Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a. 2012/2013

AL420 - Teoria Algebrica dei Numeri (Prof. S. Gabelli)

Esercizi 8 - Fattorizzazione di ideali

- 1. Sia $m(X) = X^3 4X + 2 \in \mathbb{Z}[X]$ e sia θ una sua radice.
 - (1) Verificare che m(X) è irriducibile su \mathbb{Q} .
 - (2) Posto $K = \mathbb{Q}(\theta)$, dimostrare che $\mathcal{O}_K = \mathbb{Z}[\theta]$.
 - (3) Fattorizzare gli ideali $p\mathcal{O}_K$ per p=2,3,5.
- 2. Sia $p(X) := X^3 + X^2 + 5X 16$.
 - (1) Verificare che p(X) è irriducibile su \mathbb{Q} .
 - (2) Sapendo che il discriminante di p(X) è $D = -3 \times 23 \times 127$, mostrare che $\mathcal{O}_K = \mathbb{Z}[\theta]$.
 - (3) Fattorizzare in ideali primi l'ideale principale di \mathcal{O}_K generato da $\theta 4$.
- 3. Si ξ una radice primitiva quinta dell'unità. Fattorizzare l'ideale $p\mathbb{Z}[\xi]$ in ideali primi di $\mathbb{Z}[\xi]$ per $p \leq 13$ primo.
- 4. Mostrare che un campo di numeri di grado dispari non contiene alcuna radice n-sima primitiva dell'unità per $n \ge 2$.
- 5. Sia $p \ge 2$ primo. Mostrare che $\sin(\frac{k\pi}{p})/\sin(\frac{\pi}{p})$ è un elemento invertibile di $\mathbb{Z}[\xi_p]$.
- 6. Sia $K = \mathbb{Q}(\xi_8)$ l'ottavo ampliamento ciclotomico. Mostrare che non ci sono numeri primi inerti in \mathcal{O}_K .