Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a.2003/2004

TE1 - Teoria delle Equazioni e Teoria di Galois Prof. S. Gabelli

Tutorato 1 - a cura di G. Armellino

1. Sia F un campo reale oppure $F = \mathbf{F}_p$ con $p \equiv 3 \mod (4)$. Mostrare che l'insieme delle matrici

$$\mathcal{M}_{a,b} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} ; a, b \in F \right\}$$

è un campo, sottoanello dell'anello delle matrici quadrate di dimensione 2 a coefficienti in F.

Se $F = \mathbf{F}_p$, quanti elementi ha $\mathcal{M}_{a,b}$?

2. Costruire esplicitamente i campi $\mathbb{Q}(\alpha)$ per i seguenti valori di α :

$$\sqrt[5]{2}$$
, $\sqrt{3} + 2i$, $ln(2)$.

3. Costruire esplicitamente i campi:

$$\mathbb{Q}(\sqrt{3},\sqrt{5})$$
, $\mathbb{Q}(\sqrt{5},\sqrt{5}+2i)$, $\mathbb{Q}(\sqrt[3]{2},\sqrt{3})$, $\mathbb{Q}(\pi,2+i)$.

4. Determinare il campo di spezzamento su Q dei polinomi

$$X^4 - X^3 + 4X^2 - 3X + 3$$
, $X^9 - 1$, $X^7 - 2$.

5. Siano a, b due interi positivi. Mostrare che

$$\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(x\sqrt{a} + y\sqrt{b}),$$

per ogni $x, y \in \mathbb{Q} \setminus \{0\}.$

6. Determinare l'inverso (razionalizzato) del numero $1+\sqrt{2}-2\sqrt{3}$.