € Z and
B is strongly irredundant in Z. Since, by part (a), B € ¢(X), any E € € (X)
such that £ # B is not comparable with B. Thus, keeping in mind the equality
A=CNBNNyegmep H, (14.31)) implies that for any £ € € (X)—{B} is such that
E 2 Nye z.mzp . Then, since B is irredundant in Z, being it strongly irredundant,
we have

cn (] E2¢Cn () H2A
Ee€%(X),E#B HeZ,H#B
This proves that B is irredundant in the C-representation ¢’ (X) of A and, since B
is critical in X, by part (a), implies that B is strongly irredundant in ¢'(X).
(c). Let Z be a strongly irredundant C-representation of A. By definition and part
(a) we have Z C S C ¥ (X). Assume, by contradiction, that thereis aset B € S—Z7.
Since ¢'(X) is a C-representation of A, we have A = C'NBN(\pey(x) pep £ Since
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% (X) is the collection of minimal elements of Y, any set H € Z is not comparable
with B, since B ¢ Z. Then, the equality A =C N BN ﬂEE(g(X)’E#B E and QD
imply that H D ﬂEe(g(X)E#B E, for any H € Z. Thus, keeping in mind that B is
irredundant in ¢’ (X), by part (b), we have

cn(lH2Cn () E2A4

HeZ Ec%(X),E+B
against the fact that Z is a C-representation of A. It follows Z = S. 0J

15. MORE ON RIEMANN-ZARISKI SPACES.

Let K be a field and let D be any subring of K. As we proved in and, in
a constructive way, in (12.16), Zar(K|D) is a spectral space. In this section we are
going to provide further applications of Riemann-Zariski spaces of valuation rings
in Multiplicative Ideal Theory. We start with some easy remarks.

(15.1) Remark. (a) In view of (12.6p), if D is a Priifer domain with quotient
field L, then Zar(L|D) = {D, : p € Spec(D)}.
(b) In particular, keeping in mind that the polynomial ring K[7] in the indeter-
minate T over a field K is a Dedekind domain, we have
Zar(K(T)|K[T)) = {K[T) : f € K[T] irreducible over K} U{K(T)},

where, as usual, (f) := fK[T].
(c¢) If K is a field and T is an indeterminate over K, then

Zar(K(T)|K) = Zar(K(T)|K[T]) U {K[T_l](T—l)}

The inclusion D is trivial, by (b) and the fact that K[T!|-1) is a valua-
tion overring of the Dedekind domain K[T~!]. Conversely, take a valuation
domain V € Zar(K(T)|K). f T € V, then V € Zar(K(T)|K[T)). YT ¢ V,
then T7! € my (as in @, my is the maximal ideal of V). It follows that
K[T7'] C V and that the center of V in K[T~']is (T7!). In view of (12.6b),
we have V = K [T 7).

(15.2) Lemma. Let X be a spectral space and let S be a subbasis of open and
compact subspaces of X. Then S8' := {X — S : S € 8} is a subbasis of open and
compact subspaces of X™ (recall that X™ denotes the set X, endowed with the
inverse topology).

Proof. In view of ), S' is a collection of open and compact subspaces of
X' Take now an open proper subset U of X™ and take a point x € U. Again
by ), there is an open and compact subspace €2 of X such that v € X —
) C U. Since § is a subbasis of open sets of X and () is compact, we have 2 =
Uizi M2, Siy, for suitable sets Sj; € S. It follows that for any 1 <4 < n there is
some j; € {1,...,n;} such that z € (_ (X — Si;,) € X —Q C U. The proof is now
complete. O

(15.3) Corollary. Let K be a field, let D be a subring of K, and let Zar(K|D) be
endowed with the Zariski topology. As in , set

BX(x) := B(z) := Zar(K|D[z]),

forany x € K. Then {Zar(K|D)— B(z) : x € K} is a subbasis of open and compact
subspaces of Zar(K|D)™.
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Proof. By definition, any B(z) is a subbasic open set of Zar(K|D), with respect to
the Zariski topology. Moreover, B(z) is compact, being it spectral (it is a Riemann-
Zariski space). Then the conclusion follows from (15.2]). 0

(15.4) Remark. Let D be an integral domain which is integrally closed domain
in some field K. Then, according to and (15.3), Zar(K|D)™ is a spectral
representation of D. This suggests that the topology that we have to use in order
to apply the results of the previous section to spaces of valuation domains is the
inverse topology.

Let X be a topological space and < be the canonical preorder induced by the
topology. For any subset Y of X, the set

e .={zr e X :2 <y, for some y € Y}

is called the closure under generization of Y (or the generic closure of Y). It is
immediately seen that Y C Y and that, if Y is open, then Y = Y&, Whenever
the previous equality is true, we say that Y is closed under generizations.

(15.5) Example. Let K be a field and D be a subring of K. Keeping in mind
(13.2c), it easily follows that if Y C Zar(K|D), then

Yer ={V € Zar(K|D) : V O W, for some W € Y}.

(15.6) Proposition ([4, Remark 2.2]). Let X be a spectral space and let Y be a

subset of X. Then Y = (Yp)gen, 1.€., the closure of Y in the inverse topology is
the generic closure (in the given spectral topology) of the closure of Y in the patch

gen

topology. In particular, if Y is closed in the patch topology of X, then Y =v

Proof. In view of the Hochster duality , X' is a spectral space and the patch
topology of X and that of X™ are the same. Thus, by ((14.9), Y™ is the specializa-
tion, in the inverse topology, of Y". Finally, in view of (13.13), the spacialization of
any subset, in the inverse topology, is equal to the gener‘ization in the given spectral
topology. O

(15.7) Proposition. Let X be a spectral space and let Y C X. Then, the following
conditions are equivalent.

(i) Y is closed, with respect to the inverse topology.
(il) Y is compact, in the given spectral topology, and closed under generizations.

Proof. (i)==-(ii). Suppose that Y is closed in the inverse topology. By a
closed set in the inverse topology is closed under generization. Moreover, the given
spectral topology and the inverse topology have the same patch topology. Since the
patch topology is compact and finer than both the spectral topology and the inverse
topology, it follows that Y is closed, and hence compact, in the patch topology.
Finally, Y is compact in given spectral topology.

(il)==(i). Suppose that Y is compact and closed under generization. We argue
by contradiction, and take a point z € Y — Y. Since Y = Y& it happens, for
any y € Y, that x £ y, that is, y ¢ m Since open and compact subsets form
a basis for the given spectral topology of X, for any y € Y there is an open and
compact neighborhood €, of y such that x ¢ Q,. It follows that Y C |J, . ©Q,
and, since Y is compact, there are finitely many elements yy,...,y, € Y such that
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Y C UL, Qy =: Q. The set Q is open and compact, being it a finite union of open
and compact sets, and thus, by definition, it is closed in the inverse topology. It

follows z € Y C 2, a contradiction. O

(15.8) Proposition. Let K be a fiend and let D C E be subrings of K. Then
Zar(K|FE) is closed in Zar(K|D), with respect to the inverse topology.

Proof. Zar(K|FE) is compact, being it spectral, and, by (15.5)), it is closed under
generizations. Then, the conclusion follows from (|15.7]). [

(15.9) Proposition. Let K be a field, D be a subring of K and C be a subset of
K such that D C C. If Z C Zar(K|D)™ is a closed C-representation of D, then Z
contains a minimal closed C-representation of D.

Proof. Apply (14.3). O

(15.10) Proposition ([I4, page 292]). Let K be a field, D be a subring of K and
C' be a subset of K such that D C C. If Z C X C Zar(K|D) are C-representations
of D, X is spectral and V € Z, then the following properties holds.

(a) V is irredundant in Z if and only if V is irredundant in the closure of Z in
the patch topology of X.
(b) If V is one-dimensional, then V is irredundant in Z if and only if V is

irredundant in the closure 7. of Z in X.

Proof. (a) is a consequence of ([14.6]).
(b). Assume that V' is irredundant in Z and take an element k € K such that

ke CONwezw W and k ¢ W. Since V is one-dimensional, the unique nontrivial

valuation overring of V' is K and thus (X N B(k)) U {V}i =(XNB(k)Uu{V}DZ.
Since X is a spectral C-representation of D, X N B(k) is closed in X (equipped with
the inverse subspace topology induced by the inverse topology of Zar(K|D)), and

thus Z' C (X N B(k)) U{V}. This proves that k € [, 5 woy W Since k ¢V, it
follows that V is irredundant in Z'. The converse part is obvious. O

(15.11) Proposition ([14], (4.5)]). Let D be an integral domain which is integrally
closed in some field K 2 D, let C be a set such that D C C C K and let X C
Zar(K|D)™ be a minimal C-representation of D.

(a) If V € X, then following conditions are equivalent.
(i) V is irredundant in X.
(ii) V' is strongly irredundant in X.
(iii) V' is isolated in X (with respect to the subspace inverse topology or,
equivalenty, to the subspace patch topology).
(b) X contains a strongly irredundant C-representation of D if and only if the
set of isolated points in X s dense in X, with respect to the subspace inverse

topology.

Proof. Apply (14.21)) and (14.24)). O

(15.12) Proposition ([14, (4.8)]). Let K be a field, D be a subring of K and C
be a set such that D C C' C K. If X C Zar(K|D) is a countable closed subspace,
with respect to the patch topology, and D = CN(\,cx V, then X contains a strongly
wrredundant C-representation of D.
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Proof. Apply (14.29). O

If D is an integral domain with quotient field K and a is a subset of D, we set
al:=(D:a):={r € K:zaC D}.

The subset a, := (a™!)~! of K is called the divisorial closure of a. Note that, if a is
an ideal of D, then so is a,. We say that an ideal a of D is divisorial if a = a,. If i
is a nonzero ideal of D, set

i = Z{av : 0 # a C i, a finitely generated ideal of D}.
The ideal i is called a t-ideal of D if either i =0 or i; = i.

(15.13) Remark (See, for instance, [9]). Let D be an integral domain with quotient
field K.

(a) A map F' +— F, from the set of nonzero fractional ideals of D it itself is called
to be a star operation on D if
e D, =D and kF, = (kF),,
e 'C F, and F C G implies F, C G,.
L4 (F*)* == F*;
for any k € K — {0} and nonzero fractional ideals F, G of D.
(b) It is straightforward that the maps F' — F,, F' +— F, are both star operations
on D.
(c) A star operation x is called to be of finite type if

F, = G, : G C F, G finitely generated nonzero fractional ideal of D
Yy g

for any nonzero fractional ideal F' of D. Thus, by definition, the ¢ operation
is of finite type.

(d) Given a star operation % on D, an ideal a of D is called to be a *-ideal if either
a=0ora=a, Itisstraightforward that, if F is a collection of nonzero
fractional ideals of D with nonzero intersection, then (\pe 7 Fi = ([ per Fi)-
In particular, a finite intersection of *-ideals is a *-ideal.

(e) By the first axion of a star operation, kD = (kD),, for any k € K and any
star operation x on D. In particular, any principal ideal is a *-ideal.

(15.14) Definition. Let * be a star operation on an integral domain D. A prime
ideal of D is x-prime if it is a x-ideal. A maximal element, under inclusion, of the
set of proper x-ideals of D is called a x-maximal ideal. We shall denote by Spec*(D)
(resp., Max™(D)) the collection of all x-prime (resp., *-maximal) ideals of D.

(15.15) Proposition. Let D be an integral domain and let * be a star operation on
D. The following properties hold.
(a) Max*(D) C Spec*(D).
(b) If x is of finite type, then any proper x-ideal is contained in a x-maximal
ideal. In particular, Max* (D) # ().
(c) If = is of finite type, then D = (|, crtaxs(py Drm-

Proof. (a). Let m be a x-maximal ideal of D, and let z,y € D be such that xy € m
and z ¢ m. Since m C zD +m C (zD + m), we have (xD + m), = D, since
m € Max"(D). It follows

y € ylaD +m), = [y(zD + m)|, C (zyD + m), = m, = m,
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proving that m is a prime ideal (and thus a x-prime ideal).

(b). Let a ba proper #-ideal of D, let C be a chain of proper *-ideals of D containing
a, and let b be the union of C. Take an element x € b,. Since x is of finite type,
there is a finitely generated ideal by of D such that by C b and = € bg,. Since by is
finitely generated and C is a chain, there is an ideal ¢ € C such that by C ¢. Keeping
in mind that C consists of x-ideals, it follows x € by, C ¢, = ¢ C b, proving that b
is a *-ideal. Then the conclusion follows from Zorn’s Lemma.

(c) Take an element x € [\, cppax-(p) Dm- For a fixed m € Max™(D), take elements

a,s € D, s ¢ m such that z = g, and note that DNz ™'D ¢ m (since s € 7' D).
s

Moreover, by (15.13d,e), D Nx~'D is a *-ideal. Thus, in view of part (b), we infer

D=DNa 1D that is, z € D. 0

(15.16) Proposition. Any invertible ideal of an integral domain is divisorial.

Proof. Let a be an invertible ideal of an integral domain D, i.e., aa~! = D. It follows
that the inverse (a=!)™! =: a” of a~! is a. The conclusion follows. O

(15.17) Corollary. Any ideal of a Prifer domain is a t-ideal.

Proof. Since any nonzero finitely generated ideal of a Priifer domain is invertible,
and a fortiori divisorial, by (|15.16)), we have

it = Z{u : 0 # a C i, a finitely generated ideal of D} = i.
O

(15.18) Definition. Let D be an integral domain.
(a) Let V' be a valuation overring of D. We say that V is essential for D if
V = Dy, for some p € Spec(D). Such a prime ideal p is called an essential
prime ideal of D. Set

E(D) := {essential prime ideals of D},
V(D) := {essential valuation overrings of D}.

(b) We say that D is an essential domain if D is intersection of a nonempty
collection V of essential valuation overrings of D. Such a family V is called
an essential representation of D.

(15.19) Example. Any Priifer domain D is an essential domain; indeed, the family
{Dy : m € Max(D)} is an essential representation of D.

(15.20) Theorem (See [, Proposition 4.5]). Let D be an essential domain with
quotient field K and let Y C Zar(K|D) be an essential representation of D. Then

Max'(D) C {my N D:V € V1.
In particular, if D is Priifer, then Max(D) C {myND:V € Y};.

Proof. The last statement follows from the first one, in view of . According to
(10.14]) and , it suffices to show that any t-maximal ideal of D is contained in an
ultrafilter limit point of Yj := {myND : V € Y'}. Fix a t-maximal ideal m of D and
consider the collection of subsets F := {V(2)NYy : x € m} of Y. Assume that there
are elements x1, ..., 2, € m such that V(z1,...,2,) N Yy =0, let a:= (z1,...,2,)D
and take an element x € a~!. For any V € Y, there is an element dy, € a—my, since
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1
V(a)NYy = 0. It follows zdy € D, that is, x € d_D C Duwynp =V (note that the

last equality is a consequence of the fact that V is ‘éssential for D). Keeping in mind
that Y is a representation of D, we have a=! C ﬂVeY V = D and, since the inclusion
D C a~!is always true, it follows a=! = D, and a fortiori a’ = D! = D C m! = m,
a contradiction. This argument shows that F has the finite intersection property,
and thus there exists an ultrafilter % on Y extending F, by . It immediately
follows m C (Yy) :={d e D :V(d)NYy € %}. O

(15.21) Lemma. Let f : X — Y be a homeomorphism of spectral spaces. Then
foXpateh __yypatch g g f 0 XY 5 VIV gre homeomorphisms.

Proof. 1t is sufficient to note that a subset Q of X is open and compact if and
only if f(Q2) is open and compact, since f : X — Y is a homeomorphism. Then
the conclusion follows from the definition of the patch topology and of the inverse
topology. O

(15.22) Lemma. Let A be a ring. Then Max(A) is dense in Spec(A), with respect
to the inverse topology.

Proof. Take an open and compact subspace 2 of Spec(A). Then 2 = D(a), for some
finitely generated ideal a of A. Then Max(A) C Q if and only if a = A, if and only
if Q = Spec(A). O
(15.23) Corollary. Let D be a Priifer domain with quotient field K and let Y C
Zar(K|D) be a representation of D. Then'Y is dense in Zar(K|D), with respect to
the inverse topology. In particular, the unique representation of D which is closed
in the inverse topology is Zar(K|D).

Proof. Since D is Priifer, the domination map ¢ : Zar(K|D) — Spec(D) is a
homeomorphism, with respect to the Zariski topology. In view of (15.21)), ¢ :

Zar(K|D)™ — Spec(D)™ is a homeomorphism. By (15.20) and (15.22)), {myND :

V € Y} is dense in Spec(D)™ . Since the domination map is a homeomorphism, Y
is dense in Zar(K|D)™. O

(15.24) Definition. Let K be a field, let D be a subring of K, let C be a subset of K
such that D C C' and let T be an indeterminate over K. For any nonempty subset X
of Zar(K|D), consider the K-Halter-Koch ring Kr(X) := (", cx V(T) (see (12.11)).
If X is a C-representation (resp., a representation) of D we say that Kr(X) is a
C-Kronecker function ring of D (resp., a Kronecker function ring of D).
In the setting of ((15.24), endow Zar(K|D) with the inverse topology and set
Ko (D) := {C-Kronecker function rings of D}

Rc (D) := {closed C-representations of D}.

The set (D) will be called the C-Kronecker space of A. By definition, Kc(D) # ()
if and only if Ro(D) # 0. Indeed, if Ko(D) # ), there is some C-representation
X C Zar(K|D) of D. A fortiori, Zar(K|D) is a closed C-representation of D.

(15.25) Corollary. Let K be a field, D be a subring of K and T be an indeterminate
over K. If H := Kr(Zar(K|D)), then the natural map

n: Zar(K(T)|H)™ — Zar(K|D)™ W= WNK

1s a homeomorphism.
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Proof. Apply (12.16) and (15.21)). O

(15.26) Theorem ([14, (4.15)]). We preserve the setting of and assume that
Zar(K|D) is a C-representation of D. Consider the map  : Ro(D) — Ke(D)
defined by setting 5(X) := Kr(X), for any X € Rc(A). The following properties
hold.
(a) [ is an inclusion reversing bijection.
(b) Minimal closed C-representations of D bijectively corresponds, via [3, to maz-
imal C-Kronecker function rings of D.

Proof. (a) The fact that § is inclusion reversing is trivial. Assume now that XY C
Zar(K|D) are closed C-representations of D and that S(X) = 5(Y), that is, R :
Kr(X) = Kr(Y). By (15.25), n~'(X) = {V(T) : V € X},n7'(Y) = {V(T) :
V € Y} are closed subspaces of Zar(K (T)|H)™ and, a fortiori, of Zar(K (T)|R)™,
by (14.17¢) and (15.8). Since n~(X),n (Y are, by definition, representations of
the Bézout domain R (see (12.9F)), then implies n~1(X) = n~}(Y), that

is, X = Y. For surjectivity, take any C-Kronecker function ring R of D. Thus
R = Kr(X), for some C-representation X C Zar(K|D) of D. By and ([15.8),
X' := n(Zar(K(T)|R)) is closed in Zar(K|D)™ and, since R is integrally closed,
being it Bézout, we have, by definition,

Kr(X'):= (] V(T) = (|l WwW=rk

VeX’ WeZar(K(T)|R)

(b) is an immediate consequence of part (a). O

(15.27) Corollary. We preserve the setting of and assume that Zar(K|D)
is a C-representation of D. If Ko(D) has a unique mazimal point (i.e., there is
a unique mazximal C-Kronecker function ring), then D has at most one strongly
irredundant C-representation in Zar(K|D).

Proof. Apply (15.26p) and (14.33f). O

(15.28) Lemma. Let V' be a valuation domain with quotient field K, and let M, N
be V-submodules of K containing V. Then, M, N are comparable.

Proof. Suppose C' ¢ D and take an element ¢ € C'— D. Then, for any d € D, we

d

have — € V (otherwise, 2 € V and thus ¢ € dV C D, a contradiction). It follows
c

decV CC. O

(15.29) Definition. Let K be a field, D be a subring of K and C be a subset
of K such that D C C. Adapting the terminology of the previous section, we say
that a valuation domain V € Zar(K|D) is C-critical for D if V. € T, for any
C-representation T' of D which is closed in the inverse topology of Zar(K|D). A
K -critical valuation domain will be simply called critical.

Keeping in mind , the following result is clear.
(15.30) Proposition. Let K be a field, D be a subring of K and C' be a subset of
K such that D C C. If V' € Zar(K|D), then the following conditions are equivalent.
(i) V is C-critical for D.
(ii) Whenever Ay, ..., A, are subrings of K that are integrally closed in K and
D=AnNn...NnA,NC, then A; CV, for some i€ {1,...,n}.
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(15.31) Proposition ([I4, Proposition 4.11)). Let D be an integral domain with
quotient field K, and let C' be a D-submodule of K such that D C C. If V is an
essential valuation overring of D such that C' € V, then V is C-critical for D.

Proof. By definition, there is some prime ideal p of D such that V' = D,. Take
integrally closed overrings Ay, ..., A, of D such that D = A;N...NA,NC. Keeping
in mind that localization commutes with finite intersections, we infer that V' = D, =
(A1)p N...N (An)p N Cy. By (15.28), the collection M := {Cy, (4;)p : 1 < i < n} of
V-submodules of K (containing V') is totally ordered by inclusion and, since C' ¢ V/,
the minimum of M cannot be C, (otherwise V' = C, D (). Thus the minimum of
M is some (A;)y, that is, V = (A;), 2 A;. The conclusion follows from (15.30). O

(15.32) Corollary. Any essential domain admits at most one strongly irredundant
representation (in the space of its valuation overrings).

Proof. Let D be an essential domain. In view of (15.31]), D is intersection of critical
valuation overrings. The conclusion follows immediately from ((14.33)). O]

(15.33) Definition ([2]). An integral domain is called to be vacant if it admits a
unique Kronecker function ring.

Note that, by definition, any vacant domain is integrally closed. The following
result gives a topological criterion to decide if an integral domain is vacant.

(15.34) Theorem. Let D be an integral domain with quotient field K. Then the
following conditions are equivalent.
(i) D is vacant.
(ii) D is integrally closed and any representation of D is dense in Zar(K|D),
with respect to the inverse topology.
(i) D is integrally closed and any valuation overring of D is critical for D.

(iv) D is integrally closed and, whenever Ay,..., A, are integrally closed over-
rings of D such that D = Ay N...N A, then Zar(K|D) = |J;_, Zar(K|A4;).

Proof. 1t is enough to apply (15.26)), (14.33)) and (15.30]). 0

(15.35) Remark. The equivalence of (i) and (ii) of (15.34) is [4, Corollary 4.16].
The equivalence of (i) and (iii) is [14, Example 4.12]. The equivalence of (i) and (iv)
was proved in [2, Theorem 3.1].

(15.36) Corollary. Any Priifer domain is vacant.
Proof. Apply (15.23]) and (15.34]). O

(15.37) Proposition. Any vacant domain (in particular, any Prifer domain) ad-
mits at most one strongly irredundant representation (in the space of its valuation
overrings).

Proof. 1t follows by definition, keeping in mind (|15.27)). 0J
The following remark is straightforward and its proof is left to the reader.

(15.38) Remark. Let D be an integral domain with quotient field K, and let X
be a D-submodule of K.

(a) Then (X : X):={k € K: kX C X} is an overring of D.

(b) If X is an overring of D, then (X : X) = X.
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(c) If X is an ideal of D, then X is an ideal of (X : X).
(d) If D is a valuation domain and X is its maximal ideal, then (X : X) = D.

(15.39) Lemma ([2, Lemma 4.3]). Let D be an integral domain and let p be a prime
ideal of D such that V := (p : p) is a valuation overring of D with mazimal ideal p.
Then, any valuation overring of D is comparable with V.

Proof. Let W be a valuation overring of D. First, assume that pW =W. If x € V|
then zp C p and, a fortiori xpW C pW, that is, x € (pW : pW) = (W : W) =W,
in view of (15.38p). This proves that, if pW = W, then V C W.

Assume now that pWW is a proper ideal of W and that W ¢ V', and take an element
w € W — V. Since V is a valuation domain and p is its maximal ideal, it follows
w~! €p. Then, 1 = wlw € pW, against the fact that pI¥ # W. This proves that,
if pW # W, then W C V. The conclusion is now clear. O

(15.40) Proposition. Let K be a field and let T' be an indeterminate over K.
Then, Zar(K(T)|K) — {K(T)} is an irredundant representation of K.

Proof. By (15.1), we have
Zar(K(T)|K) = Zar(K(T)|K[T]) U{K[T™ ] ir-1)}.
It immediately follows that K[T™!]p-1) is irredundant in Zar(K(T)|K). Now, take
any irreducible polynomial f := ap+...+a,T" € K[T] (where a,, # 0), and consider
the valuation domain V' := K[T]). Clearly, % € K[T]), for any irreducible
polynomial g € K[T'] such that (g) # (f). Furthermore
1 T

? - apl"+...+a, < K[Til](T‘l)v

1
proving that 7 €W : W € Zar(K(T)|K),W # V} — K. The conclusion is now
clear. OJ
We now provide an example of a vacant domain that is not Priifer.

(15.41) Example. Let K be a field, let T, U be indeterminates over K, consider
the valuation domain V' := K(T)[U]w) and let 7 : V. — K(T') be the canonical
projection (of V' onto its residue field). In view of and that (4.8)), the ring
D :=n"YK)=K+UK(T)|U]wy) is a local domain and, since m := UK (T)[U]« is
a common prime ideal of V and D, V' is a valuation overring of D, by . In view of
, D is not a valuation domain, and thus it is not a Priifer domain. Now, note that
D is integrally closed. Indeed, by and (8.2), {7~ 1(V") : V' € Zar(K(T)|K)}
is a representation of D. Moreover, note that (m : m) = V, by (15.38d), and thus,
keeping in mind ([15.39)), any valuation overring of D is comparable with V. It
follows that, if I' C Zar(K (T, U)|D) is any representation of D that is closed in the
inverse topology, then IV := {W € T" : W C V} is nonempty, contains V' (being
I' closed under generizations) and it is a representation of D. In view of ,
I :=A{x(W) : W € I"} C Zar(K(T)|K) is a representation of K. Furthermore,
I = Zar(K(T)|K), again by (15.40). By applying (8.3), we easily infer that I =
{W € Zar(K(T,U)|D) : W C V}. Since V is a DVR and any valuation overring of
D is comparable with V| it immediately follows that I' = Zar(K(T,U)|D). Thus,

by (15.34]), D is vacant.
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(15.42) Remark. (a) Let D be an integral domain such that any valuation
overring of D is essential. Then D is a Priifer domain. As a matter of fact,
let m be a maximal ideal of D and let V' be a valuation overring of D such
that V' dominates Dy, (see (12.3))). By assumption, V' = D, for some prime
ideal p of D. It immediately follows m = p, and thus D, is a valuation
domain.

(b) By part (a) and , any vacant domain that is not a Priifer domain
admits a critical valuation overring that is not essential. Thus, in general, for
an integral domain D, the inclusion

V(D) := {essential valuation overrings of D} C {critical valuation overrings of D}

proved in ([15.31)) can be proper. In the following, we will study a class of
integrally closed domains for which the converse of (15.31]) holds.

(15.43) Definition. Let D be an integral domain. We say that D is a PvMD if
Dy, is a valuation domain, for any t-maximal ideal m of D.

(15.44) Remark. (1) Any PuMD is always essential, in view of (15.15c). In
particular, any PoMD has at most one strongly irredundant representation
consisting of valuation overrings (see (15.32)).

(2) Any Priifer domain is a PoMD, by ((15.17)). We will give examples of PuMDs
that are not Priifer.

(15.45) Proposition ([I3, Proposition 2.9]). Let D be an integral domain and let
% be a star operation of finite type on D. Then Spec*(D) is closed in Spec(D), with
respect to the constructible topology.

Proof. Let % be an ultrafilter on X := Spec*(D) and let
p=Xy ={deD:Vd)NXec¥}.

By , it is enough to show that p is a *-prime ideal. Take an element x € p,.
Since * is of finite type, there exists a finitely generated ideal a C p of D such that
x € a,. Since a is finitely generated, we have V(a) N X € % and, since X consists
of x-ideals, V(a)N X = V(a.) N X C V(z) N X. Hence, V(z) N X € %, that is,
T ep. 0

(15.46) Remark. Let D be an integral domain.

(a) £(D) is closed under generizations. Indeed, if p € £(D) and q C p, then
Dy O D, and thus Dy is a valuation domain, since D, is.

(b) If § is the domination map of D and V(D) is the collection of the essential
valuation overrings of D, then V(D) = 6~'(€(D)). The inclusion C is trivial.
Conversely, let V € §71(&(D)) and let p := my N D. Tt follows that V
dominates D, and then, by , V' = D,, since p is essential.

(15.47) Theorem ([5, Theorem 2.4]). Let D be an integral domain. Then, the
following conditions are equivalent.

(i) D is a PvMD.
(ii) D is an essential domain and admits an essential representation V such that

{myND:V eV} CED)
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Proof. (i)==(ii). We know, by definition, that {D,, : m € Max'(D)} is an essential
representation of D. If p is any t-prime ideal of D, let m be a t-maximal ideal of
D such that p € m. Then, D, is a valuation domain, being it an overring of the
valuation domain D,. We infer that V := {D, : p € Spec’(D)} is an essential
representation of D and, by ,

{myND:V eV} =Spec’(D) = Spec'(D) C E(D).
(ii)==(i). Assume that V is an essential representation of D and that
{myND:V eV} CE&D).

If m is any t-maximal ideal of D, there exists a prime ideal p € {my N D :V € V}
such that m C p, by and (15.20). Since p € £(D), by assumption, D, is a
valuation domain and thus Dy, is a valuation domain too, being D, € Dy. The
conclusion follows. O

(15.48) Proposition. Any essential prime ideal of an integral domain is a t-prime
1deal.

Proof. Let p be an essential prime ideal of an integral domain D, that is, D, is
a valuation domain, and take an element x € p,. Take a finitely generated ideal
a C p of D such that z € a;. Since D, is valuation domain, the ideal aD, of D, is
principal, say aD, = aD,, for some o € a. Then, since a is finitely generated, there
is an element s € D — p such that sa C aD. It follows sa; C aD C a C p, and thus
sx € sa; C p. Finally z € p, since s € D — p. O

(15.49) Corollary ([5, Corollary 2.6]). Let D be an integral domain. The following
conditions are equivalent.

(i) D is a PuMD.
(ii) D is essential and E(D) is closed in Spec(D), with respect to the inverse

topology.
(iii) D is essential and E(D) is closed in Spec(D), with respect to the con-
structible topology.

Proof. (i)==(ii). By assumption, D is essential. By the proof of ((15.47}(i)==-(ii)),
V= {D, : p € Spec'(D)}

is an essential representation of D. Thus, keeping in mind ([15.48)), £(D) = Spec’(D).

The conclusion follows by m ) and | -
(il)==-(iii) is trivial, since the inverse topology is coarser than the constructible

topology, by ((13.14 m

(ili)==(i). We know that V := {D, : p € £(D)} is an essential representation of
D Since £(D) is closed in the constructible topology, it suffices to apply condition

(ii) ofm O

(15.50) Proposition. Let D be an integral domain with quotient field K. Then,
the domination map § : Zar(K|D)™ — Spec(D)™, is continuous. Moreover,
§ : Zar(K|D)Pa*h — Spec(D)°st s continuous and closed.

Proof. Keeping in mind the proof of (12.6]), we have 6~'(D(d)) = B(d™'), for each
element d € D — {0}. It follows that the inverse image of an open and compact
subspace of Spec(D) is open and compact in Zar(K|A). The conclusion follows, by
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definition. For the last part, keep in mind that a continuous map from a compact
space to a Hausdorff space is closed. O

(15.51) Remark. Let D be a PuMD with quotient field K. Keeping in mind
(15.46) and (|15.48)), the set V(D) of essential valuation overrings of D is

V(D) ={D, : p € Spec'(D)}.

By ([15.50), the domination map d : Zar(K|D)P¥<h — Spec(D)*" restricts to a
continuous bijection dy := 6|y p) : V(D) — Spec'(D) (with respect to the subspace
topologies induced by the patch topologies). Since § is closed, it is not hard to
infer that Jy is a homeomorphism. In particular, the space Min(V(D)) of minimal
elements of V(D) is homeomorphic to Max’(D). Keeping in mind and the
fact that Max'(D) is the minimal space of Spec’(D), with respect to the inverse
topology, it follows that Min(V(D)) and Max’(D) are homeomorphic, via §, with
respect to the subspace inverse topology.

(15.52) Corollary ([I4, Lemma 6.3]). Let D be an integral domain. Then, the
following conditions are equivalent.

(i) D is a PvMD.
(ii) D is essential and every critical valuation overring of D is essential.

Proof. (i)==(ii). D is essential, being it a PoMD. Thus, by (15.46b), (15.49) and
(15.50), it follows that the collection V(D) forms a closed representation of D in
the space of valuation overrings of D, endowed with the inverse topology. Then, by
definition, any critical valuation overring of D is essential.

(ii)==(i). By assumption, V(D) is a representation of D. Moreover, in view of
(15.31)), V(D) is precisely the set of all critical valuation overrings of D; thus it
is closed in the inverse topology and, a fortiori, in the patch topology. Since the
domination map 0 is closed, with respect to the patch topology (see ), then
15.46b) implies that £(D) is closed in Spec(D)®™. The conclusion follows from
15.49)). 0

(15.53) Theorem ([14, Theorem 6.4]). Let D be a PvMD, let V be a valuation
overring of D and let p be the center of V in D. Then, the following conditions are
equivalent.

(i) V is strongly irredundant in some representation of D (consisting of valua-
tion overrings of D).

(ii) V = Dy, p € Max'(D) and p is isolated in Max'(D), endowed with the
subspace topology induced by the inverse (or the patch) topology.

Proof. First, note that, since any PuMD is essential, then D is intersection of all
critical valuation overrings, by (15.31]). Thus, in view of (14.33)), Zar(K|D) contains
a unique minimal closed representation of D, in the inverse topology. Let % :

% (Zar(K|D)) denote the space consisting of mlmmal critical valuation overrings of
D. By (531) and (1539, % - Min(V(D)).

(i)==(ii). If V is strongly irredundant in some representation of D, then V € ¥,
by (14.33h), and p € Max'(D), by (15.51). Moreover V is strongly irredundant
in ¢ (14.33p), and thus isolated in €, by (14.21), since € is the uniquel minimal
representation of D. Since € is homeomorphic to Max'(D), by , it follows
that p is isolated in Max'(D).
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(il))=(i). Again by (15.51)) we infer that V is isolated in €. By (14.21)), V is
strongly irredundant in €. 0J

[1]

REFERENCES

D. Dobbs, R. Fedder, M. Fontana, Abstract Riemann surfaces of integral domains and spectral
spaces. Ann. Mat. Pura Appl. (4) 148 (1987), 101-115.

A. Fabbri, Integral domains having a unique Kronecker function ring. J. Pure Appl. Algebra
215 (2011), no. 5, 1069-1084.

C. A. Finocchiaro, Spectral spaces and ultrafilters, Comm. Algebra 42 (2014), no. 4, 1496—
1508.

C. A. Finocchiaro, M. Fontana, K. A. Loper, The constructible topology on spaces of valuation
domains, Trans. Am. Math. Soc. 365 (2013), 6199-6216.

C. A. Finocchiaro, F. Tartarone, On a topological characterization of Prfer v-multiplication
domains among essential domains. J. Commut. Algebra 8 (2016), no. 4, 513-536.

M. Fontana, Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. (4)
123 (1980), 331-355.

M. Fontana, K. A. Loper, The patch topology and the ultrafilter topology on the prime
spectrum of a commutative ring, Comm. Algebra 36 (2008) 2917-2922.

E. Formanek, Faithful Noetherian modules. Proc. Amer. Math. Soc. 41 (1973), 381-383.

R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.

A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, Springer, 1971.

F. Halter-Koch, Kronecker function rings and generalized integral closures. Comm. Algebra
31 (2003), no. 1, 45759.

M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142 (1969),
43-60.

M. Fontana, K. A. Loper, Nagata rings, Kronecker function rings and related semistar opera-
tions. Comm. Algebra, 31 (2003), 4775-4805.

B. Olberding, Topological Aspects of Irredundant Intersections of Ideals and Valuation Rings,
in Multiplicative Ideal Theory and Factorization Theory, (2016) Springer, 277-307.

N. Schwartz, M. Tressl, Elementary properties of minimal and maximal points in Zariski
spectra, J. Algebra 323 (2010) 698-728.



	1. Hilbert's Nullstellensatz.
	1.1. G-ideals and Hilbert rings: toward a proof of Hilbert's Nullstellesatz

	2. The Zariski topology on the affine space AnK
	3. The Zariski topology on the prime spectrum of a ring.
	4. Fiber products
	5. Eakin-Nagata's Theorem
	6. The Krull intersection Theorem
	7. The Principal ideal Theorem
	8. Valuation domains and fiber products
	9. Ultrafilters
	9.1. The Stone-Cech compactification of a discrete space.
	9.2. The prime spectrum of a product of fields.

	10. The constructible topology on the prime spectrum of a ring.
	11. Spectral spaces.
	12. A ring whose prime spectrum is homeomorphic to `39`42`"613A``45`47`"603AZar(K|D).
	13. The order induced by a topology.
	14. Topology and irredundant intersections.
	15. More on Riemann-Zariski spaces.
	References

