Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a.2008/2009

TE1 - Teoria delle Equazioni e Teoria di Galois (Prof. S. Gabelli) Tutorato 5, a cura di D. Menichetti e F. Libertini

IMPORTANTE: per il resto dei prossimi tutorati $\xi_n=$ radice complessa primitiva n-esima dell'unitá.

- 1. Determinare tutti i $\mathbb{Q}(i)$ -automorfismi di $\mathbb{Q}(\xi_{16})$ in \mathbb{C} .
- 2. Determinare il gruppo di Galois su \mathbb{Q} del polinomio $x^4 p$, dove $p \in \mathbb{Z}$ è un elemento irriducibile, ed un sottogruppo di S_4 ad esso isomorfo.
- 3. Mostrare che il gruppo di Galois su \mathbb{Q} del polinomio $f(x) = x^4 + x^2 1$ è un gruppo diedrale di grado 4. Determinare inoltre tutti i sottocampi normali del campo di spezzamento di f(x).
 - Suggerimento: Notare che $\mathbb{Q}(\sqrt{5},i)$ è contenuto nel campo di spezzamento di f(x).
- 4. Sia α una radice del polinomio $f(x) = x^4 8x^2 + 36 \in \mathbb{Q}[x]$. Mostrare che il campo di spezzamento di f(x) in \mathbb{C} è $\mathbb{Q}(\alpha)$ e che il gruppo degli automorfismi di $\mathbb{Q}(\alpha)$ è un gruppo di Klein.
- 5. Sia $f(x) = x^4 + 30x^2 + 45 \in \mathbb{Q}[x]$. Determinare il campo di spezzamento di f(X) in \mathbb{C} e calcolare il gruppo di Galois di f(X).
- 6. Dimostrare che il gruppo di Galois su \mathbb{Q} del polinomio $f(x) = x^3 p \in \mathbb{Q}[x]$, con $p \in \mathbb{Z}$ elemento irriducibile, è isomorfo a S_3 ed esibire un isomorfismo esplicito.
- 7. Sia $\xi_7 \in \mathbb{C}$.
 - (a) Determinare un numero $\alpha \in \mathbb{C}$ tale che $\mathbb{Q}(\alpha) = \mathbb{Q}(\xi_7) \cap \mathbb{R}$.
 - (b) Dire se $\mathbb{Q}(\alpha)$ è un'estensione di Galois di \mathbb{Q} .
 - (c) Calcolare il polinomio minimo di α su \mathbb{Q} e trovare tutte le sue radici.
 - (d) Dire se $G = Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$ è ciclico.
- 8. Sia $\xi_{12} \in \mathbb{C}$.
 - (a) Determinare la struttura del gruppo $Gal(\mathbb{Q}(\xi_{12})/\mathbb{Q})$ e il reticolo dei suoi sottogruppi.
 - (b) Dimostrare che i campi $F_1 := \mathbb{Q}(i), F_2 := \mathbb{Q}(i\sqrt{3}), F_3 := \mathbb{Q}(\sqrt{3})$ sono contenuti in $\mathbb{Q}(\xi_{12})$.
 - (c) Per ogni $i \in 1, 2, 3$, determare l'insieme

$$H_i := \{ \sigma \in Gal(\mathbb{Q}(\xi_{12})/\mathbb{Q}) : \sigma_{|F_i} = Id_{F_i} \},\$$

e mostrare che è un sottogruppo di $Gal(\mathbb{Q}(\xi_{12})/\mathbb{Q})$.

- 9. Siano p un numero primo, U un'indeterminata su $\mathbb{Q},\, L:=\mathbb{Q}(U^2),\, K:=\mathbb{Q}(U,\sqrt{p}).$
 - (a) Calcolare il grado di K su L.
 - (b) Dire perché l'estensione di campi K/L è separabile e determinare un elemento primitivo α di K su L.
 - (c) Determinare il polinomio minimo di α su L.
 - (d) Determinare la struttura del gruppo Gal(K/L).
- 10. Calcolare il gruppo di Galois dei seguenti polinomi:
 - (a) $(x^2+1)\phi_5$
 - (b) $x^4 4$
 - (c) $x^4 9x^2 + 20$
 - (d) $x^4 11x^3 + 41x^2 61x + 30$
 - (e) $x^4 + x^3 + 2x^2 + 4x + 2$

Suggerimento: Se E_2 , E_2 sono estensioni di Galois di $\mathbb Q$ tali che $E_1 \cap E_2 = \mathbb Q$, allora si ha che $Gal(E_1E_2/\mathbb Q) \cong Gal(E_1/\mathbb Q) \times Gal(E_2/\mathbb Q)$.