Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a.2008/2009

TE1 - Teoria delle Equazioni e Teoria di Galois (Prof. S. Gabelli) Tutorato 2, a cura di D. Menichetti e F. Libertini

1. Sia

$$M_{a,b}(\mathbb{F}_7) = \{ M_{a,b} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{F}_7 \}$$

(a) Mostrare che $M_{a,b}(\mathbb{F}_7)$ è un campo e che l'applicazione

$$\varphi: \mathbb{F}_7 \to M_{a,b}(\mathbb{F}_7); \quad a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

è un'immersione.

- (b) Mostrare che $M_{a,b}(\mathbb{F}_7)$ è un ampliamento di grado 2 di \mathbb{F}_7 .
- 2. Si consideri l'insieme $A = \mathbb{F}_5 \times \mathbb{F}_5$ in cui sono definite le seguenti operazioni:

$$(a,b) + (a',b') = (a+a',b+b');$$
 $(a,b)(a',b') = (aa'+3bb',ab'+a'b).$

Rispetto a queste operazioni, A è un anello commutativo unitario con zero (0,0) e unità (1,0) ed è anche uno spazio vettoriale su \mathbb{F}_5 con la moltiplicazione scalare definita da

$$c(a,b) = (c,0)(a,b) = (ca,cb).$$

(a) Dimostrare che l'applicazione

$$\varphi: \mathbb{F}_5[X] \longrightarrow A$$
 definita da $\sum a_i X^i \mapsto \sum a_i (0,1)^i$

è un omomorfismo di anelli;

(b) Determinare il nucleo $Ker\varphi$ e l'mmagine $Im\varphi$ e definire l'applicazione canonica

$$\overline{\varphi}: \frac{\mathbb{F}_5[X]}{Ker\varphi} \longrightarrow Im\varphi$$

data dal Teorema di Omomorfismo.

- (c) Usando il punto precedente, mostrare che $K := Im\varphi$ è un campo, ampliamento di \mathbb{F}_5 . Determinare inoltre il grado $[K : \mathbb{F}_5]$, una base di K su \mathbb{F}_5 e il numero degli elementi di K.
- 3. Sia $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\tilde{\alpha})$ una catena di ampliamenti di campi e sia α trascendente su \mathbb{Q} . $\tilde{\alpha}$ può essere algebrico su \mathbb{Q} ? E su $\mathbb{Q}(\alpha)$?
- 4. Stabilire se $\mathbb{Q}(\sqrt[3]{2}, \sqrt[5]{3}) = \mathbb{Q}(\sqrt[3]{2}\sqrt[5]{3}).$
- 5. Siano $n, m, \geq 2$. Mostrare che esiste un numero naturale $r \geq 2$ tale che $\mathbb{Q}(\sqrt[n]{2}, \sqrt[m]{2}) = \mathbb{Q}(\sqrt[r]{2})$.
- 6. Sia $K = \mathbb{Q}(e, \sqrt{3})$.
 - (a) Descrivere esplicitamente gli elementi di K.
 - (b) Calcolare $[K : \mathbb{Q}(e)]$ e trovare una base di K su $\mathbb{Q}(e)$.
 - (c) Calcolare $[K:\mathbb{Q}]$ e trovare una base di K su \mathbb{Q} .
- 7. Sia $K = \mathbb{Q}(\pi, 2 + i)$.
 - (a) Descrivere esplicitamente gli elementi di K.
 - (b) Calcolare $[K:\mathbb{Q}(\pi)]$ e trovare una base di K su $\mathbb{Q}(\pi)$.
 - (c) Calcolare $[K:\mathbb{Q}]$ e trovare una base di K su \mathbb{Q} .
- 8. Sia $K = \mathbb{Q}(\sqrt{5}, \sqrt{5} + 2i)$.
 - (a) Descrivere esplicitamente gli elementi di K.
 - (b) Calcolare $[K : \mathbb{Q}]$ e trovare una base di K su \mathbb{Q} .
 - (c) Dimostrare che $K = \mathbb{Q}(i, \sqrt{5})$.
- 9. Sia $K = \mathbb{Q}(\sqrt[3]{5}, \sqrt{5}, \sqrt[6]{5})$.
 - (a) Calcolare $[K:\mathbb{Q}]$.
 - (b) Trovare una base di K come \mathbb{Q} -spazio vettoriale.
- 10. Dimostrate che $\mathbb{Q}(\sqrt{3}, \sqrt{-3}) \cap \mathbb{Q}(\sqrt{6}, \sqrt{-6}) = \mathbb{Q}(i)$;
- 11. Sia K un campo e U un'indeterminata su K.
 - (a) Dimostrare che $\alpha \in K(U)$ è algebrico su $K \Leftrightarrow \alpha \in K$.
 - (b) Usando (a) mostrare che $[\mathbb{Q}(\sqrt{2},\pi):\mathbb{Q}(\pi)]=2$.