Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a.2003/2004

TE1 - Teoria delle Equazioni e Teoria di Galois Prof. S. Gabelli

Tutorato 10 - a cura di G. Armellino

1. Siano $\rho \in \mathbb{R}$, σ , τ le radici complesse del polinomio X^3-X+1 . Mostrare che

$$\sigma + \tau = -\rho; \quad \sigma\tau = -\frac{1}{\rho}.$$

- 2. Verificare che un polinomio di quarto grado e la sua risolvente cubica hanno lo stesso discriminante.
- 3. Calcolare il discriminante dei polinomi:

$$X^4 + aX^2 + c$$
; $X^4 + bX + c \in \mathbb{Q}[X]$.

4. Stabilire, senza calcolarne le radici, qual è il gruppo di Galois dei seguenti polinomi:

$$X^{3} - 5$$
; $X^{3} - 21X + 17$; $X^{3} + X^{2} - 2X + 1$;
 $X^{4} + 8X + 12$; $X^{4} + 4X^{2} - 5$; $X^{4} + X + 1$.

- 5. Calcolare il discriminante del polinomio $X^n-1\in\mathbb{Q}[X]$, per $n\geq 2$.
- 6. Determinare un ampliamento ciclotomico contenente \sqrt{d} , per d=3,6,11,12,15.
- 7. Mostrare che, se MCD(r, s) = 1 , allora
 - (1). $\mathbb{Q}(\xi_{rs}) = \mathbb{Q}(\xi_r, \xi_s)$;
 - (2). $Gal_{\mathbb{Q}}(\mathbb{Q}(\xi_{rs})) = Gal_{\mathbb{Q}}(\mathbb{Q}(\xi_{r})) \times Gal_{\mathbb{Q}}(\mathbb{Q}(\xi_{s}))$.

Inoltre scrivere esplicitamente ξ_{rs} come funzione razionale di ξ_r e ξ_s .