Università degli Studi di Roma Tre

Corso di Laurea in Matematica, a.a. 2007/2008

TE1 - Esercizi 7 (2 Maggio 2008)

a cura di Carmelo Antonio Finocchiaro

Esercizio 1. Poniamo $K =: \mathbb{Q}(\sqrt[4]{2}, i)$.

- (a) Determinare il grado degli ampliamenti $K/\mathbb{Q}(\sqrt[4]{2}), K/\mathbb{Q}(i), K/\mathbb{Q}$.
- (b) Determinare un elemento primitivo di K su \mathbb{Q} .
- (c) Dire perché l'ampliamento K/\mathbb{Q} è di Galois, determinare la struttura di $\operatorname{Gal}(K/\mathbb{Q})$, e stabilire un isomorfismo di $\operatorname{Gal}(K/\mathbb{Q})$ con un gruppo noto.
- (d) Determinare tutti i campi intermedi fra K e \mathbb{Q} , calcolando, per ciascuno di essi, un elemento primitivo su \mathbb{Q} .
- (e) Sia $\alpha \in K$ un elemento di grado 2 su \mathbb{Q} . Dimostrare che $\operatorname{Gal}(K/\mathbb{Q}(\alpha))$ è un sottogruppo normale di $\operatorname{Gal}(K/\mathbb{Q})$.

Esercizio 2. Poniamo $\alpha := \sqrt[4]{2} + i\sqrt[4]{2} + 1$.

- (a) Determinare tutte le radici del polinomio minimo di α su \mathbb{Q} .
- (b) Stabilire se l'ampliamento $\mathbb{Q}(\alpha)/\mathbb{Q}$ è normale.
- (c) Determinare, se esiste, un campo K tale che $\mathbb{Q} \subsetneq K \subsetneq \mathbb{Q}(\alpha)$.

Esercizio 3. Mostrare che $\cos(2\pi/11)$ è algebrico su \mathbb{Q} e determinare il suo polinomio minimo su \mathbb{Q} .

Esercizio 4. Mostrare che $\sin(2\pi/13)$ è algebrico su \mathbb{Q} e determinare il suo polinomio minimo su \mathbb{Q} .

Esercizio 5. Sia G un gruppo di ordine 15.

(a) Determinare tutti i sottogruppi di G e le eventuali inclusioni fra questi.

(b) Stabilire se G è risolubile, ed eventualmente determinare tutte le serie risolventi di G.

Esercizio 6. Esplicitare la corrispondenza di Galois per il 15-simo ampliamento ciclotomico.

(Suggerimento: Ricordare che $\mathbb{Q}(\xi_{15}) = \mathbb{Q}(\xi_3, \xi_5)$.)

Esercizio 7. Sia n un numero naturale non nullo.

- (a) Sia G un gruppo di ordine 2n con almeno un sottogruppo risolubile di ordine n. Dimostrare che G è risolubile.
- (b) Dedurre che, per ogni intero $n \geq 3$, il gruppo diedrale D_n è risolubile.

Esercizio 8. Sia K/F un ampliamento di campi.

(a) Dimostrare che, se K è radicale su F, allora K è un un F-spazio vettoriale di dimensione finita.

Poniamo
$$\alpha := \sqrt[3]{3}, \beta := \sqrt{1+\alpha}, \gamma := \sqrt{1-\beta}, F = \mathbb{Q}, K = \mathbb{Q}(\alpha, \beta, \gamma).$$

- (b1) Dimostrare che l'ampliamento K/F è radicale.
- (b2) Determinare un numero intero n tale che $[K:F] \leq n$.