Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a. 2006/2007

AL4 - Numeri Algebrici (Prof. S. Gabelli)

Esercizi 7

- 1. Determinare la struttura dell'anello quoziente $\mathbb{Z}[i]/p\mathbb{Z}[i]$ a seconda che $p \in \mathbb{Z}$ sia un primo inerte, decomposto o ramificato.
- 2. In $\mathbb{Z}[\sqrt{-5}]$, determinare una base intera per gli ideali

$$(3, a + \sqrt{-5})$$
, $(7, a + \sqrt{-5})$.

- 3. Sia I l'ideale principale di $\mathbb{Z}[\omega_5]$ generato da $9+5\sqrt{5}$. Determinare l'ideale $I\cap\mathbb{Z}$.
- 4. Stabilire se i seguenti numeri primi p sono inerti, ramificati o decomposti nell'anello degli interi di $\mathbb{Q}(\sqrt{d})$ e fattorizzare l'ideale $p\mathcal{O}_K$ in ideali primi.

$$p = 2, 3, 7, d = 7$$
; $p = 2, d = 47$; $p = 23, d = 37$; $p = 11$; $d = -163$.

5. Sia $K := \mathbb{Q}(\sqrt{10})$. Decomporre l'elemento $6 \in \mathcal{O}_K$ in fattori irriducibili. Inoltre, se $\pi \in \mathcal{O}_K$ è un fattore irriducibile di 6, decomporre l'ideale $I := \pi \mathcal{O}_K$ in ideali primi.

Facoltativo: Verificare che $Cl(\mathcal{O}_K) \cong \mathbb{Z}_2$.

6. Sia $K := \mathbb{Q}(\sqrt{23})$. Verificare che $\mathcal{C}l(\mathcal{O}_K) \cong (0)$.